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Abstract—The problem of a nomadic terminal sending informa-
tion to a remote destination via agents with lossless connections
to the destination is investigated. Such a setting suits, e.g., access
points of a wireless network where each access point is connected
by a wire to a wireline-based network. The Gaussian codebook
capacity for the case where the agents do not have any decoding
ability is characterized for the Gaussian channel. This restriction is
demonstrated to be severe, and allowing the nomadic transmitter
to use other signaling improves the rate. For both general and
degraded discrete memoryless channels, lower and upper bounds
on the capacity are derived. An achievable rate with unrestricted
agents, which are capable of decoding, is also given and then used
to characterize the capacity for the deterministic channel.

Index Terms—Cooperative reception, decentralized detection,
relay channel, wireless networks.

I. INTRODUCTION

NFORMATION theory for networks and especially wireless
I networks is in the focus of an extensive research activity.
This interest is partly due to many recent results on multiple-an-
tenna channels, which demonstrate significant gains, especially
for fading channels.

Many papers propose and analyze ad hoc wireless networks
in information-theoretic terms. Among these, coding schemes
which achieve O(n) transport capacity were given in [1].
Multihop relaying makes use of several intermediate wireless
nodes to assist the communication between two nodes that
are far apart, e.g., [2]. An information-theoretic framework
for the relay channel was given by Cover and El Gamal in [3]
for a single relay node and extended by [4], [5] to several re-
laying nodes. Relaying techniques can be coarsely divided into
compress-and-forward and decode-and-forward, depending on
whether the relays attempt to decode the transmitted message
or just forward the processed received signal to the destination.
By using cooperation, relaying schemes can take advantage of
the inherent dependencies for efficient forwarding to the final
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destination. Such cooperation is commonly used and selected
examples are [2], [6], [7], while cooperation between receiving
nodes in a degraded broadcast channel is described in [8]. We
conclude with an upper bound derived in [9], that suggests that
as the number of users in an ad hoc network goes to infinity,
the total rate per user tends to zero. This bound motivates the
use of networks that are not solely ad hoc, but also include base
stations or access points.

Problems of conveying a source which is observed by re-
mote agents to a single destination are built around similar set-
tings, where the source is modeled as a sequence of independent
and identically distributed (i.i.d.) random variables. Such prob-
lems are analyzed in information-theoretic frameworks such as
distributed source coding, lossless CEO (Chief Executive Of-
ficer) [10], CEO [11] and sensor network problems. A small
sample from the extensive work that is relevant to our distributed
detection setting includes [12], [13], and [10] for distributed
source coding. Allowing distributed lossy source encoding, as
opposed to centralized encoding [14], is still essentially an un-
solved problem. An exception is the Gaussian CEO problem
[15], [16] which was recently solved using the entropy power
inequality in [17], [18]. Multiterminal lattice approaches are de-
scribed in [19]. These rate—distortion problems are linked to
network models in [20]-[22]. The use of other measures, in-
stead of the standard distortion, is addressed, for example in [23]
and [24]. Schein’s dissertation [25] focuses on the problem of
communicating via two agents, and develops several achievable
rates.

Here we consider the problem of reliable communication
from a nomadic transmitter to a remote destination via nonde-
coding agents that are connected to the destination via lossless
links. These agents have noisy versions of the transmitted
signal, and transmit a predetermined number of bits to the
destination without any errors. The destination is reached
only via the agents that serve as access points. By nomadic
transmitter we mean that the receiving devices cannot or will
not decode the transmitted signal. Such a setting is of interest
for numerous applications. The main motivation, however, is
for systems where the agents cannot decode because of added
noise or interference. We also consider the less restrictive case,
where the agents are informed about the transmitter’s code,
and give several achievable rates, which turn out to be capacity
achieving for the deterministic channel.

The rest of the paper is organized as follows: in Section II, we
describe the problem. An achievable rate and a capacity upper
bound for the nomadic transmitter are presented in Sections III
and IV, respectively. An achievable rate for the case of cog-
nizant agents is given for both degraded and nondegraded chan-
nels in Section V, where the capacity is fully characterized for
the deterministic channel. The Gaussian channel is considered
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Fig. 1. A system with two agents between the transmitter and the destination.

in Section VI. For the case where the agents are unaware of the
code used, and where the codebook is Gaussian, we characterize
the capacity region.

In this paper, we use capital letters, e.g., X, for random
variables, lower case letters, e.g., x, for the realization of these
variables, and calligraphic letters, e.g., X, for their alphabets.
Vectors are of length n unless otherwise specified and are
denoted by bold-face letters, e.g., X, z, or vector spaces by
calligraphic bold-face letters, e.g., X. A calligraphic letter
denotes a set, e.g., 7 N {1,...,T}. A complement (denoted
by the superscript C) of some subset S of a set 7 refers to
the subset S¢ which fulfills: SU S = 7 and SN S¢ = ¢.
The cardinality of any set 7 is written as |7 |. A subscript, e.g.,
X, denotes the ith element in the vector X and a superscript
X" denotes the vector (X1,...,X,). The notation X} refers
to the vector (Xy, ..., X,,), and Xg refers to {X;};es. Let
..,ar) be the probability of the event
A1 = al,...,AL = ay,.

II. PROBLEM SETTINGS

We consider the problem of a single transmission from the
transmitter S through 7" agents, playing the role of decentral-
ized processors, to the final destination D, as seen in Fig. 1 for
T = 2. Suppose the agents do not know the transmitter’s code-
book. We model this by having the transmitter use one code
out of a set of possible codes. The agents know some charac-
teristics of these codes, e.g., their rate and that they are capacity
achieving over a standard single-user Gaussian channel. An ex-
ample can be a set of interleavers and also a set of modulation
techniques. Such random coding is also used in [26] for a mis-
match scenario. The advantages of random coding were demon-
strated in [27] for unknown channels.

The following properties and definitions hold, unless stated
otherwise.

1) The channel input (output of the transmitter S) is X € X'.

2) The T agents Ay,..., Ay receive the outputs of a memo-
ryless broadcast channel without feedback, defined by

Py, v, x¥1- YyrlT)

i=1

where 4;;€);. Denote 7 2={1,...,T}. The agents
have full knowledge of the distribution Py, in-
duced by the nomadic transmission, and thus also of
Py, v, .., yr).
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3) The bandwidth C;, in bits per channel use, characterizes
the lossless link that connects the agent A; to the final des-
tination D.

4) The communication rate is denoted by R. The message
M to be sent is encoded by a random encoding function
X = ¢s, (M) such that for all messages M, the out-
puts of the encoding function are randomly and indepen-
dently chosen according to probability Px(z). We index
the random encoding function by the random variable F'.
We define the range of F tobe [1,2,...,|X|"2""], which
is the number of ways of mapping 2" messages to the
|X'|™ possible codewords. Then let every f correspond to a
unique such mapping, i.e., F' = f corresponds to one such
mapping. That is, we choose

ps.p:[1,..., 2" — & (@)

and the probability of selecting f is

271R
Pe(f) = [ Px(¢ss(m)) €)
m=1
where Px(z) = []_, Px(z;), for some single letter

probability Px. The agents are not informed about the
selected encoding F', but are fully aware of Px.

5) Every agentt,t =1,2,...,T, encodes its n channel out-
puts with an encoding function

Par: Yo —[1,..., 2" “

so that

Vi=dar(Ye). ©)

V, is sent through a lossless link to the final destination.
6) The destination decodes the message M from V7, i.e., we
have

M = ¢p r(Vr) (6)

where ¢p p : [L,...,220 "C1] = [1,...,27R].

7) The rate R is said to be achievable if for every € > 0, there
exists n sufficiently large such that

277R

ZnLRZPr(M#nﬂM:m)Se @)

m=1

where Pr(M # m|M = m) includes averaging over the
channel and the random coding.
Notice that with the knowledge of F', with high probability, X
is uniformly distributed over 2" codewords. However, without
knowledge of F’ we have the following simple lemma.

Lemma 1: Without the knowledge of the selected en-
coding F', the vector X is distributed according to Px(z) =
[Ti, Px(z;), and therefore Y is distributed as

Py, () = [ D Pruix (wrilz) Px(a). ®)

=1 =

Proof: See Appendix II. O
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The above setting models the problem where the final destina-
tion decodes the message from the transmitter via simple agents,
which are not able to decode the transmitted message and use
compression of the received signals.

When the agents are allowed to decode, as is the case in
Section V, then obviously randomized encoding is superfluous.
However, in order to allow combined approaches, and for the
sake of consistency, we use the same settings for both cases.

III. AN ACHIEVABLE RATE

We denote the setting of Section II as nomadic transmitter.
The following theorem is a special case of Theorem 3 (proved in
Appendix III) applied to the nomadic setting. In fact, by proper
modeling, Theorem 3 is also a special case of [32]. But here
we give cardinality constraints and the proof is simpler because
there is no need for the block Markov superposition encoding.

Theorem 1: Define a positive rate R and a set of auxiliary
random variables Uz, with bounded cardinalities of || <
|Vi| + 271 such that

R< I(X;Ur) 9)

with the constraints

VSCT:Y Cr>I(Us;Ys|Use) (10)
tes
and the joint distribution
T
Pxu; v (@, ur,y7) = Px (2) Py x (yr |2) | [ P s (vl )
t=1
(11)
Then R is achievable for the nomadic transmitter.
Proof: See Appendix III and Remark 2. ]
We remark that (11) means that
Up =Y —{X,Ur\s, Y7\t } (12)

forms a Markov chain. The auxiliary random variables Ur are
used to compress Y7, and are forwarded to the final destination.
The constraints (10) are required so that the final destination can
reliably recover Uz from Vz.

Corollary 1: The achievable rate of Theorem 1 can be im-
proved by taking into account only errors that involve incorrect
X, where the destination is allowed to make errors in Uz . Such
an approach gives an achievable rate which is written with no
constraints, albeit we feel is less intuitive. Rate I? is achievable if

R<glgig{;[Ct—I(Ut;Yt|X)]+I(U3c;X)} (13)

where the cardinalities and the probability spaces of the random
variables are the same as in Theorem 1.
Proof: See Appendix IV. O

Remark 1: The achievable rate of Theorem 1 can be further
improved by considering some common knowledge shared by
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the agents. For example, such information can be another trans-
mission which was decoded, by all agents, and they can thus
compress conditioned on this common information.

IV. A CapaciTY UPPER BOUND

An upper bound on the capacity of the communication
problem described in Section II is given by the following
theorem, which is based on the fact that the agents do not know
the selected encoding F'. The problem is thus similar to the
general CEO problem in the sense that the transmitter source
sequence should be reproduced. Since the agents are ignorant
of the codebook used, there is an inherent loss compared with
the case where the agents know the codebook. The achievable
rate when the agents are unrestricted can be upper-bounded by
the cut-set bound [28]. This gap between the achievable rate
and the cut-set bound will be demonstrated for the Gaussian
channel in Section VL.

Theorem 2: A reliable communication rate R for the nomadic
setting (Section II) must satisfy

R <maxI(X;Ur) (14)
where U7 must fulfill the constraints
VSCT:» C>I(Us;Yr|Use). (15)

teS

The maximization in (14) is over (X, Y7, Uz, W) which are
distributed according to

{ Px y, w(z,yr,w) = Px(z) Py, x (yr|z) Pw(w)

VO<t<T:u = fi(w,ys) (16)

for some random variable W and for some deterministic func-
tions { f; }+e7. The cardinality of W is ||, and it suffices to
use [W| < | V7| + 2771

Proof: The theorem is proved in Appendix V. O

We remark that (16) means that

Up =Y, = {X, Y1} (17)
forms a Markov chain. At first look, it seems that the right-hand
side (RHS) of (10) is smaller than the RHS of (15), which would
result in a contradiction between the necessary conditions of
Theorem 2 and the sufficient conditions of Theorem 1. This ap-
parent conflict is resolved by observing the different Markov
relations the variables U7 fulfill, where (11) is more restrictive
than (16).

Furthermore, when taking the variables Uz in the upper
bound such that they fulfill (11), the RHS of (15) is identical to
the RHS of (10). This is since

I(Y7;Us|Use) =1(Ys; Us|Usc) + I(Ysc; Us|Use, Ys)
:I(Ys;U$|U$c) (18)

where I(Ysc; Us|Use,Ys) = I(Ysc; Ug|Ys) = 0 because of
the Markov relations (12).
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Corollary 2: Similarly to Corollary 1, we can give an expres-
sion with no constraints also for the upper bound, namely

RIS

T
tes

(19)
where again, the random variables have the same cardinalities
and satisfy the same Markov chains as in Theorem 2.

Proof: See Appendix V1. O

V. AGENTS WITH CODE KNOWLEDGE

In this section, we diverge from the nomadic model described
in Section II. Suppose the agents know the codebook so that the
agents and the transmitter can be jointly optimized. This enables
to transmit a broadcast message that is decoded by the agents
and forwarded to the destination, in addition to the compression
operation. Denote this model as decoding agents. Such an ap-
proach can increase the overall transmission rate.

Obviously, the use of randomized encoding is superfluous
here, as the agents are fully informed about the selected coding.
Nonetheless, to remain consistent, the same setting as in the no-
madic case is used, where the only difference is with the knowl-
edge of F also at the agents.

In the following, we will denote all messages that are decoded
at the agents as broadcast messages, although eventually they
are always intended for the final destination.

The next theorem is based on Marton’s scheme [29] for the
broadcast channel. Denote by M, the message to be decoded at
agent ¢, and let M = (M7, Mcr) (McF is the message that is
decoded only at the final destination). Let 7(S,t)2{i: i € S
and 7 < t} and Wy be a constant.

Theorem 3: For decoding agents, any rate R satisfying

T
R<I(X;Ur|Wr)+> R

t=1

(20)

with the constraints as shown in (21) at the bottom of the page,
and with the joint distribution

Px vy, wrvr (%, y7,wT,uT)
= Py, (wr)Pxw, (z|wr) Py, x (y7|7)

T
1 Poiveow, (uelye, we) 22)

t=1

is achievable.

The agent A; decodes nR; bits and forwards them to the des-
tination along with n(C; — R;) bits used for the compression.
This compression is done considering the decoded signal w;.
The final destination then decides on the transmitted M¢ g by
using joint typicality for the compressed signals, taking into ac-
count wr. The above scheme uses the auxiliary random vari-
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ables W for the messages that will be decoded at the agents,
and U; which depends on W, for the compression outcomes
that will be decoded at the final destination.
This achievable rate may be further increased by adding a
time-sharing random variable to the rate region of Theorem 3.
Proof: The proof appears in Appendix III and uses com-
pression in addition to Marton’s broadcast coding. O

Remark 2: The scheme described in Theorem 1 is obtained
as a special case of the above scheme, by taking all W1 to be
constants. The cardinality limits in Theorem 1 can be calculated
from the limits in Appendix III-F.

Remark 3: The achievable rate in Theorem 3 can be written
without {R;} by solving the following linear programming
problem: given Px y, w, v, Which satisfies (22), maximize
R from (20), over Ry. Using this approach, we get that any
rate R is achievable if it satisfies

R<I(X UT|WT)+m1n{ZCt Us,Y5|U$c WT)

- teS

+ > [I(WiYs) -

teSC

(W Wmc,t))]} (23)

provided that

HVSCT:
> Cv > I(Us; Ys|Use, Wr); (24)
tes
VS CT:
0 <Y TWyYy) = I(Wy; Wi 5.4))- (25)
teS

See the proof in Appendix VIII.

Remark 4: The rate (20) can be improved by sending
common broadcast messages in addition to the individual
broadcast messages to the agents. This is done by extending
Theorem 2 in [29] to more than two users and adding compres-
sion. Notice that such a construction includes Theorem 3 and
Theorem 4 below as special cases. Such a scheme is given in
Appendix VII for two agents.

Corollary 3: For the case of deterministic channels, where
Y: = g+(X) for some functions g;, the cut-set upper bound is

Rgglgig{H(YSc)%—ZCt}. (26)

teS

This rate is achievable from (23) by taking U, to be constant and
W, =Y, for all ¢, which fulfills the conditions (24) and (25). So
the capacity region is fully characterized for the deterministic
channel (this is a special case of the main result in [33]).

VO<t<T:0< Ry

VS g T . ZtGSRt < ZtGS[I(WT75/f) —
— Ri] > I(Us; Ys|Usc, Wr)

2eslCr

I(Wi; Wi s.0)] @
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For the case where the channels Py, x are either stochasti-
cally or physically degraded (see [28, Sec. 14.6.2]) we can use
superposition coding, which is known to achieve capacity over
degraded broadcast channels.

The received signal Y5 is a physically degraded version of Y
if the following forms a Markov chain:

X-Y1—Ys. 27)
Notice that this relation leaves I(X;Y7,Ys) = I(X;Y7). On
the other hand, Y5> is a stochastically degraded version of Y
if the marginal probability Py;|x (y2|z) can be calculated from
Py, |x (y1|z) through some Py, |y, (y2|y1) (see (28)). Since (27)
is not necessarily true we can have I(X;Y7,Y2) > I(X;Y7).
So although superposition coding is optimal for the degraded
broadcast channel, it is not necessarily optimal for our model.

Theorem 4: For decoding agents with a channel

Py, x (yr|) that satisfies

VO<t<T: P;/t71|X(g/t_1|:L’)

= Z P}Q\X(yt|$)PYt,1|Yi (yr—1lys) (28)
Yt
any rate R satisfying (20) with the constraints
VO<t<T:0< R <T(WiY, Wit (29)
VSCT: ZteS[Ct — Rt] > I(US;Y5|USC,WT)
and the joint distribution
T
Pxyw, (xlwr) Py x (ur|2) [] Poapyswe (elye, w')
t=1
T
. H Pth‘)Vi—l (’U)t|wt_1) (30)
t=1
is achievable, and one can restrict attention to
T .
Wl |27 Y TR R GBD
i=t
Ue] < [Vel V] + 277 (32)
Proof: See Appendix IX. O

Remark 5: Theorem 3 does not seem to include Theorem 4
as a special case, as it does not account for a common rate (see
Remark 4).

Corollary 4: The rate from Theorem 4 can be expressed with
no constraints and no parameters R; by solving a linear pro-
gramming maximization problem, as in Remark 3 which is built
along the lines of Corollary 1. This gives the rate

R= ngn{;[q — I(Yy; U X))

+I(Use; X)+ Y I(Yt;Wt|Wt1)}. (33)

teS<
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VI. THE GAUSSIAN CHANNEL

The Gaussian channel is defined by Y; = X + N;, where
{N;}£_, are independent Gaussian random variables with
EN? = py, and EN; = 0 where E denotes statistical expecta-
tion. Let X be zero mean Gaussian with variance EX? = px.
Here we use p to denote the variance of a random variable.

We use Corollary 1 with continuous alphabets instead of dis-
crete, where this extension relies on standard arguments (see
[16], for example). We also use the generalized Markov Lemma
for Gaussian variables that appears in [18].

A. Nondecoding Agents
We prove the following result in Appendix X.

Theorem 5: The capacity of the nomadic transmitter for the
Gaussian channel and with X chosen to be a Gaussian random
variable, is

. 1 1-— 2—27’t
= {?3§§}{%9{§10g2 (1 +ox ) T)

teSc

+> [Ci— rt]} } (34)

teS

Proof: Use Corollary 1 for the direct part and the upper
bound from (109) along with results from [16] for the converse
part. O

Note that we restrict the transmitter to use Gaussian code-
books. The parameters {7;}7_; in (34) indicate the bandwidth
wasted by quantizing the additive noise, which cannot be
avoided because of the nomadic transmitter. This bandwidth
reduces the bandwidth for forwarding the actual transmission
to (Cy — r¢), and, on the other hand, improves the expected
signal-to-noise ratio at the destination to px > ,c7 1_/)2:”.
Notice that (34) is concave in r, so that it can be efficiently
maximized numerically. In addition, when the problem is sym-
metric (Cy, Ny are equal among agents), then also the optimal
r¢ = r* are identical for all the agents, and an explicit capacity
expression can be obtained, provided the roots to a polynomial
of degree T' are found.

Corollary 5: For the case of two equivalent agents, that is
Ci =Cy=Candy = pp% = ;TX’ the rate (34) can be
N1 2,
written as the following explicit expression:

1 V2 +210(1+2y) — v
R:ilog(l—l—?y(l— 510 .

(35
Notice that R in (35) equals 1 log(1 + 27) when C' — oo and
2C' when v — oo.

B. Example: Suboptimality of Gaussian Signaling

The previous section described the capacity of the nomadic
transmitter in the Gaussian setting when the transmitter used a
Gaussian codebook. However, Gaussian signaling is not neces-
sarily optimal because of the capacity limitations between the
agents and the destination. For example, suppose that Cy =
Cy = 1, and we use binary phase-shift keying (BPSK) at the
transmitter. The agents know that BPSK was used, and can
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R [bits/channel use]
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= Binary signalling
= = = Gaussian signalling

Fig. 2. The achievable rate of a system with two agents, with link bandwidths of C'; =

0 12 14 16 18
v [dB]

C> = 1 and a signal-to-noise ratio of 7. The dotted line designates the

use of Gaussian signaling at the transmitter and the solid line designates the use of BPSK.

demodulate every received channel output into one bit (j =
1,...,n)

1, w(k)>0
Vt(’“)—{m (k) <0.

This scheme is in fact a special case of Theorem 1, where X
represents the two equiprobable BPSK symbols, and U; is a
deterministic function of Y;. Notice that V; contains n bits, so
that C; = Cy = 1 suffices to forward it to the destination. The
destination can reliably decode the received message provided
the transmission rate is no more than (for all 1 < k < n)

(36)

Rbpsk S %I(Xa Vvl; VY2)

I(X(k); Va(k), Va (k)
=G(Q(V2px))

G(z) 2 (1 —z)%log, ((1 = 2)?) + 2% log, (2?)

— (1 =2z(1 —x))log, <%(1 —2z(1 - x)))

and Q(z) = (2m) % [* exp (—32?) dz. We compare this
rate to (35) in Fig. 2. We indeed see that BPSK signaling out-
performs Gaussian signaling. This is because demodulation is
some form of primitive decoding, which is not possible for the
Gaussian signaling.

C. Example: Agents With Decoding Capabilities

Consider the symmetric case of a Gaussian channel with
statistically equivalent agents (both suffering from an additive
Gaussian noise with variance py). In addition, both agents
are connected via lossless links with equal bandwidth C, to
the final destination. The combined approach of broadcast
and compression for the degraded channel (Theorem 4) is
employed, although the optimization considers only Gaussian
distributions. The rate R is achievable provided that

2 2
1 -
R < E Ri+5 log, (1 +alX E (1— 2—2”)> (37)
t=1

PN

where {r;, Ry, a} satisfy the conditions in (38) shown at the
bottom of the page.

Using a time sharing random variable can improve the rates
for this example. The achievable rate as a function of the band-
width C, for a signal-to-noise ratio ”—ff = 10, is presented in
Fig. 3. In this figure, the leftmost dashed line R = 2C and
the upper flat dashed line R = 1log,(1 + 2%) are the two
cut-set bounds [28], and the lower flat dashed line is the rate of
a system without compression R = 1 log,(1+ £2). The dotted
line represents time sharing, which is useful here. This figure
illustrates that if the sum of capacities of the corresponding
broadcast channel (calculated by the signal-to-noise ratios at
the agents), is smaller than the sum of the bandwidths of the

0<a<l1
t=1,2:0< R, <C

2 1 +p>
o R < §logs (2545)

VS C{L2}: Y 5[C— R >> g+ %log2 (1 + apx Z?zl

(38)

— —2r e —
' iN t)_%10g2 (1+0‘,€_2250(1_2 2”))-
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26 : /

24¢ /

22 b e
Time Sharing

R [bits/channel use]
N

1.8

1.6

1.4

i i i

i i

1 1.5 2
C [bits/channel use]

25 3 3.5

Fig. 3. The achievable rate of a system with two agents, each with link bandwidth of C' and a signal-to-noise ratio of 10 dB. The dotted line designates time
sharing, and the dashed lines represent the cut-set bounds [28]. The lower flat dashed line is the achievable rate for a system without compression.

links, a compression scheme can significantly improve the per-
formance. A rate of up to 0.2 bits from the cut-set bound is ob-
served with C' = R = 2, which means the achievable rate is
50% of the total bandwidth allocated to the links. It also demon-
strates that when the bandwidths of the links are smaller than
the sum of capacities of the corresponding broadcast channel
Ci+0Cy < % log, (1 + %), the achievable rate in the nomadic
setting using Gaussian codebooks (35) is strictly smaller than in
the fixed transmitter setting (the cut-set bound, R = C; + C5).

VII. CONCLUSION

Communication via distributed agents is considered, focusing
on two cases: 1) the agents do not possess any knowledge about
the codebook used by the transmitter, and 2) the agents do
possess decoding capability. For the first case, a suitable direct
coding theorem based on decentralized compression and the
corresponding upper bound were derived. Considering the
Gaussian channel, a converse was proved by the entropy power
inequality invoking the techniques of [18]. An achievable rate
was derived also for the case where the agents are cognizant
of the codebook used by the transmitter. These sufficient
conditions combined either Marton’s or the superposition ap-
proaches, with the decentralized compression. For the case of
the deterministic channel, the capacity was fully characterized.

APPENDIX [
DEFINITIONS AND LEMMAS

As is commonly done (see [28, Sec. 13.6]), define the
e-typical (strongly typical) set T, of a, as the set for which
N(aslas) = 0 for any as € As such that P4 (as) = 0, and
otherwise

Teé{ag:VSQL,VageAg,

1
| Vaslas) - Pas(as)

€
— 39
< |As|} <

where N(as|as) denotes the number of occurrences of the
symbol as in the vector as. Define the jointly e-typical set T
of (a;,w,) similarly.

Lemma 2: For any € > 0, there exist n* such that for all
n > n* and ag ~ [[ P4, we have

Plac e T)>1—e (40)

Lemma 3: For some S C L let a} be generated ac-
cording to

n
a, ~ H {PASC'WVL (asc’i|wg,7;) H PA,|W, (al,,;|wl,1;)}

i=1 les
where w is a vector that belongs to T.. Then we have @1
Pr((ay,.  r,wc) € T)
> g~ nlH(Asc \Wo)=H(AcIWe)+) 5, o H(A[W))+ei] (42)
Pr((a1, ., wz) € T.)
< o~ MH(Age [We)—H(Ac|We)+3 5, o H(AI[Wi)—e] (43)

where 1 — 0as e — 0.

Lemma 4: (Generalized Markov Lemma) Let

Pagws,vs(as, ws,ys)

= Pywsvs(ws, ys) [ [ Pacw,yi (aclws, vr). - (44)
tes

Given (ws,ys) randomly generated according to Py vy,
for every t € S, randomly and independently generate N, >
2 (AsY2IWh) vectors @, according to ], P, w, (ari|we i),
and index them by &§’“>

k: = qst (yt:wt7&§1)7 v 7&§Nt))

. Then there exist |S| functions

taking values in [1 ... NVy], such that for sufficiently large n

Pr <<{a§k:)}tes 7’11)57?}5) € TE> >1—ce

(45)
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Proof: See [28] and [30] for the proofs of Lemmas 2-3.
Lemma 4 is a simple extension of Lemma 3.4 in [31]. O

In the following, we use only € and remove the distinction
between € and €7, for the sake of brevity.

APPENDIX II
PROOF OF LEMMA 1

We show that when the selected encoding F' is unknown,
the transmission X™ is a memoryless random process. By
definition, memoryless process is distributed according to

Px, ox,, (T, -oe,) = [Ik,, Px(ze) for all tp 2
t) <---<trandallz,, =x,,...,2,,. We have that
Pth ..... XtL(‘Tt17"'7‘TtL)
= Z Pra(f,m)
fym:(d’s.f(m))tg =Tt,
211R
= Z Z Pp(f)P]\[(m)
m=1f:(¢s,p(m))e, =21,
= Z Pr(f)
Fi(bs (1))t =i,
tr,
=[] Px() >
t=t, Tt ,&(m=2),...,z(m=2"R)
n 2"R tr
[T Px@) ]I Px(x(m=10):) = [] Px(z0)- @6)
jEt,c i=11=2 t=t;

This concludes the proof.

APPENDIX III
PROOF OF THEOREM 3

We use ideas from [32] which presents an achievable rate
region using the compress-and-forward technique for multiple
relays. The difference is that the agents benefit from a fixed
noninterfering links to the destination, and thus the interference
from simultaneously transmitting relays is avoided. In addition
to compress-and-forward, broadcast messages are sent to the
agents to be passed on noiselessly to the destination. As before,
the network is composed of T agents t € 7 = {1,...,T},a
source transmitter, and a destination. Compared to [32], we do
not need the block Markov encoding technique.

The transmission is as follows: the transmitter sends X (M)
where M € [1,2"%]. Divide M into M7 and Mcr, where
My & (My,...,Mp) € [1,2"F1] x --- x [1,2"F7] and
Mcr € [1,2"Ecr] are the messages that are decoded at the
agents and the message that is decoded only at the destina-
tion D, respectively. Agent ¢ decodes M, and forwards it to D
with nR; bits. It then compresses the received signal Y, given
the broadcast message that was just decoded. Agent ¢ uses the
compression rate Iflt to compress Y, into U,, indexed by z,
where z; € [1,2"%]. Since the compressed signals {U,;} de-
pend on M, bandwidth from the agents to D can be saved by
using a Wyner—Ziv lossy distributed source coding. Each agent
then uses the remaining bandwidth after sending the broadcast
message (C; — R;) to send the Wyner-Ziv bin index s; €
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[1,27(C+=R0)], The destination receives My from all the agents
and then uses it with s1, ..., sy todecode 21, . . ., Zr and then to
decode Mcp € [1,2"Fcr], The detailed proof goes as follows:
we first describe the code construction. Next, the processing at
transmitter, agents, and the decoding at the final destination are
given. The conditions (21) result from the described construc-
tion so that when n — oo the error probability is arbitrary small.

A. Code Construction

Fix 6 > 0 and then for every t = (1,...,T):

1) For the broadcast transmissions:
 Randomly generate 2"(/(W::Y1)=Ri=8) vectors wy, of

length n, according to Pw, (w;) = [[;—; Pw, (we).

» Repeat the last step 277 times, label the resulting
on(I(WeiYe)=R:—=8) yectors of each repetition by M,
where M, € [1,2"%]. Define M, as the set labeled
by M;.

* Define the bin My, = My, X -
product union of the sets { My, }.

2) For compress-and-forward transmission at the agents:

For all {w;} generated in the previous step.

+ Randomly generate 2"[f=(C: =)l yvectors u, of length
n according to []; Py, jw, (wei|ws,i).

* Repeat the last step for s; = 1,...,2"(C:=F)  define
the resulting set of u; of each repetition by S, .

* Index all the generated u; with z; € [1,2"F¢]. We will
interchangeably use the notation S, for the set of vec-
tors u; as well as for the set of the corresponding z;.

* Notice that the mapping between the indices z; and the
vectors u; depends on w;. So we will write u;(2;, w;) to
denote u; which is indexed by z; for some specific w;
from the previous stage.

3) For compress and forward transmission at the transmitter:
For every codebook realization f, and every wr generated
in the first step:

+ Randomly choose 2"<7 vectors z, of length n, with
probability Pxw , (x|wr) = [[; Pxw, (zilwr ;).

* Index these vectors by Mcr where Mcp € [1,2"Fer],

« So we have 2"[227T(WeYO=8] Gifferent mappings
between indices Mcr and vectors &, where the one
used is determined by wy. We will therefore denote
z(Mcp,wr) as the vector indexed by Mcp for some
w7 out of the ones chosen on the first step. We drop
the index f in the sequel since decoding agents know
the chosen f and the achievable rate is valid with high
probability for a random f.

X My, as the

B. Encoding

Let M = (My,Mcr) be the message to be sent (M7 is
defined at the beginning of this section).
e Define ch as the collection of w such that for any as
with Py, (as) = 0, N(as|ws) = 0, and such that

VSCT, Vas e Ws,

1
EN(asl‘ws) — Pys(as)| < 47)

€
Ws|
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* Find a T-tuple (wy, ..., wr) in the bin M, such that

(wy,...,wr) € TBC, (48)
If no such T-tuple is found, declare error event F .

 Define the n functions w7 (M7 ), as the mapping of M7
into the typical w that was chosen in the last step.

e Transmit to the channel the vector £ which is indexed by

M. Denote x(M) = a:(MCF,'wT(MT)).

C. Processing at the Agents

In the following, T%! and T%? are defined in the standard
way, as (39).
1) Decoding: Agent t receives y; and looks for @, so that
(y:,w;) € THL (49)
If no such w; exists, declare error event Es. If there is more than
one such w,, declare error event F5. Denote by Ej the error
event where the chosen vector w; # w;(M7).
2) Compression: Agent t chooses any of the z; such that
(we(ze, 1), Yo, ;) € TL?. (50)
The event where no such z; is found is defined as the error event
FEs5. After deciding on z;, the agent transmits s;, which fulfills

2zt € Ss, and Mt to the final destination through the lossless
link, where M; corresponds to ;.

D. Decoding (at the Destination)

The destination retrieves My and s 2 (81,...,87) from
the lossless links. As long as
R, < Gy on

the transmitted s7 and My are properly received, with no er-
rors, since the link is lossless. The destination then finds the set
of indices 27 = {%1,...,%p} of the compressed vectors 4y
and the decoded vectors w7 which satisfy

{ (i1 (21,1 (M7)), .. ., @y (37, Wr(M7)), o7 (M7)) € T?
Z2r € Ss; X -+ X Sqp

(52)
where T2 is defined in the standard way, as (39). If there is no
such Z7, the destination declares error Fg and if there is more
than one such Z7, the destination declares error E7. The event
where 2 # z7 is defined as Eg. Finally, the destination decides
that MC F was sent if

(z(Mz, Mcr), iz (57,47 (M), 7 (Mz7)) € T (53)

If no such MC r is found, declare error Fy. If more than one
such MC r 1s found, declare error F'g. Further, define error '
as the event where MCF # Mcrp.

Correct decoding means that the destination decides M =
M. An achievable rate R was defined as when the final des-
tination receives the transmitted message with an error proba-
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bility which is made arbitrarily small for sufficiently large block
length n.

E. Error Analysis
The error probability is upper-bounded by

11
P(error) = P (UiL, E;) <> P(E)). (54)
i=1
We will upper-bound the probabilities of the individual error
events by arbitrarily small e.
1) E: Notice that in order for the number of generated vec-
tors {w, } to be larger than zero, we must have

VI<t<T:R <I(W;Y,) -6 (55)

For any subset S C 7, we have
Pr(wr ¢ TBC) < 1 — " HVo)=3,  HOV)-2ISId (56,

and the probability P that some bin M ;. does not contain any
jointly typical S-tuple is upper-bounded by

n[ES I(Yt;VVt)—Rt—é]
P < (Pr (W7 ¢ TFC))’ :

(57)
Itis easy to see that this probability is as small as desired as long
as n is sufficiently large and

D R < [I(Yy W) — H(Wy) — 6]+ H(Ws) — 2|S]e
teS teS
= > IV W) = I(Wi; Wi 5.,)) — |S]6 = 2[S]e.
teS
(58)

Recall that 7(S,¢) = {i:i € Sandi < t}. Let € = § + 2.

2) Es, Eg, E9: By Lemmas 2 and 4, the probability that
jointly distributed variables are not e-typical is as small as de-
sired for n sufficiently large.

3) E5 and E4: According to Lemma 3, the probability that an-
other 1, belongs to T%! is upper-bounded by 2"/ (We:Y1)—e],
Since there are no more than 2/ (W:Y2) =81 gych Wy, the prob-
ability of E'5 and F4 can be made arbitrarily small as n goes to
infinity as long as § > e.

4) E5: There is no z; such that 4, (z;, w;) is in T%2 with prob-
ability P(FE5), which from Lemma 4 can be made arbitrarily
small for sufficiently large n as long as

Ry > I(Uy; Vi |W3). (59)
5) E; and Fg: Assume that for some S C T
?:’5 75 zZS (60)
and
230 = ZscC. (61)

This means that the compression vectors #; for t € S are
jointly typical with the corresponding w, with high probability
(Lemma 2) as they are generated that way. But they are not
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necessarily jointly typical with the other {;,;};-;. On the
other hand, since #; = u; for ¢t € S©, they are jointly typical
together with w7 with high probability, due to Lemma 4. So
with high probability @7 (37, w7 (Mg )), w7 (M7) belongs to
a typical set with the distribution

n

I_I{IE’W7 (07 ,i)Po e iwr (ﬂsc,iW/T,i)HPLum (ﬂt,i|ﬂ7t,i)}~

=1 teS

Thus, according to Lemma 3, the probability that such a vector
belongs to T? is upper-bounded by

2n[H(WT.,UT)fH(IVT)fH(USC|WT)fZ H(U|Wi)+e|

teS

. (62)
Overall, there are

2”[ZS[Rt_Ct+Rt]] -1

such vectors in the set S5, X --- X S, and the probability of
errors F7 and Ey is upper-bounded by

2n [Ztes [Rifct+Ri*H(Ut |"’Vt)]] 2n[H(U5 |‘VT,US(~ )+e+\SC |e’] .

(63)
This means that as long as

A [Rt - H(Ut|Wt)] + H(Us|Uge, W)
tes tesS (64)

the destination will be able to reliably decode M+, z7.
6) E1p, F11: The probability that Mo # M p satisfies (53)
is upper-bounded by (again Lemma 3)
o—n[I(X;Ur |Wr)—e] (65)
Now summing over the 2% — 1 possible Mcp and upper-
bounding, we find that reliable detection of Mcp given My is
possible if
Rep < I(X;Ur|Wr). (66)
Taking (59) and (64) and noticing that {U; }+c7 are indepen-
dent given (Y3, W;), we can write the constraints as
VSeT: ) [Co— Ri] > I(Us; Ys|Usc,Wr).  (67)
tes

Notice that (55) is superfluous given (58), and (51) is super-
fluous given (67). Now (58) and (67) constitutes (21). The
achievable rate (20) follows by (66).

F. Cardinality Bounds

In this subsection, we develop the bounds on the cardinality of
the auxiliary variables Uz . For that, we use the Support Lemma,
as in Appendix V-A.

Consider the functionals on a generic probability Qvy, w,,
over V;, W;. Note that there are 27~ such functionals from
(21), one from (20) and | V¢||[W:| — 1 from the given probability
Py, w,. This proves that

;| < | Vi) Wi | 42771 (68)
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When trying to apply the Support Lemma for the cardinalities of
W, the structure of the constraints in (58), and specifically the
rightmost elements, prevents isolating a single auxiliary variable
from the others, and thus also prevents the application of the
Support Lemma. The difficulty is faced also when trying to limit
the cardinalities of the auxiliary variables in Marton’s original
broadcast technique [29], which to the best of our knowledge
has not been done.

APPENDIX IV
PROOF OF COROLLARY 1

The scheme which achieves the rate (13) is basically identical
to the one used for Theorem 3, with the following differences.
1) The decoding is now done in a single stage, in which the
destination looks for Mc F, 21, such that (53) is fulfilled
and

2r € Ss, X -+ X Ssp. (69)

If there are no such indices, declare error EZ. The error
event where an erroneous Mc F is found, or where more
than one MCF are found is denoted by EY. Otherwise,
declare the received message to be MC F, MT.

2) Error analysis: E;—F15 are replaced by E. and EY, so

we have fewer error events and the achievable rate might
be larger. Note that P(E.) — 0 as n — oo according to
Lemma 4.
As for EY: Consider the case where MCF # Mcp and
%s # zs. There are 9 R+D s [Ri=Cit Bul corresponding
vectors (2(M),us(2s), usc (25¢)), and the probability
that any of them is jointly typical, is upper-bounded by
(Lemma 3)

g H(X,.Ur|Wr)=H(X|Wr)=H(Usc (Wr)=3, o HU[Wo)+e]

Thus, the rate RcF is achievable if

Rop < Y [Ch = Ry — Ry + H(U|W,)]
tesS
— H(Us|X,W7) — H(Usc|X,Us, Wr)

< Y [Cr = Ry — I(Y3; U | X, Wr)]
teS
+1(Use; X|Wr)

where the second inequality is due to (59) and because
of the Markov chain U; — (Wr,X) — Ur\;. Notice
that for ¢* such that Rt < (4 — Ry, which means
I(Up; Y [Wye ) < Cye — Ry, we get full reconstruction
of u;-, with no need for binning. In that case, the subsets
S : t* € § are not the minimum, and do not determine the
achievable rate. This is since

Ce = Rye — I(Upe; Yo | X, Wi ) + I(Uge; X|Wr)
> [(Up; Yo Wi ) — I(Uye; Yo | X, Wi )
+ I(Use; X|Wr)
= [(Upe: X|W) + I(Use; X|Wr)
> I(Uy: X|Use, W) + I(Use; X|Wr)
> I(Uscyup; X|Wr).

(70)
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APPENDIX V
PROOF OF THE OUTER BOUND OF THEOREM 2

Using Fano’s inequality, we get that reliable decoding at the
destination is possible only if

H(M|Vr, F) < nep, (71)

where ne,, — 0 as n — oo. Now we have
nR<HM)=IM;Vr,F)+ HM|Vy,F) (72)
<H(Vr)+H(F|Vr)— H(F|M) (73)
— H(Vz|M, F) + ne, (74)
=I(Vr; M, F) — I(F; V1) + ne, (75)
<I(Vy; M,F) + ne, (76)
<I(Vy; X(M,F))+ ne, a7

where (75) is since F' is independent of M so H(F|M) =
H(F) and (77) stems from the Markov chain {M F} — X — V7.
Turning to the agents, we bound

I(Vr; X) = H(X) H(X|Vr) (78)
< ZH H (X;|V7, X7 (79)
< ZH(Xi) — H (X;|V7, Y71 XY (80)
=1
=Y H(X;) - H(X;|Ur ;) (81)
=1
= 3" I(Xi:Uz) (82)
=1
when Us ; £ (‘/S,Y}_l,Xifl) forany S C 7.
We further have
Z I(Us,i; YT ilUsc ;) (83)
=1
=3 T (Vs Vi ' X7 Y7 iVse, YL, X1 (84)
=1
= T (Vs; VrilVse, Y ' X771 (85)
=1
<N I (Vs Yz XilVse, Y51, X071 (86)
=1
=1(Vs; Y1, X|Vsc) (87)
= H(Vs|Vsc) < H(Vs) <n)_ Ch. (88)

teS

Next, following [15], define Uy £ (U, s,5), X* £ X5, Y* 2
Ys where S is a random variable uniformly distributed over
[1,n]. We have

1
R<— ;l(Xi; Ur,i) (89)
ZP I(Xi;Uri|S =i)| + [(X*;8)  (90)
:I(X Uz s|S) + I(X*; S) (91)

— [(X*,U%) 92)
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where (90) follows from Lemma 1: it is known that X * and S are
independent without the key F' (X is memoryless). We further

have "
; Cy > ; EI(USJ, Y7 i|Usc ;) (93)
- Z %I(US,YTW«, =) (94)
U Y UL, 95)

Define W* = (Yq— 51, Y27 xS ,S), so that by con-
sidering Lemma 1, X* and YT are 1ndependent with W* when
not conditioned on F'. The auxiliary variables U} can then be
represented as

Up = (Ve Y271 X571 5)

= (ge(W*, /), g(W*)) (96)
FW*Y7) & (g(W,Y7), g(W™)) 97)
where g,(W*,Y7) = (V;,Y27!) and g(W*) = (X5°1,9).

This shows that the probability space is indeed (16). This is pos-
sible only because of the nomadic transmitter. In the case when
F' is known to the agents, the probability space no longer satis-
fies (16), so that the upper bound in Theorem 2 is not applicable
when the agents are cognizant of the codebook used.

A. Cardinality Bounds

In this subsection, we develop bounds on the cardinality of
the auxiliary variable W through bounds on the variables Ur
which fulfill the Markov chain (17). For that, we use the Support
Lemma (see, for example, [30, p. 310], and [20]). According to
this lemma, if there are K functionals {q }~_, on a set P(X)
of probability distributions over the alphabet X', and given any
probability measure y on the Borel o-algebra of P(X), then
there exist K elements ), € P(X) and K nonnegative reals
«, that sum to unity, such that forevery 1 < j < K

K
L, (@) = > o Q)

In order to use the lemma, we define a generic distribution
Qyvy Uz, (Y7, ur\s) Over Y x Uy, which fulfills (16). First
, write the following functionals as a function of Qv
Notice that the cardinalities of UT\t are intact:

(98)

Ur\¢*

1(Q) = — Z Pxyy (®|lyr)Qvy vy, (YT, ur\1)
TYT U\
log 2y, Pxpvr (2ly7)Qyvr v, (075 ur i)
Zy'T QYT,UT\f, (Y7 u'T\t)
G5c(Q) == > Qvrug,(yr,ury)

YT uT s
~log( Zug Qvy,ur, (YT, Ususe\s) )
Zy;,u
Iy (Q) = Z Qvy,ur, (YT, UT\t)-

!
W\t

1 Qvr ur, (Y7, wsusee)

We remark that Px |y, (x|y7) is given by (16), and S is such
that S¢ C 7 and ¢t € S¢.
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Now applying the Support Lemma, we find that there exists
a random variable U/ such that

ZPU/ ue)qu(P(o|U; = ) = H(X) = I(X;Ur) (99)
ZPUI ur)gse (P(oUf = w)) = H(Yr|Usc) (100)
ZPUf ut) gy, (P(o|U} = ur)) = Py, (y7) (101)

are fulﬁlled and U] has cardinality bounded by
U] < V7| 42" (102)

This is since (99) is one equation, (100) is 271, and (101) is
|Y7| — 1 equations. This is also the cardinality bound on W,
namely

W| < | V7| + 2771, (103)
APPENDIX VI
PROOF OF THE UPPER BOUND IN COROLLARY 2
‘We have
> Cr>~I1(Yr1;Vs|Vse) (104)
tes

1
=—I1(Y7;Vr)— —1(Y1;Vsc) (105)

n

1

= I(YT,X-VT) — —I(YT,X;Vsc) (106)

I(X:Vr) — —I(X Vse)
1
EI(YTE Vr|X) - —I(ch; VselX) (107)

I(X; VT) - —I(X Vse)

+>

tES q

3 IP* + 3 I'--l SIm3Ir 3k

1(Y; V3| X) (108)

where (106) and (108) are since V; is a deterministic function
of Y;”. We use Fano’s inequality (77), and find that

R < min {Z [ct - %I(Yt; Vt|X)l + %I(X; Vse)

SCT
tes
(109)

Next, from (82) we know that

I(X;Vse) < ZI(Xi;USG,i)
i=1

and
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Again using the time-sharing random variable S here, we get
the desired upper bound (19).

APPENDIX VII
USING COMMON MESSAGE WITH TWO AGENTS

The use of a common message which is decoded by several
agents (as outlined by Marton [29]) is exemplified here for two
users 7' = 2. The achievable rate in this case is

RSI(X;Ul,U2|W1W2WC)+R1+R2 (110)

where we get (111) at the bottom of the page, and where

Py e w,,Wa, X1 Y, U, Us (W, W1, W2, T, Y1, Y2, U1, U2)
= Py, w,w,(wo, w1, ws) Pxjwe w,,w, (T|we, w1, ws)
Py, yo 1 x (1, y212) Poy vy wy we (ut|yn, wi, we)

- Py, vy, wa,we (u2lye, wa, we). (112)

Proof Outline: The proof involves generating three vec-
tors wi, Wi, we ii.d., where we is distributed according to
ITi—, Pw.(wc,;) and w; and w are distributed according
to TTiZy Pwywe (wiilwe,) and TIEZ Pw,jwe (wa,ilwe.).
respectively. The vector w¢ is decoded at both agents using
typicality tests. The random variables W7, W5 may be depen-
dent given W, so for the transmitted signal to be typical for
sufficiently large n, these vectors should be further quantized.
This way, the agents receive both common and individual
messages. After decoding the messages, the agents compress
the received signals y;, y2 conditioned on the decoded w1,
w1, we. Then they forward the decoded messages and the
compression information to the destination. An extension to
more than T' = 2 agents can be done using similar steps.

APPENDIX VIII
SOLVING THE LINEAR PROGRAMMING
PRESENTED IN REMARK 3

Define the raw vector x =
problem:

R7r. We have the following

(113)

where the superscript H denotes transposition, and we have the
constraints

0
(Y5 ViX) € S0 1V Uil Xo) Az = | boe (1
i=1 q
0< Ry <I(Wy,We;Yr)
0 < Ry <I(Wy,We; Ya)
Rl + R2 S min{I(WC;Yl),I(WC;Yg)} + I(W1;Y1|Wc) + I(WQ;Y2|Wc) — I(Wl; W2|Wc) (111)

I(Ul;Y1|U2,W17W27Wc) S Cl -
I(Us; Yo Uy, W1, W, We) < Cy — R
(

I(U1,Up; Y1, Yo |Wy, Wy, We) < C1 +Cy — Ry — Ry
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where O is a column vector of 1" zeros, and where

I(Yl, Wl)
o I(YT, WT)
boe = | S 1YW —IWaw, ) | (19
S LYy W) — I (W W 1)
and
Ci — I(Yy; U1|U2,...,T7WT)
b, — Cr — (YTaUT|U1 ..... 7—1, Wr) (116)

Ci+Cy— I(Y1,2;U12|Us,...7, W)

Sy Ce — I(Yr;Ur|Wr)

The bound (114) includes the constraints on R+ in (21). The
matrix A is

-1 ... 0
0 -1
1 0
0 1
11
A= (117)
11 11
1 0
0 1
11 00
1 ... 11

Since there is at least one feasible z, namely, R; = 0, for all
t € 7T, the maximization (113) is equal to the solution of the
following dual problem:

min A (07b5b) (118)
such that
M= (1,...,.1)H
{\'/U<k‘:(/\)k20. (119)
Now since
VS, SCT:
Z (W Yy) — I(Wi; Wz (S1 U Sz, 1))
teES1US,
< Z[I(Wt;Yt) — I(Wy; Wz (81, 1))]
teS
+ Y (Wi Ya) = I(Wy; Wz (Sa, 1)) (120)
teS,
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and
VS, $CT, SiNS=¢:
> [C] = 1(Us,us,; Yo [Usense s Wr)
teES1USs
< Z [Ct] - I(Usl ; YSI |[]$15v ) W’T)
teS;
+ 3 (G = I(Us,; Ys, |Use, Wr) (121)
tESs

we get (23), where the constraints (24) and (25) stem from the
requirement that there must be at least one feasible z.

APPENDIX IX
PROOF OF THEOREM 4

The proof of Theorem 4 is very similar to the proof of The-
orem 3 in Appendix III. In fact, both Theorems 3 and 4 are spe-
cial cases of a generalization of Theorem 3 which includes the
transmission of common messages to the agents, so that some
subset of them can decode the same information ([29, The-
orem 2]). Such a generalization appears in Appendix VII for
T =2.

In this appendix, we prove the achievable rate for the case
when the channels are known to be degraded. In this case, it is
beneficial to use many common messages, which enables sav-
ings of link bandwidth. We use superposition coding for the
messages to the agents, since it is known to be optimal for that
case (degraded broadcast channel [28]).

Since the proof is very similar to the one provided in Ap-
pendix III, we outline only the differences.

1) Appendix III-A, item 1): for the broadcast transmission,

we now repeat the following step fog t=1,...,T:

» For every w'~! (total of 2" 25 Ry generated in the
previous step, generate 2" vectors w; according to
[Ty P (weilwi™").

e Label the resulting vectors by M;, where M; €
[1,2°1] A

2) Appendix III-A, item 2): we now generate 2"[F¢~
vectors u; according to [, Py,jw+ (uri|w}) (instead
of [T, Pu,jw, (us,i]we,i) in Appendix III). So here, the
mapping of z; to u; depends on w" (not jugt on w;) and is
denoted by u;(z;,w"), and we have 2" D B different
mappings. Notice that M? is in one-to-one correspondence
with w?, so that we can write u; (z;, M?).

3) Appendix III-B: the transmitter sends () to the channel.
Here there is no need to find typical w7 before transmitting
to the channel.

4) Appendix ITI-C-I: now the agent ¢ finds M? such that

(w' (M), 31)

instead of M;. The typical set T%* is defined in the usual
way.

5) Appendix III-C item 2: for the compression, now the agent
looks for z; such that

(ue (26, M") o, 0") €

where T3 is defined in the usual way.

Ci+R:]

€ Th* (122)

T® (123)
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6) Appendix III-D: Considering the change of labeling, the
destination here performs the same steps as the destination
in Appendix III.

7) Appendix III-E: there are several differences in the defini-
tions and the calculation of the probability of some error
events:

e Fj is no longer declared by the transmitter.

» FEy—E,: Consider the typicality of (w?,y;) instead of
(we, ye).

e FE5—Fg are changed due to the dependence of u; in
w! instead of w;. This means a change in the variables
which are included in the definition of the typical set.

¢ Error probabilities for Fs, Fg, E9: As in Appendix III,
the probabilities of these events are bounded by e due
to Lemmas 2 and 4 (generalized Markov Lemma, [31,
Lemma 3.4]).

e Error probabilities for F3, F/4: According to Lemma 3,
the probability of another typical vector w' s
upper-bounded by 2"l (WhYo)~el " Since there are

t
2721 B _ 1 such vectors, the error probability can
be made arbitrarily small if

t
VI<t<T:» Ri<I(WhYs)

i=1
t
= T (WaYi[Wwith). (124)
i=1
This condition is fulfilled if
VI<t<T:R <I(WyYy W), (125)

» Error probability for event E5: repeating what was done
in Appendix III and considering that w; was generated
according to Py, |w+ y, and not Py, |y, y,, the proba-
bility of Ej is as small as desired as long as

Ry > 1(UpY, W), (126)

8

~

Unlike Appendix III-F, which tries to bound the cardi-
nality of the auxiliary variables, we can now use the Sup-
port Lemma ([30, p. 310]), as in [20], to limit the car-
dinalities of both W; and U/;. We start by rewriting the
rate (22) and the constraints (29) as functionals of some
generic Qx 7, wr-1. This way, we get 2 + 27 — 1 func-
tionals on Q 7, wr-1, calculated from I(X;Ur|Wr)
from (22), H(Yr|Wr) from the first set of (29), and fi-
nally, I(Ys;Us|Usc,Wr) for all S # ¢ (2T — 1 such
sets) from the second set of (29). In addition, the marginal
of @, with respect to X must be equal to the given Px.
So in total, there are |X| — 1 + 2 + 27" — 1 functionals on
@, and as a result, the cardinality of W can be limited by
Wr| < |X|+2T. We can apply this technique repeatedly,
for the other W;, where ¢t < T'. For any such ¢ < T, there
are T'—t functionals as a consequence of limiting { R; }7_,
in (29) in addition to the marginal distributions with re-
spect to ({W;}{, 1, X). Overall, the cardinality of W can
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be limited by

T
Wil <1x] T Wil —14+27 =1+ T —t+2

1=t+1

T

=l N TR i - ). (127)

1=t
Next, we limit the cardinality of Uy when provided with
the auxiliaries W7 (which have bounded cardinalities). For
this, we can repeat what was done in subsection III-F with
the difference that here we look at Py, yy+|y7,- So we can

limit the cardinality of the auxiliary variables Uy by

] < Vel W + 27 (128)

Considering these differences, the constrains on { R}, and thus
also the cardinality limits, are the main differences between
Theorems 3 and 4. So by replacing (58) with (125), one gets
to (29).
APPENDIX X
PROOF OF THEOREM 5

First recall the definitions of the Gaussian channel
(Y, X, Ny) from Section VI-A.

A. Direct Part of Proof
Define the auxiliary random variables U; as

U =Y+ W (129)

where {W;} are Gaussian i.i.d. random variables, independent
of Y} (no connection with W' in the previous appendices), with
zero mean and variance

2—2I(Ut;Yi|X)pN
t

W, = 1 2—20UX)" (130)
Equation (129) can also be written as
Ui =X+ D, (131)
where D; = W; + N;, and therefore also
pp, 2 ED} = p, + pw,. (132)

Define r; 2 I(Y3; U | X), so that pp, can be expressed as
1 1—272m

PD,

(133)
pr,

The terms {r;} can take any positive value, and then {pp, } are
determined accordingly (this space r+ € {R*}7 is limited, as
seen in the next lines, by the available bandwidths). The last
equality can be used to explicitly express the maximum mutual
information (through maximal ratio combining) in terms of {r;}
between X and some subset Ug

1 px >
I(X;Us) =~ logy (1 4+ = (134)
( s) 2 52 < (ZtGS pp,) !
1
= log, <1 +ox Yy th> (135)
tes

1 1—272"
= 5 log, T+px Yy ——— . (136)
tes PN,
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Now we can apply Corollary 1 and then prove the direct part
of Theorem 5. Although Corollary 1 considered only discrete
channels, and the Gaussian channel is not discrete, the exten-
sion is based on standard techniques also used by Oohama [16],
who showed the validity of a generalized Markov Lemma for
continuous random variables.

B. Upper Bound for Gaussian Px

The upper bound is based on (109), rather than on the single-
letter expression from Corollary 2, which is too loose for this
case. We redefine

1
i ~I(Y{; Vi|X™) (137)
and then use the following lemma, which is due to Oohama [16]
to upper-bound 1 I(Vs; X).
Lemma 5:
L (Ve X) < Sog, 1+ >
n S =9 0g9 Pz
tes
Lemma 5 together with (109) and (137) completes the proof. [1

1-272m
(138)
PN,

Next we give also the proof of Lemma 5, from [16], which is
based on the entropy power inequality.

Proof: Define the minimum mean-square error estimator
of X fromYs by X = 37, 72-Y. Then we have
A t A
X=X+N (139)
where N is independent with the estimator X or with Ys
and is distributed i.i.d. Gaussian with zero mean and variance

_ (1 1
Py = (,,—Y +Dies m)
inequality

. We can use the entropy power

onhVs) > 92h(X|Vs) 4 2mpy - (140)

Define A = L7(X;Vs) and notice that MX|X,Vs) =
h(X|X), since X is the best estimator of X out of Y s and we
have the Markov chain: X — Y s — V. Then we can rewrite
(140) as

922+ 2h(X) 5 92 [h(X|X,Vs)+I(X;X)]—2A

+2mpg.  (141)

Next, we can apply the entropy power inequality again, to lower-
bound

. 2p( 2y, |X,V;
PENXIXTE) > o7 (pNi X Vs

teS
2
_ <P_A) o 2h(Y.|X, V)
=\,
2
_ <PN) =27+ 2h(Y,|X)
=\,
o\
- < N) pr, 272" (142)
=\,

So overall we have

2
2P (S (25) o2

teS

ELo=2 4oy (143)

p
Px
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or alternatively

92\ o PX 22
<= —px )y (144)
PN tes PN,
O
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