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Abstract— In this contribution we present new achievable
rates, for the non-fading uplink channel of a cellular network,
with joint cell-site processing, where unlike previous results,
the error-free backhaul network has finite capacity per-cell.
Namely, the cell-sites are linked to the central joint processor
via lossless links with finite capacity. The cellular network is
modeled by the circular Wyner model, which yields closed form
expressions for the achievable rates. For this idealistic model,
we present achievable rates for cell-sites that use compress-and
forward scheme, combined with local decoding, and inter-cell
time-sharing. These rates are then demonstrated to be rather
close to the optimal unlimited backhaul joint processing rates,
already for modest backhaul capacities, supporting the potential
gain offered by the joint cell-site processing approach.

I. INTRODUCTION

The growing demand for ubiquitous access to high-data rate
services, has produced a huge amount of research analyzing
the performance of wireless communications systems. Cellular
systems are of major interest as the most common method for
providing continuous services to mobile users, in both indoor
and outdoor environments. In particular, the use of joint multi-
cell processing (MCP) has been identified as a key tool for
enhancing system performance (see [1] and references therein
for recent results on multi-cell processing).

Since its introduction in [2], the Wyner cellular model has
provided a framework for many works dealing with multi-
cell processing. Albeit its simplicity, this model captures the
essential structure of a cellular system and facilitates analytical
treatment. The uplink channel of the Wyner linear and planar
models are analyzed in [2] for optimal and linear minimum
mean square error (MMSE) MCP receivers, and Gaussian
channels. In [3], the Wyner model is extended to include
fading channels and the performance of single and two cell-
site processing under various setups is addressed. In [4] the
results of [2] are extended to include fading channels.

All the above cited studies assume that the backhaul network
connecting the cell-sites to the remote central processor (RCP)
is error-free with infinite capacity. In this work we relax this
assumption and allow each cell-site to connect to the RCP
via a reliable error-free connection, but with limited capacity.
Such a model suits cellular networks, where joint decoding can
improve the overall network performance, with the underlying
assumption that the received signals are forwarded to one
location to be jointly processed. Since network resources
are finite, in particular when the cell-sites are in fact “hot

spots” with limited complexity, the inclusion of finite backhaul
resources facilitates better prediction of the ultimate theoretical
performance of MCP.

Recently, the common problem of nomadic terminals send-
ing information to a remote destination via agents with lossless
connections has been investigated in [5] and extended in [6]
to include multiple-input multiple-output (MIMO) channels.
These works focus on the nomadic regime, where the nomadic
terminals use codebooks which are unknown to the agents, but
fully known to the remote destination. Such setting suits the
uplink channel of the limited backhaul cellular system with
MCP, where the oblivious cell-sites play the role of the agents.

Using the techniques developed in [5][6], we assess the
impact of limited backhaul capacity on the performance of
various transmission schemes. Throughout this work we use
a circular variant of the linear Wyner cellular setup [2],
which provides an homogenous framework with respect to the
mobile users and cell-sites. In particular we are interested in
the asymptotic scenario of infinitely many nodes, where the
circular and linear Wyner models are equivalent.

The rest of the paper is organized as follow. In Section II we
define the system model. In Section III we prove an achievable
rate for oblivious cell-sites, while in Section IV we consider
the case where cell-sites perform partial local decoding and
practice time-sharing. Numerical examples are presented in
Section V, which demonstrate the effect of limited backhaul
capacity on MCP performance. Several proofs are relegated to
the Appendix.

II. SYSTEM MODEL

We consider the circular variant of the Wyner model [2],
which includes an array of N cell-sites, indexed by j =
0, . . . , N − 1, arranged on a circle. Each cell contains a
single user (j user for the jth cell), which transmits Xj to
the channel, incorporating intra-cell time division multiple
access (TDMA) transmission scheme. Each cell-site receives
the transmission of the single user with independent interfer-
ences from the users of the adjacent cells and additive white
circularly-symmetric complex Gaussian noise. The received
signal at the jth cell-site for an arbitrary time index reads

Yj = Xj + α
(
X[j−1]N + X[j+1]N

)
+ Zj , (1)

where [j]N , j mod N , and the inter-cell interference factor
is 0 ≤ α ≤ 1. The additive noise Zj is circularly-symmetric



complex Gaussian, with E|Zj |2 = 1 and the transmission
power is E|Xj |2 = P , where the users use circularly-
symmetric complex Gaussian codebooks. Using vector rep-
resentation, expression (1) can be rewritten as

YN = HXN + ZN ,

where N = {0, . . . , N − 1}, and YN = {Y0, . . . , YN−1}.
The matrix H is the N ×N circulant channel transfer matrix,
with first line (1, α, 0, . . . , 0, α). Each cell-site is connected
to the RCP through a lossless link, with bandwidth of Cj

bits per channel use. The RCP jointly processes the signals
and decodes the messages sent by all the users of the cellular
system, where the code rate in bits per channel use of the jth

user is Rj .
Using similar argumentation as in [2], it is easy to verify that

intra-cell TDMA protocol is optimal in terms of the achievable
throughput, for the non-fading homogenous setup considered.

III. OBLIVIOUS CELL-SITES

In this section we consider cell-sites which are oblivious
to the users’ codebooks and can not perform local decoding.
Instead, each cell-site forwards a compressed version of Yj ,
namely Uj , to the RCP, through the lossless link of bandwidth
Cj . The RCP then receives the compressed {Uj} and decodes
the messages sent by all the users. We begin by stating the
following achievable rate-region for the multi access channel
(MAC).

Proposition 1: An achievable rate region for a general N
user MAC with oblivious N cell-sites, connected by error-free
limited capacities {Cj} links to the RCP is given by

∀L ⊆ {0, . . . , N − 1} :

∑

t∈L
Rt ≤ min

S⊆N





∑

j∈S
[Cj − rj ] + I(XL;USC |XLC )



 , (2)

where

PXN ,UN ,YN (XN , UN , YN ) =
N∏

j=1

PXj (Xj)

N∏

j=1

PYj |XN (Yj |XN )
N∏

j=1

PUj |Yj
(Uj |Yj), (3)

and rj = I(Yj ; Uj |XN ).

The proof outline appears in part A of the Appendix, is
based on [5], and is given for Rj = R (a single point on
the achievable rate region boundaries) and equal capacities
Cj = C, for the sake of brevity. The extension of the proof to
the complete achievable rate region under any links’ capacities
is straightforward.

For the Gaussian channel, we use {Xj , Uj} that are complex
Gaussian, so that the joint probability (3) is Gaussian. It is
noted that the Gaussian statistics is used due to the simplicity

and relevance of the reported results, with no claim of optimal-
ity. For the Gaussian channel, the mutual information included
in (2) boils down to [5],[6]

I(XL; USC |XLC ) =
log2 det(I + Pdiag(1− 2−rj )j∈SC HSCLH∗

SCL), (4)

where HSCL is the transfer matrix between the output vector
YSC and the input vector XL, and rj are positive parameters
that are subjected to optimization over 0 ≤ rj ≤ Cj . Focusing
on the setup at hand, with Hi,j which is zero for N − 1 >
|i− j| > 1, equation (2) becomes
∑

t∈L
Rt ≤ min

S⊆[L+1]N∪[L−1]N∪L

∑

j∈S
[Cj−rj ]+I(XL; USC |XLC ),

where [L ± 1]N , {j : j = (i ± 1) mod N, i ∈ L}. Let us
define HS = HSN , which is the transfer matrix between XN
and YS .

Hereafter, we limit our attention to the symmetric case
of Ci = C for all cell-sites, and Rt = R for all users.
By symmetry and concavity, this limits the optimal rj to be
invariant with respect to j: rj = r, and the sum-rate inequality
(L = {0, . . . , N − 1}) to be the dominant inequality in (2).
Consequently we get the following.

Corollary 1: An achievable rate for the circular Wyner
model with equal capacity links C, equal rate users and
oblivious cell-sites is given by

Robl =
1
N

max
0≤r

{
min
S⊆N

{
|S|[C − r]

+ log2 det
(
I + P (1− 2−r)HSC H∗

SC

)
}}

. (5)

This rate is achieved with complex Gaussian {Uj , Xj}.
Next, we need to calculate the logarithm of the determinant

of (5). In the case where no inter-cell interference is presence
(α = 0), it is easily verified that HSC H∗

SC is an |SC | identity
matrix, and in this case the rate equals the rate achieved by an
equivalent single-user single-agent channel [5], which is given
by log2(1 + P 2C−1

2C+P
).

For α > 0, we focus on the case where the number of cells
N is large. An achievable rate for this asymptotic scenario is
given by the following proposition, which is the main result
of this work.

Proposition 2: An achievable rate for the circular Wyner
model with equal limited capacities, oblivious cell-sites and
infinite number of cells (N →∞), is given by

Robl = F (r∗), (6)

where r∗ is the solution of

F (r∗) = C − r∗, (7)

and

F (r) =
∫ 1

0

log2(1 + P (1− 2−r)(1 + 2α cos 2πθ)2)dθ. (8)



Notice that when C → ∞, then also r∗ → ∞, and (6) boils
down to the per-cell sum-rate capacity of the Wyner model
with optimal joint processing and unlimited backhaul capacity
[2]

Robl = F (∞) =
∫ 1

0

log2(1 + P (1 + 2α cos 2πθ)2)dθ.

For finite C, the implicit equation (7) is easily solved
numerically, since F (r) is monotonic. The following lemma,
which is proved in part B of the Appendix, is required for
the proof of Proposition 2.

Lemma 1: Any subset S such that |S| = f(N)
(f : R+ 7→ R+, limN→∞

f(N)
N = λ, 0 ≤ λ ≤ 1),

which minimizes equation (5), when N → ∞, includes only
consecutive indices (considering also modulo operation).

Denote a subset which contains only consecutive indices by
S(c).

Proof of Proposition 2 (outline): First, note that applying
Szegö’s theorem [2], to log2 det(I + P (1− 2−r)HS(c)H∗

S(c))
when |S(c)| → ∞, we get the following simple explicit
expression

lim
|S(c)|→∞

1
|S(c)| log2 det(I + P (1− 2−r)HS(c)H∗

S(c)) = F (r).

Let us define |S(c)| = s, so that

log2 det(I + P (1− 2−r)HS(c)H∗
S(c)) = sF (r) + ε(s), (9)

where lims→∞ ε(s)/s = 0.
Secondly, from Lemma 1, when N →∞, the minimum in

equation (5) is within the subspace of subsets that contain only
consecutive indices {S(c)}. Combining (9), when N → ∞,
equation (5) becomes

Robl = lim
N→∞

{
max
0≤r

{
min

0≤s≤N

{
N − s

N
[C − r] +

s

N
F (r) +

ε(s)
N

} }}

= max
0≤r

{
min

0≤λ≤1
{(1− λ)[C − r] + λF (r)}

}
. (10)

Since F (r) is monotonic increasing, (10) is maximized by r∗,
which is defined by F (r∗) = C − r∗.

IV. CELL-SITES WITH DECODING

In order to better utilize the bandwidth between the cell-
sites and the RCP, we may consider using local decoding at
the cell-sites. In this case the cell-sites should be aware of the
associated codebooks, and thus do not operate in the nomadic
regime [5]. It is noted that in general, decoding decreases the
noise uncertainty, thus increasing the efficiency of backhaul
usage.

In this section we present an intuitive, simple scheme which
provides an achievable rate. According to this scheme, each
user employs rate splitting and divides its message into two

parts: one that is decoded at the RCP and another that is
decoded at the local cell-site. In this case the message which is
intended for the RCP to decode, interferes with the decoding
of the relevant message at the cell-site. Let the power used for
the former be βP and the latter (1− β)P , where 0 ≤ β ≤ 1.
There are two strategies for the cell-site to execute: to decode
only its local user’s message, or to decode also the interfering
users’ messages, emerging from the two neighboring cells (see
[3] Section III.D). Such approach allows decoding of messages
with rate of

Rd = max

{
log2

(
1 +

(1− β)P
1 + (β + 2α2)P

)
,

min

{
1
2

log2

(
1 +

(1− β)2α2P

1 + β(1 + 2α2)P

)
,

1
3

log2

(
1 +

(1 + 2α2)(1− β)P
1 + β(1 + 2α2)P

) }}
. (11)

Forwarding the decoded information through the lossless
links reduces the bandwidth available for the compression,
so the achievable rate is Rsd(C) (sd stands for separate
decoding)

Rsd(C) = max
β

{
Fβ(r∗d) + R̂d(β)

}
, (12)

where R̂d(β) = min{Rd(β), C}, r∗d is the solution of

Fβ(r∗d) = C − R̂d(β)− r∗d,

and Fβ(r) is defined as F (r) from (8) while replacing P with
βP

Fβ(r) =
∫ 1

0

log2(1 + βP (1− 2−r)(1 + 2α cos 2πθ)2)dθ.

For α = 0 this scheme is optimal, since there is no inter-
cell interference and each cell-site can decode messages at the
same rate as the RCP can.

Note that the rate Rsd(C) is not concave in C in general,
thus time-sharing may improve the achievable rate, which
leads to the following (ch stands for the convex-hull).

Proposition 3: An achievable rate of the rate-splitting
scheme deployed in the infinite circular Wyner model with
limited equal capacities C, is given by

Rsdch,1 =
max

λ,C1,C2: λC1+(1−λ)C2≤C
{λRsd(C1) + (1− λ)Rsd(C2)}.

(13)
In fact, numerical calculations reveal that a good strategy

is to do time-sharing between the two approaches: using
decoding at the cell-sites, with no decoding at the RCP, and
doing decoding only at the RCP (10), rather than using the
mixed approach of (12). Thus, defining t = R̂d(0), the rate
Rsdch,1 of (13) can be written as

Rdec(P, C) = max
r≥r∗

{
t + (C − t)

F (r)− t

F (r) + r − t

}
, (14)



and r∗ is calculated by (7). The derivation of (14) is based on
time-sharing between the point (t, t) and the concave curve
(F (r) + r, F (r)). It is noted that the maximizing r must be
larger than r∗, thus limiting the optimization range.

It is expected that decoding at the cell-site will be benefi-
cial when α is small (low inter-cell interference), or when
C is small, so that decoding before transmission saves on
bandwidth, which otherwise would have been wasted on noise
quantization.

A. Adding Inter-Cell Time-Sharing

Another improvement that can be made to the overall
performance is by allocating a fraction of the transmission
interval in which adjacent users are not active simultaneously.
Therefore allowing the cell-sites to decode their messages
without interference during this fraction of time (see [3]
Section III.D). For the circular Wyner model with N even,
it means that odd and even cells are active alternately in
time, hence the acronym inter-cell time-sharing (ICTS). In the
following we restrict our attention to even N . Redivide the
time frames, such that every user is active for (1 − θ) of the
time (0 ≤ θ ≤ 1

2 ), indicating that the time fraction used for
transmitting in the interference-free phase is θ. The time used
for the previous rate-splitting scheme is thus 1 − 2θ. Since
the users do not transmit all the time, they can scale their
transmission power by a factor of 1

1−θ . The resulting rate is

RICTS = max
0≤θ≤0.5

{
Rd,2+

(1− 2θ)Rdec

(
P

1− θ
,

1
1− 2θ

(C −Rd,2)
) }

, (15)

where Rd,2 is the rate of the message sent in the interference-
free phase, which equals

Rd,2 = min
{

θ log2

(
1 +

P

1− θ

)
, C

}
.

Finally, using (14) we get the following.
Proposition 4: An achievable rate of the ICTS with cell-site

decoding, deployed in the infinite circular Wyner model with
limited equal capacities, is given by

RICTS = max
0≤θ≤0.5

{
Rd,2+

(1− 2θ) max
r≥r∗ts

{
t +

(
C −Rd,2

1− 2θ
− t

)
F (r)− t

F (r) + r − t

} }
,

where t = min{C −Rd,2, Rd|β=0, P
1−θ

} and r∗ts is calculated
by

Fβ(r∗ts)|β= 1
1−θ

= C −Rd,2 − r∗ts.

V. NUMERICAL RESULTS

Achievable rates of the considered three schemes, are plot-
ted in Figure 1 for SNR P = 10 [dB], and several backhaul
capacity values, as functions of the inter-cell interference
factor α. Examining the curves, it is observed that in order
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Fig. 1. The achievable rates Robl, Rdec and RICTS are plotted as functions
of the inter-cell interference α for C = 4, 8,∞ and user SNR P = 10 [dB].

to approach the rates achieved with C = ∞ across the whole
region 0 ≤ α ≤ 1, we need an overhead with approximately
twice as much bandwidth for the backhaul network (C = 2R).

The gain of the cell-site decoding scheme is prominent when
the inter-cell interference is low, but also noticeable even for
rather high interference levels, when C is low.

Interestingly, the ICTS scheme provides only a slight im-
provement over the cell-site decoding scheme. A possible
explanation for this phenomenon is that for θ = 1

2 (no
overlapping between transmissions of adjacent users), the
achievable rate reads RICTS = 0.5 log2(1 + 2P ), which
for P = 10 roughly equals 2.2 [bits/channel use], which is
significantly lower than all the considered schemes.

Another observation is that for high backhaul capacities, the
rates of the three schemes approach the optimal performance.
As expected for α = 0, the cell-site decoding and ICTS
schemes rates are optimal independently of C, since no inter-
cell interferences are present.

VI. CONCLUDING REMARKS

In this paper we considered the circular Wyner model, with
limited backhaul capacity. Achievable rates were presented for
the case of cell-sites which use signal processing alone, and
also combined with decoding. Both considered no network
planning, so inter-cell interferences dominate. Achievable rates
were derived also for time-sharing based, optimized network
planning. Numerical calculations reveal that unlimited optimal
joint processing performance can be closely approached with
rather limited backhaul capacity, and that network planning
does not add significant performance gains.

The faded Wyner model with limited backhaul capacity is
currently under study.

APPENDIX

A. Proof Outline of Proposition 1

Assuming transmission over n channel uses, we generate
the random codebooks for the users by {Xj}, and the random
quantization codebooks (each of size 2nR̂) by {Uj}. Each



quantization codebook is randomly partitioned into 2nC bins,
so that each bin consists of 2n[R̂−C] codewords.

Each cell-site uses the joint typicality criteria to compress
the received channel output Y n

j into Un
j , and then sends the

resulting bin index (instead of the of the index of Un
j , in order

to save bandwidth) to the RCP through the lossless link. An
error in this stage occurs with arbitrary low probability of
error, as long as R̂ ≥ I(Yj ;Uj).

The RCP receives the bins’ indices, and looks for a jointly
typical {Xj , Uj}, where the {Uj} are taken from the bins
indicated by the cell-sites.

The probability that no set {Xj , Uj}N
j=1 is found to be

jointly typical is arbitrary small with increasing n, due to the
generalized Markov lemma [5]. The probability of a set with
erroneous XL and US (where S,L ⊆ N ) to be jointly typical
is upper bounded by

Pe ≤ 2n[|L|R+|S|(R̂−C)+h(XN ,UN )]

· 2−n[h(XLC ,USC )+h(XL)+
P

j∈S h(Uj)]. (16)

Hence, the probability of error is arbitrary small as long as

|L|R ≤ |S|(C − I(U ;Y ))− h(XL, US |XLC , USC )
+ |L|h(X) + |S|h(U), (17)

where the cell index j is omitted due to symmetric argumen-
tation.

Noting that Yi − XN − Yj and {XN , Ui} − Yj − Uj are
Markov chains for i 6= j, and that users cooperation is not
allowed, it is easy to verify that the following equalities hold

h(Uj |Yj) = h(Uj |Yj , XN )
h(XL) = h(XL|XLC )

h(XL, US |XLC , USC ) = h(XL|XLC , USC ) + |S|h(U |XN ).

Applying these to (17) yields

|L|R ≤ |S|(C − I(U ;Y |XN )) + I(XL;USC |XLC )).

Noting that the last condition should hold for any S and L
completes the proof.

B. Proof of Lemma 1
We prove that S which minimizes

lim
N→∞

1
N

I(XN ; US) = lim
N→∞

1
N

log2 det(I + P ′HSH∗
S),

when |S| = f(N), (f : R+ 7→ R+, limN→∞
f(N)

N = λ,
0 ≤ λ ≤ 1), is composed of only consecutive indices.

Following the method used in [8] to derive a lower bound on
the capacity of the Gaussian erasure channel, the proof here
uses an analogy between the multi-cell setup and an inter-
symbol interference (ISI) channel, combined with a recently
reported relation between the MMSE and the mutual informa-
tion [7].

Proof: Denote by Ei, the MMSE of estimating Xi from
UN . Further, denote by Ei(S), the MMSE of estimating Xi

from US . Naturally

∀S ⊆ N , i ∈ N : Ei(S) ≥ Ei. (18)

Next, we use the following relation between the MMSE and
the mutual information [7], to write

d

dP
I(XN ; US) =

N−1∑

i=0

Ei(S). (19)

From (18), we can write
N−1∑

i=0

Ei(S) ≥ f(N)
N

N−1∑

i=0

Ei. (20)

Combining (19) and (20) yields

I(XN ; US) ≥ f(N)
N

∫ P ′

0

N−1∑

i=0

EidP =
f(N)

N
I(XN ;UN ).

(21)
On the other hand, in the asymptotic regime, for consecutive
indices set S(c), where limN→∞

|S(c)|
N = λ

lim
N→∞

1
N

∑

i∈S(c)

Ei(S(c)) = λ lim
N→∞

1
N

N−1∑

i=0

Ei. (22)

This is because the equivalent ISI channel is stationary, and
since the right hand side of (22) exists (attainable from
applying Szegö’s theorem to the mutual information and then
differentiating with respect to P ′). By integrating both flanks
of equation (22) we get that

lim
N→∞

1
N

I(XN ; US(c)) = λ lim
N→∞

1
N

I(XN ; UN ). (23)

Equation (23) together with (21) proves the lemma.
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[7] D. Guo, S. Shamai, and S. Verdú, “Mutual information and minimum
mean-square error in Gaussian channels,” IEEE Trans. Inform. Theory,
vol. 51, no. 4, pp. 1261–1282, April 2005.
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