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Abstract—The problem of a nomadic terminal sending informa-
tion to a remote destination via agents with lossless connections
to the destination is investigated. Such a setting suits, e.g., access
points of a wireless network where each access point is connected
by a wire to a wireline-based network. The Gaussian codebook
capacity for the case where the agents do not have any decoding
ability is characterized for the Gaussian channel. This restriction is
demonstrated to be severe, and allowing the nomadic transmitter
to use other signaling improves the rate. For both general and
degraded discrete memoryless channels, lower and upper bounds
on the capacity are derived. An achievable rate with unrestricted
agents, which are capable of decoding, is also given and then used
to characterize the capacity for the deterministic channel.

Index Terms—Cooperative reception, decentralized detection,
relay channel, wireless networks.

I. INTRODUCTION

I NFORMATION theory for networks and especially wireless
networks is in the focus of an extensive research activity.

This interest is partly due to many recent results on multiple-an-
tenna channels, which demonstrate significant gains, especially
for fading channels.

Many papers propose and analyze ad hoc wireless networks
in information-theoretic terms. Among these, coding schemes
which achieve transport capacity were given in [1].
Multihop relaying makes use of several intermediate wireless
nodes to assist the communication between two nodes that
are far apart, e.g., [2]. An information-theoretic framework
for the relay channel was given by Cover and El Gamal in [3]
for a single relay node and extended by [4], [5] to several re-
laying nodes. Relaying techniques can be coarsely divided into
compress-and-forward and decode-and-forward, depending on
whether the relays attempt to decode the transmitted message
or just forward the processed received signal to the destination.
By using cooperation, relaying schemes can take advantage of
the inherent dependencies for efficient forwarding to the final
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destination. Such cooperation is commonly used and selected
examples are [2], [6], [7], while cooperation between receiving
nodes in a degraded broadcast channel is described in [8]. We
conclude with an upper bound derived in [9], that suggests that
as the number of users in an ad hoc network goes to infinity,
the total rate per user tends to zero. This bound motivates the
use of networks that are not solely ad hoc, but also include base
stations or access points.

Problems of conveying a source which is observed by re-
mote agents to a single destination are built around similar set-
tings, where the source is modeled as a sequence of independent
and identically distributed (i.i.d.) random variables. Such prob-
lems are analyzed in information-theoretic frameworks such as
distributed source coding, lossless CEO (Chief Executive Of-
ficer) [10], CEO [11] and sensor network problems. A small
sample from the extensive work that is relevant to our distributed
detection setting includes [12], [13], and [10] for distributed
source coding. Allowing distributed lossy source encoding, as
opposed to centralized encoding [14], is still essentially an un-
solved problem. An exception is the Gaussian CEO problem
[15], [16] which was recently solved using the entropy power
inequality in [17], [18]. Multiterminal lattice approaches are de-
scribed in [19]. These rate–distortion problems are linked to
network models in [20]–[22]. The use of other measures, in-
stead of the standard distortion, is addressed, for example in [23]
and [24]. Schein’s dissertation [25] focuses on the problem of
communicating via two agents, and develops several achievable
rates.

Here we consider the problem of reliable communication
from a nomadic transmitter to a remote destination via nonde-
coding agents that are connected to the destination via lossless
links. These agents have noisy versions of the transmitted
signal, and transmit a predetermined number of bits to the
destination without any errors. The destination is reached
only via the agents that serve as access points. By nomadic
transmitter we mean that the receiving devices cannot or will
not decode the transmitted signal. Such a setting is of interest
for numerous applications. The main motivation, however, is
for systems where the agents cannot decode because of added
noise or interference. We also consider the less restrictive case,
where the agents are informed about the transmitter’s code,
and give several achievable rates, which turn out to be capacity
achieving for the deterministic channel.

The rest of the paper is organized as follows: in Section II, we
describe the problem. An achievable rate and a capacity upper
bound for the nomadic transmitter are presented in Sections III
and IV, respectively. An achievable rate for the case of cog-
nizant agents is given for both degraded and nondegraded chan-
nels in Section V, where the capacity is fully characterized for
the deterministic channel. The Gaussian channel is considered
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Fig. 1. A system with two agents between the transmitter and the destination.

in Section VI. For the case where the agents are unaware of the
code used, and where the codebook is Gaussian, we characterize
the capacity region.

In this paper, we use capital letters, e.g., , for random
variables, lower case letters, e.g., , for the realization of these
variables, and calligraphic letters, e.g., , for their alphabets.
Vectors are of length unless otherwise specified and are
denoted by bold-face letters, e.g., , , or vector spaces by
calligraphic bold-face letters, e.g., . A calligraphic letter
denotes a set, e.g., . A complement (denoted
by the superscript ) of some subset of a set refers to
the subset which fulfills: and .
The cardinality of any set is written as . A subscript, e.g.,

, denotes the th element in the vector and a superscript
denotes the vector . The notation refers

to the vector , and refers to . Let
be the probability of the event

.

II. PROBLEM SETTINGS

We consider the problem of a single transmission from the
transmitter through agents, playing the role of decentral-
ized processors, to the final destination , as seen in Fig. 1 for

. Suppose the agents do not know the transmitter’s code-
book. We model this by having the transmitter use one code
out of a set of possible codes. The agents know some charac-
teristics of these codes, e.g., their rate and that they are capacity
achieving over a standard single-user Gaussian channel. An ex-
ample can be a set of interleavers and also a set of modulation
techniques. Such random coding is also used in [26] for a mis-
match scenario. The advantages of random coding were demon-
strated in [27] for unknown channels.

The following properties and definitions hold, unless stated
otherwise.

1) The channel input (output of the transmitter ) is .
2) The agents receive the outputs of a memo-

ryless broadcast channel without feedback, defined by

(1)

where . Denote . The agents
have full knowledge of the distribution , in-
duced by the nomadic transmission, and thus also of

.

3) The bandwidth , in bits per channel use, characterizes
the lossless link that connects the agent to the final des-
tination .

4) The communication rate is denoted by . The message
to be sent is encoded by a random encoding function

such that for all messages , the out-
puts of the encoding function are randomly and indepen-
dently chosen according to probability . We index
the random encoding function by the random variable .
We define the range of to be , which
is the number of ways of mapping messages to the

possible codewords. Then let every correspond to a
unique such mapping, i.e., corresponds to one such
mapping. That is, we choose

(2)

and the probability of selecting is

(3)

where , for some single letter
probability . The agents are not informed about the
selected encoding , but are fully aware of .

5) Every agent , , encodes its channel out-
puts with an encoding function

(4)

so that

(5)

is sent through a lossless link to the final destination.
6) The destination decodes the message from , i.e., we

have

(6)

where .
7) The rate is said to be achievable if for every , there

exists sufficiently large such that

(7)

where includes averaging over the
channel and the random coding.

Notice that with the knowledge of , with high probability,
is uniformly distributed over codewords. However, without
knowledge of we have the following simple lemma.

Lemma 1: Without the knowledge of the selected en-
coding , the vector is distributed according to

, and therefore is distributed as

(8)

Proof: See Appendix II.
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The above setting models the problem where the final destina-
tion decodes the message from the transmitter via simple agents,
which are not able to decode the transmitted message and use
compression of the received signals.

When the agents are allowed to decode, as is the case in
Section V, then obviously randomized encoding is superfluous.
However, in order to allow combined approaches, and for the
sake of consistency, we use the same settings for both cases.

III. AN ACHIEVABLE RATE

We denote the setting of Section II as nomadic transmitter.
The following theorem is a special case of Theorem 3 (proved in
Appendix III) applied to the nomadic setting. In fact, by proper
modeling, Theorem 3 is also a special case of [32]. But here
we give cardinality constraints and the proof is simpler because
there is no need for the block Markov superposition encoding.

Theorem 1: Define a positive rate and a set of auxiliary
random variables , with bounded cardinalities of

such that

(9)

with the constraints

(10)

and the joint distribution

(11)
Then is achievable for the nomadic transmitter.

Proof: See Appendix III and Remark 2.

We remark that (11) means that

(12)

forms a Markov chain. The auxiliary random variables are
used to compress , and are forwarded to the final destination.
The constraints (10) are required so that the final destination can
reliably recover from .

Corollary 1: The achievable rate of Theorem 1 can be im-
proved by taking into account only errors that involve incorrect

, where the destination is allowed to make errors in . Such
an approach gives an achievable rate which is written with no
constraints, albeit we feel is less intuitive. Rate is achievable if

(13)

where the cardinalities and the probability spaces of the random
variables are the same as in Theorem 1.

Proof: See Appendix IV.

Remark 1: The achievable rate of Theorem 1 can be further
improved by considering some common knowledge shared by

the agents. For example, such information can be another trans-
mission which was decoded, by all agents, and they can thus
compress conditioned on this common information.

IV. A CAPACITY UPPER BOUND

An upper bound on the capacity of the communication
problem described in Section II is given by the following
theorem, which is based on the fact that the agents do not know
the selected encoding . The problem is thus similar to the
general CEO problem in the sense that the transmitter source
sequence should be reproduced. Since the agents are ignorant
of the codebook used, there is an inherent loss compared with
the case where the agents know the codebook. The achievable
rate when the agents are unrestricted can be upper-bounded by
the cut-set bound [28]. This gap between the achievable rate
and the cut-set bound will be demonstrated for the Gaussian
channel in Section VI.

Theorem 2: A reliable communication rate for the nomadic
setting (Section II) must satisfy

(14)

where must fulfill the constraints

(15)

The maximization in (14) is over which are
distributed according to

(16)

for some random variable and for some deterministic func-
tions . The cardinality of is , and it suffices to
use .

Proof: The theorem is proved in Appendix V.

We remark that (16) means that

(17)

forms a Markov chain. At first look, it seems that the right-hand
side (RHS) of (10) is smaller than the RHS of (15), which would
result in a contradiction between the necessary conditions of
Theorem 2 and the sufficient conditions of Theorem 1. This ap-
parent conflict is resolved by observing the different Markov
relations the variables fulfill, where (11) is more restrictive
than (16).

Furthermore, when taking the variables in the upper
bound such that they fulfill (11), the RHS of (15) is identical to
the RHS of (10). This is since

(18)

where because of
the Markov relations (12).
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Corollary 2: Similarly to Corollary 1, we can give an expres-
sion with no constraints also for the upper bound, namely

(19)
where again, the random variables have the same cardinalities
and satisfy the same Markov chains as in Theorem 2.

Proof: See Appendix VI.

V. AGENTS WITH CODE KNOWLEDGE

In this section, we diverge from the nomadic model described
in Section II. Suppose the agents know the codebook so that the
agents and the transmitter can be jointly optimized. This enables
to transmit a broadcast message that is decoded by the agents
and forwarded to the destination, in addition to the compression
operation. Denote this model as decoding agents. Such an ap-
proach can increase the overall transmission rate.

Obviously, the use of randomized encoding is superfluous
here, as the agents are fully informed about the selected coding.
Nonetheless, to remain consistent, the same setting as in the no-
madic case is used, where the only difference is with the knowl-
edge of also at the agents.

In the following, we will denote all messages that are decoded
at the agents as broadcast messages, although eventually they
are always intended for the final destination.

The next theorem is based on Marton’s scheme [29] for the
broadcast channel. Denote by the message to be decoded at
agent , and let ( is the message that is
decoded only at the final destination). Let
and and be a constant.

Theorem 3: For decoding agents, any rate satisfying

(20)

with the constraints as shown in (21) at the bottom of the page,
and with the joint distribution

(22)

is achievable.
The agent decodes bits and forwards them to the des-

tination along with bits used for the compression.
This compression is done considering the decoded signal .
The final destination then decides on the transmitted by
using joint typicality for the compressed signals, taking into ac-
count . The above scheme uses the auxiliary random vari-

ables for the messages that will be decoded at the agents,
and which depends on , for the compression outcomes
that will be decoded at the final destination.

This achievable rate may be further increased by adding a
time-sharing random variable to the rate region of Theorem 3.

Proof: The proof appears in Appendix III and uses com-
pression in addition to Marton’s broadcast coding.

Remark 2: The scheme described in Theorem 1 is obtained
as a special case of the above scheme, by taking all to be
constants. The cardinality limits in Theorem 1 can be calculated
from the limits in Appendix III-F.

Remark 3: The achievable rate in Theorem 3 can be written
without by solving the following linear programming
problem: given which satisfies (22), maximize

from (20), over . Using this approach, we get that any
rate is achievable if it satisfies

(23)

provided that
1) :

(24)

2) :

(25)

See the proof in Appendix VIII.

Remark 4: The rate (20) can be improved by sending
common broadcast messages in addition to the individual
broadcast messages to the agents. This is done by extending
Theorem 2 in [29] to more than two users and adding compres-
sion. Notice that such a construction includes Theorem 3 and
Theorem 4 below as special cases. Such a scheme is given in
Appendix VII for two agents.

Corollary 3: For the case of deterministic channels, where
for some functions , the cut-set upper bound is

(26)

This rate is achievable from (23) by taking to be constant and
for all , which fulfills the conditions (24) and (25). So

the capacity region is fully characterized for the deterministic
channel (this is a special case of the main result in [33]).

(21)
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For the case where the channels are either stochasti-
cally or physically degraded (see [28, Sec. 14.6.2]) we can use
superposition coding, which is known to achieve capacity over
degraded broadcast channels.

The received signal is a physically degraded version of
if the following forms a Markov chain:

(27)

Notice that this relation leaves . On
the other hand, is a stochastically degraded version of
if the marginal probability can be calculated from

through some (see (28)). Since (27)
is not necessarily true we can have .
So although superposition coding is optimal for the degraded
broadcast channel, it is not necessarily optimal for our model.

Theorem 4: For decoding agents with a channel
that satisfies

(28)

any rate satisfying (20) with the constraints

(29)

and the joint distribution

(30)

is achievable, and one can restrict attention to

(31)

(32)

Proof: See Appendix IX.

Remark 5: Theorem 3 does not seem to include Theorem 4
as a special case, as it does not account for a common rate (see
Remark 4).

Corollary 4: The rate from Theorem 4 can be expressed with
no constraints and no parameters by solving a linear pro-
gramming maximization problem, as in Remark 3 which is built
along the lines of Corollary 1. This gives the rate

(33)

VI. THE GAUSSIAN CHANNEL

The Gaussian channel is defined by , where
are independent Gaussian random variables with

and where denotes statistical expecta-
tion. Let be zero mean Gaussian with variance .
Here we use to denote the variance of a random variable.

We use Corollary 1 with continuous alphabets instead of dis-
crete, where this extension relies on standard arguments (see
[16], for example). We also use the generalized Markov Lemma
for Gaussian variables that appears in [18].

A. Nondecoding Agents

We prove the following result in Appendix X.

Theorem 5: The capacity of the nomadic transmitter for the
Gaussian channel and with chosen to be a Gaussian random
variable, is

(34)

Proof: Use Corollary 1 for the direct part and the upper
bound from (109) along with results from [16] for the converse
part.

Note that we restrict the transmitter to use Gaussian code-
books. The parameters in (34) indicate the bandwidth
wasted by quantizing the additive noise, which cannot be
avoided because of the nomadic transmitter. This bandwidth
reduces the bandwidth for forwarding the actual transmission
to , and, on the other hand, improves the expected
signal-to-noise ratio at the destination to .
Notice that (34) is concave in , so that it can be efficiently
maximized numerically. In addition, when the problem is sym-
metric ( are equal among agents), then also the optimal

are identical for all the agents, and an explicit capacity
expression can be obtained, provided the roots to a polynomial
of degree are found.

Corollary 5: For the case of two equivalent agents, that is
and , the rate (34) can be

written as the following explicit expression:

(35)
Notice that in (35) equals when and

when .

B. Example: Suboptimality of Gaussian Signaling

The previous section described the capacity of the nomadic
transmitter in the Gaussian setting when the transmitter used a
Gaussian codebook. However, Gaussian signaling is not neces-
sarily optimal because of the capacity limitations between the
agents and the destination. For example, suppose that

, and we use binary phase-shift keying (BPSK) at the
transmitter. The agents know that BPSK was used, and can
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Fig. 2. The achievable rate of a system with two agents, with link bandwidths of C = C = 1 and a signal-to-noise ratio of  . The dotted line designates the
use of Gaussian signaling at the transmitter and the solid line designates the use of BPSK.

demodulate every received channel output into one bit

(36)

This scheme is in fact a special case of Theorem 1, where
represents the two equiprobable BPSK symbols, and is a
deterministic function of . Notice that contains bits, so
that suffices to forward it to the destination. The
destination can reliably decode the received message provided
the transmission rate is no more than (for all )

where

and . We compare this
rate to (35) in Fig. 2. We indeed see that BPSK signaling out-
performs Gaussian signaling. This is because demodulation is
some form of primitive decoding, which is not possible for the
Gaussian signaling.

C. Example: Agents With Decoding Capabilities

Consider the symmetric case of a Gaussian channel with
statistically equivalent agents (both suffering from an additive
Gaussian noise with variance ). In addition, both agents
are connected via lossless links with equal bandwidth , to
the final destination. The combined approach of broadcast
and compression for the degraded channel (Theorem 4) is
employed, although the optimization considers only Gaussian
distributions. The rate is achievable provided that

(37)

where satisfy the conditions in (38) shown at the
bottom of the page.

Using a time sharing random variable can improve the rates
for this example. The achievable rate as a function of the band-
width , for a signal-to-noise ratio , is presented in
Fig. 3. In this figure, the leftmost dashed line and
the upper flat dashed line are the two
cut-set bounds [28], and the lower flat dashed line is the rate of
a system without compression . The dotted
line represents time sharing, which is useful here. This figure
illustrates that if the sum of capacities of the corresponding
broadcast channel (calculated by the signal-to-noise ratios at
the agents), is smaller than the sum of the bandwidths of the

(38)
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Fig. 3. The achievable rate of a system with two agents, each with link bandwidth of C and a signal-to-noise ratio of 10 dB. The dotted line designates time
sharing, and the dashed lines represent the cut-set bounds [28]. The lower flat dashed line is the achievable rate for a system without compression.

links, a compression scheme can significantly improve the per-
formance. A rate of up to 0.2 bits from the cut-set bound is ob-
served with , which means the achievable rate is
50% of the total bandwidth allocated to the links. It also demon-
strates that when the bandwidths of the links are smaller than
the sum of capacities of the corresponding broadcast channel

, the achievable rate in the nomadic
setting using Gaussian codebooks (35) is strictly smaller than in
the fixed transmitter setting (the cut-set bound, ).

VII. CONCLUSION

Communication via distributed agents is considered, focusing
on two cases: 1) the agents do not possess any knowledge about
the codebook used by the transmitter, and 2) the agents do
possess decoding capability. For the first case, a suitable direct
coding theorem based on decentralized compression and the
corresponding upper bound were derived. Considering the
Gaussian channel, a converse was proved by the entropy power
inequality invoking the techniques of [18]. An achievable rate
was derived also for the case where the agents are cognizant
of the codebook used by the transmitter. These sufficient
conditions combined either Marton’s or the superposition ap-
proaches, with the decentralized compression. For the case of
the deterministic channel, the capacity was fully characterized.

APPENDIX I
DEFINITIONS AND LEMMAS

As is commonly done (see [28, Sec. 13.6]), define the
-typical (strongly typical) set of as the set for which

for any such that , and
otherwise

(39)

where denotes the number of occurrences of the
symbol in the vector . Define the jointly -typical set
of similarly.

Lemma 2: For any , there exist such that for all
and we have

(40)

Lemma 3: For some let be generated ac-
cording to

(41)
where is a vector that belongs to . Then we have

(42)

(43)

where as .

Lemma 4: (Generalized Markov Lemma) Let

(44)

Given randomly generated according to ,
for every , randomly and independently generate

vectors according to ,

and index them by . Then there exist functions

taking values in , such that for sufficiently large

(45)



SANDEROVICH et al.: COMMUNICATION VIA DECENTRALIZED PROCESSING 3015

Proof: See [28] and [30] for the proofs of Lemmas 2–3.
Lemma 4 is a simple extension of Lemma 3.4 in [31].

In the following, we use only and remove the distinction
between and , for the sake of brevity.

APPENDIX II
PROOF OF LEMMA 1

We show that when the selected encoding is unknown,
the transmission is a memoryless random process. By
definition, memoryless process is distributed according to

for all
and all . We have that

(46)

This concludes the proof.

APPENDIX III
PROOF OF THEOREM 3

We use ideas from [32] which presents an achievable rate
region using the compress-and-forward technique for multiple
relays. The difference is that the agents benefit from a fixed
noninterfering links to the destination, and thus the interference
from simultaneously transmitting relays is avoided. In addition
to compress-and-forward, broadcast messages are sent to the
agents to be passed on noiselessly to the destination. As before,
the network is composed of agents , a
source transmitter, and a destination. Compared to [32], we do
not need the block Markov encoding technique.

The transmission is as follows: the transmitter sends
where . Divide into and , where

and
are the messages that are decoded at the

agents and the message that is decoded only at the destina-
tion , respectively. Agent decodes and forwards it to
with bits. It then compresses the received signal given
the broadcast message that was just decoded. Agent uses the
compression rate to compress into , indexed by ,
where . Since the compressed signals de-
pend on , bandwidth from the agents to can be saved by
using a Wyner–Ziv lossy distributed source coding. Each agent
then uses the remaining bandwidth after sending the broadcast
message to send the Wyner–Ziv bin index

. The destination receives from all the agents
and then uses it with to decode and then to
decode . The detailed proof goes as follows:
we first describe the code construction. Next, the processing at
transmitter, agents, and the decoding at the final destination are
given. The conditions (21) result from the described construc-
tion so that when the error probability is arbitrary small.

A. Code Construction

Fix and then for every :
1) For the broadcast transmissions:

• Randomly generate vectors , of
length , according to .

• Repeat the last step times, label the resulting
vectors of each repetition by ,

where . Define as the set labeled
by .

• Define the bin as the
product union of the sets .

2) For compress-and-forward transmission at the agents:
For all generated in the previous step.
• Randomly generate vectors of length

according to .
• Repeat the last step for , define

the resulting set of of each repetition by .
• Index all the generated with . We will

interchangeably use the notation for the set of vec-
tors as well as for the set of the corresponding .

• Notice that the mapping between the indices and the
vectors depends on . So we will write to
denote which is indexed by for some specific
from the previous stage.

3) For compress and forward transmission at the transmitter:
For every codebook realization , and every generated
in the first step:
• Randomly choose vectors , of length , with

probability .
• Index these vectors by where .

• So we have different mappings
between indices and vectors , where the one
used is determined by . We will therefore denote

as the vector indexed by for some
out of the ones chosen on the first step. We drop

the index in the sequel since decoding agents know
the chosen and the achievable rate is valid with high
probability for a random .

B. Encoding

Let be the message to be sent ( is
defined at the beginning of this section).

• Define as the collection of such that for any
with , , and such that

(47)
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• Find a -tuple in the bin such that

(48)

If no such -tuple is found, declare error event .
• Define the functions , as the mapping of

into the typical that was chosen in the last step.
• Transmit to the channel the vector which is indexed by

. Denote .

C. Processing at the Agents

In the following, and are defined in the standard
way, as (39).

1) Decoding: Agent receives and looks for so that

(49)

If no such exists, declare error event . If there is more than
one such , declare error event . Denote by the error
event where the chosen vector .

2) Compression: Agent chooses any of the such that

(50)

The event where no such is found is defined as the error event
. After deciding on , the agent transmits , which fulfills

and to the final destination through the lossless
link, where corresponds to .

D. Decoding (at the Destination)

The destination retrieves and from
the lossless links. As long as

(51)

the transmitted and are properly received, with no er-
rors, since the link is lossless. The destination then finds the set
of indices of the compressed vectors
and the decoded vectors which satisfy

(52)
where is defined in the standard way, as (39). If there is no
such , the destination declares error and if there is more
than one such , the destination declares error . The event
where is defined as . Finally, the destination decides
that was sent if

(53)

If no such is found, declare error . If more than one
such is found, declare error . Further, define error
as the event where .

Correct decoding means that the destination decides
. An achievable rate was defined as when the final des-

tination receives the transmitted message with an error proba-

bility which is made arbitrarily small for sufficiently large block
length .

E. Error Analysis

The error probability is upper-bounded by

error (54)

We will upper-bound the probabilities of the individual error
events by arbitrarily small .

1) : Notice that in order for the number of generated vec-
tors to be larger than zero, we must have

(55)

For any subset , we have

(56)

and the probability that some bin does not contain any
jointly typical -tuple is upper-bounded by

(57)

It is easy to see that this probability is as small as desired as long
as is sufficiently large and

(58)

Recall that and . Let .
2) , , : By Lemmas 2 and 4, the probability that

jointly distributed variables are not -typical is as small as de-
sired for sufficiently large.

3) and : According to Lemma 3, the probability that an-
other belongs to is upper-bounded by .
Since there are no more than such , the prob-
ability of and can be made arbitrarily small as goes to
infinity as long as .

4) : There is no such that is in with prob-
ability , which from Lemma 4 can be made arbitrarily
small for sufficiently large as long as

(59)

5) and : Assume that for some

(60)

and

(61)

This means that the compression vectors for are
jointly typical with the corresponding with high probability
(Lemma 2) as they are generated that way. But they are not
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necessarily jointly typical with the other . On the
other hand, since for , they are jointly typical
together with with high probability, due to Lemma 4. So
with high probability belongs to
a typical set with the distribution

Thus, according to Lemma 3, the probability that such a vector
belongs to is upper-bounded by

(62)

Overall, there are

such vectors in the set and the probability of
errors and is upper-bounded by

(63)
This means that as long as

(64)
the destination will be able to reliably decode , .

6) , : The probability that satisfies (53)
is upper-bounded by (again Lemma 3)

(65)

Now summing over the possible and upper-
bounding, we find that reliable detection of given is
possible if

(66)

Taking (59) and (64) and noticing that are indepen-
dent given , we can write the constraints as

(67)

Notice that (55) is superfluous given (58), and (51) is super-
fluous given (67). Now (58) and (67) constitutes (21). The
achievable rate (20) follows by (66).

F. Cardinality Bounds

In this subsection, we develop the bounds on the cardinality of
the auxiliary variables . For that, we use the Support Lemma,
as in Appendix V-A.

Consider the functionals on a generic probability ,
over , . Note that there are such functionals from
(21), one from (20) and from the given probability

. This proves that

(68)

When trying to apply the Support Lemma for the cardinalities of
, the structure of the constraints in (58), and specifically the

rightmost elements, prevents isolating a single auxiliary variable
from the others, and thus also prevents the application of the
Support Lemma. The difficulty is faced also when trying to limit
the cardinalities of the auxiliary variables in Marton’s original
broadcast technique [29], which to the best of our knowledge
has not been done.

APPENDIX IV
PROOF OF COROLLARY 1

The scheme which achieves the rate (13) is basically identical
to the one used for Theorem 3, with the following differences.

1) The decoding is now done in a single stage, in which the
destination looks for , , such that (53) is fulfilled
and

(69)

If there are no such indices, declare error . The error
event where an erroneous is found, or where more
than one are found is denoted by . Otherwise,
declare the received message to be , .

2) Error analysis: — are replaced by and , so
we have fewer error events and the achievable rate might
be larger. Note that as according to
Lemma 4.
As for : Consider the case where and

. There are corresponding
vectors , and the probability
that any of them is jointly typical, is upper-bounded by
(Lemma 3)

Thus, the rate is achievable if

where the second inequality is due to (59) and because
of the Markov chain . Notice
that for such that , which means

, we get full reconstruction
of , with no need for binning. In that case, the subsets

are not the minimum, and do not determine the
achievable rate. This is since

(70)
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APPENDIX V
PROOF OF THE OUTER BOUND OF THEOREM 2

Using Fano’s inequality, we get that reliable decoding at the
destination is possible only if

(71)

where as . Now we have

(72)

(73)

(74)

(75)

(76)

(77)

where (75) is since is independent of so
and (77) stems from the Markov chain .

Turning to the agents, we bound

(78)

(79)

(80)

(81)

(82)

when for any .
We further have

(83)

(84)

(85)

(86)

(87)

(88)

Next, following [15], define , ,
where is a random variable uniformly distributed over

. We have

(89)

(90)

(91)

(92)

where (90) follows from Lemma 1: it is known that and are
independent without the key ( is memoryless). We further
have

(93)

(94)

(95)

Define , so that by con-
sidering Lemma 1, and are independent with when
not conditioned on . The auxiliary variables can then be
represented as

(96)

(97)

where and .
This shows that the probability space is indeed (16). This is pos-
sible only because of the nomadic transmitter. In the case when

is known to the agents, the probability space no longer satis-
fies (16), so that the upper bound in Theorem 2 is not applicable
when the agents are cognizant of the codebook used.

A. Cardinality Bounds

In this subsection, we develop bounds on the cardinality of
the auxiliary variable through bounds on the variables
which fulfill the Markov chain (17). For that, we use the Support
Lemma (see, for example, [30, p. 310], and [20]). According to
this lemma, if there are functionals on a set
of probability distributions over the alphabet , and given any
probability measure on the Borel -algebra of , then
there exist elements and nonnegative reals

that sum to unity, such that for every

(98)

In order to use the lemma, we define a generic distribution
over , which fulfills (16). First

, write the following functionals as a function of .
Notice that the cardinalities of are intact:

We remark that is given by (16), and is such
that and .
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Now applying the Support Lemma, we find that there exists
a random variable such that

(99)

(100)

(101)

are fulfilled and has cardinality bounded by

(102)

This is since (99) is one equation, (100) is , and (101) is
equations. This is also the cardinality bound on ,

namely

(103)

APPENDIX VI
PROOF OF THE UPPER BOUND IN COROLLARY 2

We have

(104)

(105)

(106)

(107)

(108)

where (106) and (108) are since is a deterministic function
of . We use Fano’s inequality (77), and find that

(109)
Next, from (82) we know that

and

Again using the time-sharing random variable here, we get
the desired upper bound (19).

APPENDIX VII
USING COMMON MESSAGE WITH TWO AGENTS

The use of a common message which is decoded by several
agents (as outlined by Marton [29]) is exemplified here for two
users . The achievable rate in this case is

(110)

where we get (111) at the bottom of the page, and where

(112)

Proof Outline: The proof involves generating three vec-
tors , , i.i.d., where is distributed according to

and and are distributed according
to and ,
respectively. The vector is decoded at both agents using
typicality tests. The random variables , may be depen-
dent given , so for the transmitted signal to be typical for
sufficiently large , these vectors should be further quantized.
This way, the agents receive both common and individual
messages. After decoding the messages, the agents compress
the received signals , conditioned on the decoded ,

, . Then they forward the decoded messages and the
compression information to the destination. An extension to
more than agents can be done using similar steps.

APPENDIX VIII
SOLVING THE LINEAR PROGRAMMING

PRESENTED IN REMARK 3

Define the raw vector . We have the following
problem:

(113)

where the superscript denotes transposition, and we have the
constraints

(114)

(111)
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where is a column vector of zeros, and where

...

...

(115)

and

...

...

(116)

The bound (114) includes the constraints on in (21). The
matrix is

. . .

. . .

...

. . .

...

(117)

Since there is at least one feasible , namely, , for all
, the maximization (113) is equal to the solution of the

following dual problem:

(118)

such that

(119)

Now since

(120)

and

(121)

we get (23), where the constraints (24) and (25) stem from the
requirement that there must be at least one feasible .

APPENDIX IX
PROOF OF THEOREM 4

The proof of Theorem 4 is very similar to the proof of The-
orem 3 in Appendix III. In fact, both Theorems 3 and 4 are spe-
cial cases of a generalization of Theorem 3 which includes the
transmission of common messages to the agents, so that some
subset of them can decode the same information ([29, The-
orem 2]). Such a generalization appears in Appendix VII for

.
In this appendix, we prove the achievable rate for the case

when the channels are known to be degraded. In this case, it is
beneficial to use many common messages, which enables sav-
ings of link bandwidth. We use superposition coding for the
messages to the agents, since it is known to be optimal for that
case (degraded broadcast channel [28]).

Since the proof is very similar to the one provided in Ap-
pendix III, we outline only the differences.

1) Appendix III-A, item 1): for the broadcast transmission,
we now repeat the following step for :

• For every (total of ) generated in the
previous step, generate vectors according to

.
• Label the resulting vectors by , where

.
2) Appendix III-A, item 2): we now generate

vectors according to (instead
of in Appendix III). So here, the
mapping of to depends on (not just on ) and is

denoted by , and we have different
mappings. Notice that is in one-to-one correspondence
with , so that we can write .

3) Appendix III-B: the transmitter sends to the channel.
Here there is no need to find typical before transmitting
to the channel.

4) Appendix III-C-I: now the agent finds such that

(122)

instead of . The typical set is defined in the usual
way.

5) Appendix III-C item 2: for the compression, now the agent
looks for such that

(123)

where is defined in the usual way.
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6) Appendix III-D: Considering the change of labeling, the
destination here performs the same steps as the destination
in Appendix III.

7) Appendix III-E: there are several differences in the defini-
tions and the calculation of the probability of some error
events:
• is no longer declared by the transmitter.
• — : Consider the typicality of instead of

.
• — are changed due to the dependence of in

instead of . This means a change in the variables
which are included in the definition of the typical set.

• Error probabilities for , , : As in Appendix III,
the probabilities of these events are bounded by due
to Lemmas 2 and 4 (generalized Markov Lemma, [31,
Lemma 3.4]).

• Error probabilities for , : According to Lemma 3,
the probability of another typical vector is
upper-bounded by . Since there are

such vectors, the error probability can
be made arbitrarily small if

(124)

This condition is fulfilled if

(125)

• Error probability for event : repeating what was done
in Appendix III and considering that was generated
according to and not , the proba-
bility of is as small as desired as long as

(126)

8) Unlike Appendix III-F, which tries to bound the cardi-
nality of the auxiliary variables, we can now use the Sup-
port Lemma ([30, p. 310]), as in [20], to limit the car-
dinalities of both and . We start by rewriting the
rate (22) and the constraints (29) as functionals of some
generic . This way, we get func-
tionals on , calculated from
from (22), from the first set of (29), and fi-
nally, for all ( such
sets) from the second set of (29). In addition, the marginal
of , with respect to must be equal to the given .
So in total, there are functionals on

, and as a result, the cardinality of can be limited by
. We can apply this technique repeatedly,

for the other , where . For any such , there
are functionals as a consequence of limiting
in (29) in addition to the marginal distributions with re-
spect to . Overall, the cardinality of can

be limited by

(127)

Next, we limit the cardinality of when provided with
the auxiliaries (which have bounded cardinalities). For
this, we can repeat what was done in subsection III-F with
the difference that here we look at . So we can
limit the cardinality of the auxiliary variables by

(128)

Considering these differences, the constrains on , and thus
also the cardinality limits, are the main differences between
Theorems 3 and 4. So by replacing (58) with (125), one gets
to (29).

APPENDIX X
PROOF OF THEOREM 5

First recall the definitions of the Gaussian channel
from Section VI-A.

A. Direct Part of Proof

Define the auxiliary random variables as

(129)

where are Gaussian i.i.d. random variables, independent
of (no connection with in the previous appendices), with
zero mean and variance

(130)

Equation (129) can also be written as

(131)

where , and therefore also

(132)

Define , so that can be expressed as

(133)

The terms can take any positive value, and then are
determined accordingly (this space is limited, as
seen in the next lines, by the available bandwidths). The last
equality can be used to explicitly express the maximum mutual
information (through maximal ratio combining) in terms of
between and some subset

(134)

(135)

(136)
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Now we can apply Corollary 1 and then prove the direct part
of Theorem 5. Although Corollary 1 considered only discrete
channels, and the Gaussian channel is not discrete, the exten-
sion is based on standard techniques also used by Oohama [16],
who showed the validity of a generalized Markov Lemma for
continuous random variables.

B. Upper Bound for Gaussian

The upper bound is based on (109), rather than on the single-
letter expression from Corollary 2, which is too loose for this
case. We redefine

(137)

and then use the following lemma, which is due to Oohama [16]
to upper-bound .

Lemma 5:

–
(138)

Lemma 5 together with (109) and (137) completes the proof.

Next we give also the proof of Lemma 5, from [16], which is
based on the entropy power inequality.

Proof: Define the minimum mean-square error estimator
of from by . Then we have

(139)

where is independent with the estimator or with
and is distributed i.i.d. Gaussian with zero mean and variance

. We can use the entropy power
inequality

(140)

Define and notice that
, since is the best estimator of out of and we

have the Markov chain: . Then we can rewrite
(140) as

(141)

Next, we can apply the entropy power inequality again, to lower-
bound

(142)

So overall we have

(143)

or alternatively

(144)
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