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This volume deals with the theory of Markov Decision Processes (MDPs) and
their applications. Each chapter was written by a leading expert in the re-
spective area. The papers cover major research areas and methodologies, and
discuss open questions and future research directions. The papers can be read
independently, with the basic notation and concepts of Section 1.2. Most chap-
ters should be accessible by graduate or advanced undergraduate students in
fields of operations research, electrical engineering, and computer science.

1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES

The theory of Markov Decision Processes—also known under several other
names including sequential stochastic optimization, discrete-time stochastic
control, and stochastic dynamic programming—studies sequential optimization
of discrete time stochastic systems. The basic object is a discrete-time stochas-
tic system whose transition mechanism can be controlled over time. Each
control policy defines the stochastic process and values of objective functions
associated with this process. The goal is to select a “good” control policy.

In real life, decisions that humans and computers make on all levels usually
have two types of impacts: (i) they cost or save time, money, or other resources,
or they bring revenues, as well as (ii) they have an impact on the future,
by influencing the dynamics. In many situations, decisions with the largest
immediate profit may not be good in view of future events. MDPs model this
paradigm and provide results on the structure and existence of good policies
and on methods for their calculation.

MDPs have attracted the attention of many researchers because they are
important both from the practical and the intellectual points of view. MDPs
provide tools for the solution of important real-life problems. In particular,
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many business and engineering applications use MDP models. Analysis of
various problems arising in MDPs leads to a large variety of interesting math-
ematical and computational problems. Accordingly, this volume is split into
two major categories: theory (Parts I and II) and applications (Part IIT).

The concept of dynamic programming, which is very important for MDPs,
was systematically studied by Bellman in many papers and in the book [6]. This
concept is natural and several authors used dynamic programming methods in
1940s—early 1950s or probably earlier to approach various problems. Examples
include the work on statistical sequential analysis by Wald [50] and by Arrow,
Blackwell, and Girshick[3], the work by Arrow, Harris, and Marschack [4] and
by Dvoretsky, Kiefer, and Wolfowitz [21] on inventory control, and the work
by Bellman and Blackwell [7] and Bellman and LaSalle [8] on games.

Shapley’s [47] seminal work on stochastic games introduced important def-
initions and results. The relationship between MDPs and stochastic games is
similar to the relationship between a usual game and an optimization prob-
lem: a stochastic game with one player is an MDP. Therefore, many experts
consider this Shapley’s paper as the first study of MDPs. In addition to the
mentioned individuals, Puterman [43, p. 16] refers to Isaacs, Karlin, Massé, and
Robbins as major contributors to early breaking work in 1940s and early 50s.
The book by Dubins and Savage [20] on gambling theory played an important
role. Howard [33] introduced policy iteration algorithms and that book started
the systematic study of MDPs. Several seminal contributions were done by
Blackwell, Denardo, Derman, Ross, and Veinott in the 1960s (references to
their work, and to work of other individuals mentioned by names in this para-
graph, can be found in Puterman [43]). Also in the 1960s, three distinguished
probabilitists, Dynkin, Krylov, and Shiryaev [48], worked on MDPs in Russia.
Hinderer’s book [32] was an important contribution. Over the following thirty
years, there were many fundamental and exciting developments in MDPs and
their applications. Most are either described in this volume or associated with
the names of its contributors.

Since their introduction in the 1950s, MDPs have become an important
research area with a rich and deep theory and various applications. In fact,
MDPs became basic tools for the analysis of many problems in operations
research, electrical engineering and computer science. Algorithms for inventory
control and telecommunications protocols are two examples of such engineering
applications.

During the first thirty years of the MDP theory, roughly speaking until
early 1980s, most of the research was centered around optimality equations
and methods for their solution, namely policy and value iteration. Value it-
eration algorithms and their various versions are also known under the names
of successive approximation, backward induction, and dynamic programming.
The dynamic programming principle in its classical form can be applied only
to problems with an appropriate single objective function. For example, the
dynamic programming algorithm is applicable to optimization of an expected
total reward over a finite time horizon. It can usually be applied to single-
criterion infinite horizon problems with a total expected reward or average
reward per unit time. For some other objective functions, or when the goal



INTRODUCTION 3

is to optimize one objective function under constraints on other criteria, the
problem usually cannot be solved directly by dynamic programming; for an
indirect approach see Piunovskiy and Mao [41]. Convex analytic methods, in-
cluding linear and convex programming in finite and infinite dimensional spaces
are usually more natural in these situations. There are many exciting recent
developments, especially in applications, in which the dynamic programming
principle plays an important role (see e.g. [12] and chapter 14, by Van Roy,
in this volume). However, most of the research over the last two decades has
been focused on difficult problems to which the dynamic programming prin-
ciple cannot be applied in its direct form. In particular, a significant part of
current research deals with multiple criteria.

1.2 DEFINITIONS AND NOTATIONS

Let N={0,1,...} and let R" be an n-dimensional Euclidean space, R = R'.
A Markov Decision Process (MDP) is defined through the following objects:

a state space X;

an action space A,

sets A(z) of available actions at states z € X;

transition probabilities, denoted by p(Y|z, a);

reward functions r(z, a) denoting the one-step reward using action a in state
x.

The above objects have the following meaning. There is a stochastic system
with a state space X. When the system is at state ¢ € X, a decision-maker
selects an action a from the set of actions A(z) available at state z. After an
action a is selected, the system moves to the next state according to the prob-
ability distribution p(-|z,a) and the decision-maker collects a one-step reward
r(z,a). The selection of an action a may depend on the current state of the
system, the current time, and the available information about the history of
the system. At each step, the decision maker may select a particular action or,
in a more general way, a probability distribution on the set of available actions
A(z). Decisions of the first type are called nonrandomized and decisions of the
second type are called randomized.

Discrete MDPs. An MDP is called finite if the state and action sets are
finite. We say that a set is discrete if it is finite or countable. An MDP is
called discrete if the state and action sets are discrete.

A significant part of research and applications related to MDPs deals with
discrete MDPs. For discrete MDPs, we do not need additional measurability
assumptions on the major objects introduced above. Readers who are not
familiar with measure theory can still read the papers of this volume, since
most of the papers deal with discrete MDPs: for the other papers, the results
may be restricted to discrete state and action sets.

For a discrete state space X we denote the transition probabilities by p(y|z, a)
or pgy(a), and use (in addition to z, y) also the letters 4, j, k etc. to denote states.
Unless mentioned otherwise, we always assume that p(X|z,a) = 1.

The time parameter is ¢, s orn € N and a trajectory is a sequence ToaoZ1 a1 - . -
The set of all trajectories is Hy, = (X x A)®. A trajectory of length n
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is called a history, and denoted by h, = zpag...Tp—1ap-1T,- Let H, =
X x (A x X)™ be the space of histories up to epoch n € N. A nonrandom-
ized policy ¢ is a sequence of mappings ¢,,, n € N, from H, to A such that
On(Toao ... Tp_1an_12,) € A(z,). If for each n this mapping depends only
on z,, then the policy ¢ is called Markov. In other words, a Markov policy
¢ is defined by mappings ¢, : X — A such that ¢,(z) € A(z) for all z € X,
n =20,1,.... A Markov policy ¢ is called stationary if the ¢, do not depend
on n. A stationary policy is therefore defined by a single mapping ¢ : X — A
such that ¢(z) € A(z) for all 2 € X. We denote by II, ITM | and IT¥ the sets of
all nonrandomized, Markov, and stationary policies respectively. We observe
that I1° C IIM C II.

As mentioned above, by selecting actions randomly, it is possible to expand
the set of policies. A randomized policy 7 is a sequence of transition probabili-
ties 7y, (ap|hy,) from H,, to A, n € N, such that 7, (A(x,,)|zoao . . . Tp_1an—1Z,)=
1. A policy 7 is called randomized Markov if 7, (an|zoao ... Tn_10n_12,) =
Tn(ap|Tyn). If mp(-|z) = mp(-|z) for all m,n € N then the randomized Markov
policy 7 is called randomized stationary. A randomized stationary policy = is
thus defined by a transition probability 7 from X to A such that 7(A(z)|z) =1
for all z € X. We denote by II%, ITI®M 159 the sets of all randomized, random-
ized Markov, and randomized stationary policies respectively. We have that
RS C MAM C TR, and in addition IT9 C II#S, IIM C IIRM  and IT C ITE.

Note that, while we try to be consistent with the above definitions, there is no
standard terminology for policies: in particular, there is no general agreement
as to whether “stationary” implies nonrandomized or, more generally, whether
the “default” should be randomized (the more general case) or nonrandomized.
The following additional terms are sometimes also used:

pure policy means nonrandomized;

deterministic policy means (nonrandomized) stationary.

The stochastic process evolves as follows. If at time n the process is in state
x, having followed the history h,,, then an action is chosen (perhaps randomly)
according to the policy 7. If action a ensued, then at time n + 1 the process
will be in the state y with probability p(y|z,a).

Given an initial state  and a policy 7, the “evolution rule” described above
defines all finite-dimensional distributions g, ag, . -. , Zn, n € N. Kolmogorov’s
extension theorem guarantees that any initial state z and any policy 7 define
a stochastic sequence zoapzia; ... . We denote by IP7 and IE7 respectively the
probabilities and expectations related to this stochastic sequence; P.{zo =
z} =1

Any stationary policy ¢ defines for any initial distribution a homogeneous
Markov chain with transition probabilities p,(¢) = p(y|z, ¢(z)) on the state
space X. A randomized stationary policy m also defines for each initial distri-
bution a homogeneous Markov chain with the state space X. In the latter case,
the transition probabilities are pyy(7) = 3_,ca,) T(@)p(y|z,a). We denote by
P(m) the transition matrix with elements {p;,(7)}. The limiting matrix

N—-1
Qr) = lim ~ 3 P(g) (1.1)

N—oco N
n—
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always exists and, when X is finite, this matrix is stochastic; Chung [18, Section
1.6]. Let f be a terminal reward function and § be a discount factor. We denote
by vn(z, 7,8, f) the expected total reward over the first n steps, n € N:

N—1
UN(xyﬂaﬁvf) = E;r Z ﬁnT‘(iL‘n,an) + ﬁNf(mN) ) (12)

n=0

whenever this expectation is well-defined.

If 3 € [0, 1] then we deal with expected total discounted reward. If 8 = 1, we
deal with the expected total undiscounted reward or simply the total reward.
For infinite-horizon problems with N = oo, we do not write N explicitly and
the expected total rewards do not depend on the terminal reward f. Thus, we
define by v(z,, 3) the expected total rewards over the infinite horizon. If the
discount factor § € [0,1] is fixed, we usually write v(z, ) instead of v(z, 7, 3).

The expected total reward over an infinite horizon is

U(:L’,ﬂ') :’U(l‘,ﬂ,ﬁ) :'Uoo(maﬂ';ﬁ)o)' (13)

If the reward function r is bounded either from above or from below, the
expected total rewards over the infinite horizon are well-defined when 3 € [0, 1].
Additional conditions are required for the expected total reward v(z,w,1) to
be well-defined. Since this sum may diverge when the discount factor is 1, it is
natural to consider the expected reward per unit time

1
w(z, ) zlinrgigf NUN(x,n,l,O). (1.4)

If a performance measure g(z, ) is defined for all policies 7, we denote

G(z) = sup g(z,n). (1.5)
T€ellR

In terms of the performance measures defined above, this yields the values

Vn(z, B, f) & sul%o on(z, 7,8, f), (1.6)
rellR
V(e)=V(z,0) = sup v(z,m, B), (1.7)
W(z) 2 sup w(z, ). (1.8)
mellR

For € > 0, a policy 7 is called e-optimal for criterion g if g(z,7) > G(z) — €
for all € X. A 0-optimal policy is called optimal.

We introduce the important notions of optimality operators and optimal-
ity equations. The conditions when optimality operators are well-defined and
optimality equations hold are considered in appropriate chapters.

For a function g on X, we consider the reward operators:

Peg(x) 2 Elg(z1) | o = z,a0 = a], (1.9)
T3g(x) = r(z,a) + BP"g(x) (1.10)
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and the optimality operators:

Pg(z) 2 sup P%(x), (1.11)
aEA(z)

Tsg(x) = sup Tgg(x). (1.12)
aEA(z)

The finite horizon Optimality Equation is
VN+1(1‘) :T[;VN(I‘), reX, N=0,1,..., (1.13)

with Vp(z) = f(x) for all z € X.
The discounted reward Optimality Equation is

V(z) =TV (z) z € X (1.14)

An action a € A(z) is called conserving at state z for the (V + 1)-step
problem if T¢Vy(z) = T3Vn(x). An action a € A(z) is called conserving at
state z for the total discounted reward if T3V (z) = TV (z).

When 8 =1 we denote T* = T and T = T;. In particular,

V(z) =TV (z), z €X, (1.15)

is the Optimality Equation for expected total undiscounted rewards.

For total reward criteria, value functions usually satisfy the optimality equa-
tion. In addition, the sets of conserving n-step actions, n =1,... , N + 1 form
the sets of optimal actions for (IV + 1)-step problems. Under some additional
conditions, the sets of conserving actions form the sets of optimal actions for
infinite horizon problems. We shall consider these results in appropriate chap-
ters.

The average reward Optimality Equations are

W(z) = PW(z), z €X, (1.16)
W(z) + h(z) = sup T°h(x), z € X, (1.17)
ach (z)
where
A (z) ={a € Alz) : P°W(z) = PW(z)}, zeX (1.18)

Equation (1.16) is called the First Optimality Equation and equation (1.17) is
called the Second Optimality Equation. We remark that W has a meaning of an
optimal average reward per unit time and /i has a meaning of a terminal reward.
Note that if W (z) = W, a constant, then the First Optimality Equation holds
and A'(r) = A(z). In this case, the Second Optimality Equations transforms
into

W + h(z) = Th(x), z €X, (1.19)

which is often referred to simply as the Optimality Equation for average re-
wards.
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We allow for the starting point x to be defined by an initial probability
distribution u. In this case, we keep the above notation and definitions but
we replace the initial state  with the initial distribution u. For example, we
use Pj, E], v(p,m), V(n), w(p,n), and W(n). We remark that, generally
speaking, optimality and e-optimality with respect to all initial distributions
are stronger notions than the optimality and e-optimality with respect to all
initial states. However, in many natural cases these definitions are equivalent.
For example, this is true for total reward criteria.

A more general problem arises when there are multiple objectives. Suppose
there are (K + 1) reward functions r¢(z,a), k = 0,..., K. For finite horizon
problems, terminal rewards may also depend on k. In this case, we index by
k = 0,...,K all functions that describe rewards. For example, we use the
notation wg (z, ), fi(z), and Wi (z).

For problems with multiple criteria, it is usually natural to fix an initial state
z. It is also possible to fix an initial distribution p, with our convention that
all definitions remain the same, but we write p instead of x. So, for simplicity,
we define optimal policies when the initial state = (not a distribution) is fixed.

If the performance of a policy 7 is evaluated by (K + 1) criteria gi(x, 7) then
one goal may be to optimize criterion gy subject to constraints on g1,... ,gx.
Let Ck, k =1,..., K, be given numbers. We say that a policy 7 is feasible if

gk(m,w)ZCk, k‘:].,...,K. (120)

A policy 7 is called optimal for a constrained optimization problem if it is
feasible and

go(z,m) > go(x,0) for any feasible policy o. (1.21)

Nondiscrete MDPs: general constructions. When a state space X or
an action space A are is not discrete, the natural assumption is that they
are measurable spaces endowed with o-fields X' and A respectively. When
X or A are discrete, the corresponding o-field is the set of all subsets of the
corresponding set. It is also natural to assume that the sets A(z) € A of feasible
actions are measurable, for all states x € X. Of course, this assumption always
holds when A is discrete.

Uunless we specify otherwise, we always consider the Borel o-field B(IR) on
RR: this is the minimal o field containing all intervals. For non-discrete MDPs,
we also assume that r is a measurable function on (X x A, X' x A) and p(Y|z, a)
is a transition probability from (X x A, X x A) to (X, X). Recall that given
two measurable spaces (F1,&1) and (Es, &), we call p a transition probability
from E; to E, if the following two conditions hold: (i) p(:|e2) is a probability
measure on (Ep, &) for any ey € E», and (ii) the function p(B|-) is measurable
on E5 for any B € &£;.

In order to define policies in the general situation, we consider o-fields
Hp = X % (AxX)" on the sets of histories H,, = Xx (Ax X)". Nonrandomized
and randomized strategies are defined in a way similar to discrete MDPs, with
standard and natural additional measurability conditions: (a) nonrandomized
policies 7 are defined by mappings 7,, which are measurable on (H,,, H,), and
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(b) stationary and Markov policies are defined by mappings which are mea-
surable on X. Similarly, for randomized policies, 7, are transition probabilities
from (H,,Hy) to (A, A) and, for randomized Markov and stationary policies,
they are transition probabilities from (X, X) to (A, A).

Let Hoo = (X x A)*. Ionescu Tulcea theorem, Neveu [39, Section 5.1],
implies that any initial probability measure g on X and any policy 7 define a
unique probability measure on (Hu, Heo)- In particular, p defines the initial
distribution, 7, define transition probabilities from H,, to H, x A, and p define
transition probabilities from H, x A to Hp41, n = 0,1,... . We denote this
measure by P}. Sometimes this measure is called a “strategic” measure. We
denote by IEj; expectations with respect to this measure. If yu(x) =1 for some
r € X, we write P} and IE; instead of respectively IP} and ;. We also
notice that Ionescu Tulcea theorem implies that IP7 is a transition probability
from (X, X) to (He, Hoo) and this implies that the functions v, (z,w, 8, f) and
v(z,, 3) are measurable in z for any policy = (the terminal function f is also
assumed to be measurable).

We remark that we use Ionescu Tulcea theorem instead of the better known
Kolmogorov’s extension theorem primarily because the latter one requires that
the process has values in a locally compact metric spaces. For MDPs this means
that the state and action spaces are required to be locally compact metric
spaces. Since Ionesco Tulcea theorem holds for arbitrary measurable spaces,
it is more convenient to apply it to the construction of strategic measures in
MDPs, rather than Kolmogorov’s extension theorem.

At the intuitive level, a randomized decision at any state is a probability
measure on the set of nonrandomized decisions. In addition, in order to avoid
a trivial situation, an MDP has to have at least one policy. In order to guar-
antee these two intuitive properties, we always assume the following two mild
conditions: (i) all one-point sets {a} are elements of A, a € A; (ii) there is
at least one measurable function ¢ from X to A such that ¢(z) € A(z) for
all z € X. The first assumption always holds for models with discrete action
spaces. The second assumption always holds for models with discrete state
spaces.

For a measure v and a measurable function f we use the equivalent notations

v(f) & / f(a) dv(a) & f(v). (1.22)

If we denote 7, () = 7(+|z) for a randomized stationary policy m then, similarly
to discrete MDPs, this policy defines a Markov chain with transition proba-
bilities p(dy|z, 7). If X is discrete, this chain has transition matrix P(7) with
elements pgy (73).

Thus, an MDP, strategies, and objective functions can be defined under
very general conditions. However, very little can be done if one tries to analyze
MDPs with arbitrary measurable state spaces. The first complication is that
the value functions V' may not be measurable even for one-step models. The
second complication is that an important step in the analysis of MDPs is to
construct an equivalent randomized Markov policy for an arbitrary policy; see
Derman-Strauch’s theorem which is the first theorem in chapter 6. This can be
done by constructing transition probabilities IP7 (da,|z,) which may not exist



INTRODUCTION 9

for general state and action spaces. These two complications do not exist if the
state space is countable. These two complications can be resolved if X and A
are Borel spaces. In addition, at the current state of knowledge, there is no clear
need to consider MDPs with arbitrary measurable state spaces because there
is no clear motivation or practical need for such objects. For example, MDPs
with Borel state spaces have applications in statistics, control of models with
incomplete information, and inventory management. However we are not aware
of possible applications of MDPs with state spaces having higher cardinality
than continuum.

Discrete state MDPs. In this case, the state space X is discrete and the
action space is a measurable space (A, .A) such that all one-point sets are mea-
surable. From the definitions for general MDPs we have that the sets of feasible
actions A(z) are also elements of A, reward functions r(z,a) and transition
probabilities p(y|z,a) are measurable in a. All constructions described for dis-
crete and general MDPs go through with X being the o-field of all subsets of
X.

Classical Borel MDPs. Though we do not follow any particular text, all
definitions, constructions, and statements, related to Borel spaces we mention
in this chapter can be found in Bertsekas and Shreve [11, Chapter 7]; see also
Dynkin and Yushkevich [22] and Kechris [35].

Two measurable spaces (E1,&1) and (E2, &) are called isomorphic if there
is a one-to-one measurable mapping f of (Fi,&;) onto (Es, &) such that f—!
is measurable. A Polish space is a complete separable metric space. Unless we
specify otherwise, we always consider a Borel o-field B(EF) on a metric space
E; B(E) is the minimal o-field containing all open subsets of E. A measurable
space (E,&) is called Borel if it is isomorphic to a Polish space. All Borel
spaces are either finite or countable or continuum, and two Borel spaces with
the same cardinality are isomorphic. Therefore, uncountable Borel spaces are
continuum. They are also isomorphic to each other and to the sets (R, B(IR))
and ([0,1],B(]0,1])). Any measurable subset E' of a Polish space forms a Borel
space endowed with the Borel o-field which is the intersection of E’ with Borel
subsets of the original space.

The assumptions for Borel MDPs are:

(i) X and A are Borel spaces and X and A are the corresponding Borel
o-fields;

(ii) the graph
Gr(A) = {(z,a)] z € X,a € Alz)}
is a measurable subset of (X x A, X' x A) and there exists at least one
measurable mapping ¢ of X into A such that ¢(z) € A(z) for all z € A(x);

(iii) the reward functions r(x, a) are measurable on X x A and the transition
probabilities p(:|z,a) are transition probabilities from X x A to X.

Conditions (i) and (iii) are similar to the corresponding assumptions for
general models. The measurability of the graph in (ii) implies that the sets
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A(z) are measurable. The existence of a measurable mapping (often called a
“selector”) implies that A(z) # 0 for all z. We remark that it is possible that
the graph is Borel and all images are non-empty but the graph does not contain
a Borel mapping. Therefore, the second assumption in (ii) is essential for the
existence of at least one policy.

As was discussed above, the first real complication is that even for one-step
problems, the values V' may not be Borel measurable functions on X. However,
conditions (i)-(iii) imply that these functions are universally measurable for
finite and infinite-horizon problems and therefore optimality operators can be
defined.

Here we explain the concepts of universally measurable sets and functions.
Let (E, ) be a Borel space. For a given probability measure p on (E, £), define
the o-field &, as the completion of £ with respect to the measure p. That is, &,
is the minimal o-field that contains £ and all subsets F' of E such that F C F’
for some F' € £, and p(F') = 0. For example, if (E, &) = ([0,1], B([0,1])) then
we can consider the Lebesgue measure m defined by m([a, b]) = |b—a|. Then &,,
is the so-called Lebesgue o-field. Let P(E) be the set of all probability measures
on E. Then the intersection of all o-fields £,, U(E) = Ngpep(p)1Ep, is a o-field
and it is called the universal o-field. This o-field is also called the o-field of
universally measurable sets and its elements are called universally measurable
subsets of E. A universally measurable function on F is a measurable mapping
from (E,U(E)) to (R,B(IR)) Of course, any Borel set and any Borel function
are universally measurable.

Thus, optimality equations can be defined for Borel MDPs. However, there
is another complication for Borel models, which is annoying mostly for aesthetic
reasons: e-optimal policies may not exist for positive €, even for one-step Borel
MDPs with bounded reward functions. The example constructed by David
Blackwell is based on the observation that the value function is universally
measurable but it may not be Borel. However, for any policy, the expected
one-step reward is a Borel function of the initial step. Moreover, it is possible
to show that for the Borel MDP described above, for any initial measure p
on X, and for any € > 0 there exists a policy which is p-a.s. e-optimal. Such
policies are called (p, €)-optimal.

Universally measurable Borel MDPs. If we expand the set of policies
and consider universally measurable policies, e-optimal policies exist and the
concept of (p,e€) optimality is not needed. However, if we expand the set of
policies, the results and their proofs hold for assumptions which are broader
than (ii) and (iii).

Before we give formal definitions, we explain the concept of analytic sets.
Let f be a measurable mapping of a Borel space (Ei,&1) into a Borel space
(E,€). If F € € then by definition f~(F) € & . However, it is possible that
f(E) ¢ & for some Borel set F' € . A subset F' of a Borel space (E,€) is
called analytic if there exists a Borel space (F1,&;) and a measurable mapping
of Ey to E such that F = f(F}) for some F; € &;.

Since one can select £y = E and f(e) = e, every Borel set is analytic. It
is also possible to show that any analytic set is universally measurable. It is
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also possible to consider the o-field of analytically measurable sets which is the
smallest o-field containing all analytic subsets of an analytic set. We remark
that Borel and universally measurable o-fields consist respectively of Borel and
universally measurable sets. The situation is different for analytic sets and
o-fields of analytically measurable sets. The complement of an analytic set
may not be analytic. Therefore, the o-field of analytically measurable sets
contains sets other than analytic. We remark that there are many equivalent
definitions of analytic sets. For example, for Polish spaces they can be defined
as continuous images or even as projections of Borel sets.

If (E,€) and (Eq, &) are two Borel spaces (Borel sets with Borel o-fields)
then the mapping f : E — E; is called universally (analytically) measurable if
f~Y(B) belongs to the o-field of universally (analytically) measurable subsets
of E for all B in &;.

The assumptions for universally measurable MDPs are:

(a) The state and action spaces (X, X) and (A, A) are Borel spaces;
(b) Gr(A) is an analytic subset of X x A and all sets A(z) are not empty;

(¢) The reward function 7(z,a) is an upper analytic function on X x A, that
is, for any real number ¢, the set {r > ¢} is an analytic subset of X x A;

(d) The transition function p(:|z,a) is a transition probability from (X x
AX x A) to (X, X).

Assumptions (a) and (d) coincide with similar assumptions for Borel MDPs.
According to the Jankov-von Neumann theorem, assumption (b) implies that
there is an analytically measurable mapping ¢ from X to A such that ¢(x) €
A(z) for all z € X. Of course, any analytically measurable mapping is univer-
sally measurable. Assumption (c) is more general than the assumption that
r(z,a) is Borel. This assumption on a reward function is considered in the
literature mainly because the optimality operator preserves this property.

The last important difference between Borel and universally measurable
MDPs is that policies are universally measurable for the latter ones. Non-
randomized policies are universally measurable mappings ¢,, of H,, to A such
that ¢(hy,) € A(z,,) for any h,, = zoay, ...z, € H,. Markov (and stationary)
policies are defined by universally measurable mappings ¢,, of X to A such that
on(z) € A(z) (6(x) € A(z)) for all z € X. Randomized, randomized Markov,
and randomized stationary policies are transition probabilities defined in the
same way as for general models but the sets H,, and X are endowed with o-
fields of universally measurable subsets that play the role of o-field &; in the
definition of transition probabilities given above. Condition (b) implies that
there exists at least one policy.

There are other versions of universally measurable MDPs. For example, one
can consider analytically measurable policies; see Bertsekas and Shreve [11] for
details. The important feature is that all definitions and notations, given for
discrete MDPs, hold also for universally measurable MDPs.
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1.3 THE SCOPE OF THIS VOLUME

The first two parts of this book deal with theoretical questions and Part III
addresses some applications of MDPs. Part I deals with models with finite
state and action spaces, and Part II deals with infinite state problems.

The paper by Lodewijk Kallenberg surveys the classical theory for basic cri-
teria including total discounted expected rewards, average expected rewards
per unit time, and more sensitive criteria including bias, Blackwell, and n-
discount, optimality criteria. The paper by Mark Lewis and Martin Puterman
focuses on bias optimality. In real life, parameters of the models may be mea-
sured with finite accuracy. An important question is what happens in the case
of, say a linear perturbation when the transition probabilities p(y|z, a) are re-
placed with transition probabilities p(y|z, a) +ed(y|z, a), where € > 0 is a small
parameter. The survey by Konstantin Avrachenkov, Jerzy Filar, and Moshe
Haviv describes research and applications for a nontrivial case of singular per-
turbation when the above transformation changes the ergodic structure of the
system. One important application is an approach to the classical Hamiltonian
Cycle and Traveling Salesman Problems via MDPs introduced by Filar and
Krass [28].

Part IT covers the following major objective criteria for infinite state models:
expected total rewards (Eugene Feinberg), average rewards/costs per unit time
(Linn Sennott, Armand Makowski and Adam Shwartz, Sean Meyn, and signif-
icant parts of chapters written by Vivek Borkar and by Onésimo Hernandez-
Lerma and Jean Lasserre), Blackwell optimality (Arie Hordijk and Alexander
Yushkevich), and linear combinations of various criteria (Eugene Feinberg and
Adam Shwartz). The chapter written by Vivek Borkar concentrates on convex
analytic methods and the chapter written by Onésimo Herndndez-Lerma and
Jean Lasserre describes the infinite dimensional linear programming approach
which is one of the major developments of these methods.

Gambling theory, introduced by Dubins and Savage [20], is a close relative
of MDPs. The chapter written by Lester Dubins, Ashok Maitra, and William
Sudderth, the major contributors to gambling theory over the last three decades
(see Maitra and Sudderth [38] for references and many beautiful results on
gambling and games), establishes some links between gambling and MDPs.
Though gambling theory and MDPs look like close fields, as far as we know,
this chapter is only the third major paper that links MDPs and gambling. The
other two publications are by Blackwell [15] and Schél [44].

A significant part of this volume deals with average reward MDPs. This cri-
terion is very important for applications. In addition, many interesting mathe-
matical questions arise for average reward problems. A major research direction
over the last fifteen years was to find ergodicity and other special conditions
that hold for broad classes of applications and that ensure the existence of sta-
tionary optimal policies. The papers of this volume and many recent publica-
tions, including Sennott’s and Herndndez-Lerma and Lasserre’s books [45, 30],
demonstrate significant progress in this direction. As we mentioned, these re-
sults usually require some ergodicity or other structural assumptions which
could be difficult to verify. An interesting development is a minimal pair ap-
proach, in which the controller selects an initial state in addition to a policy.
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This approach is described in chapter 12 by Herndndez-Lerma and Lasserre.
Theorem 3 in that chapter is a beautiful result that states the existence of
optimal policies for the minimal pair approach without any explicit ergodicity
or other structural conditions; see also [30] and references therein.

If there are no additional structural assumptions, stationary optimal policies
may not exist for the standard average reward criterion except in the case of
finite state and action sets; see chapter 2, or original contributions [14, 19].
Attempts to expand this result to broader state and action spaces, undertaken
between 1960 and 1980, identified significant difficulties. For finite state MDPs
with compact action sets and continuous transition probabilities and reward
functions, stationary optimal policies may not exist [5, 22, 7]. Stationary e-
optimal strategies exist for such models when continuity of reward functions is
relaxed to upper-semicontinuity; see [17, 24]. For arbitrary average rewards
finite state MDPs, there exist Markov e-optimal policies [25, 13], e-optimal
policies in several other classes of nonstationary policies [27], but stationary
e-optimal policies may not exist [22]. If the state space is infinite, it is possible
that there is no randomized Markov e-optimal policy which is e-optimal for two
given initial states [25]. It is also possible that the supremum of average rewards
over all randomized Markov policies is greater than the similar supremum over
all (nonrandomized) Markov policies [22]; see also [46, p.91] for a corresponding
example for stationary policies. If the initial state is fixed, in view of the
Derman-Strauch theorem (the first theorem in Feinberg, chapter 6), for any
€ > 0 there exists an e-optimal randomized Markov policy. If lim inf is replaced
with lim sup in (1.4), for any give initial state and for any e > 0 there exists an
e-optimal Markov policy [26].

Part IIT deals with some applications of MDPs. Benjamin van Roy, chap-
ter 14, describes recent trends and directions in neuro-dynamic programming,
one of the major relatively recent developments in artificial intelligence, also
known as reinforcement learning, which combines MDPs with approximation
and simulations techniques. Manfred Schil, chapter 15, considers MDP appli-
cations to finance. Eitan Altman, chapter 16, surveys MDP applications to
telecommunications. Bernard Lamond and Abdeslem Boukhtouta, chapter 17,
describe water reservoir applications.

This book covers most of the major directions in MDPs. It is probably
impossible to cover in detail all aspects of MDPs in one book. This book
focuses on discrete-time models with complete information. Models with in-
complete information [29], continuous-time models, in particular Semi-Markov
Decision Processes and Continuous Time MDPs (see [36, 10, 37, 45] and refer-
ences therein), and risk-sensitive criteria [51] are three important topics which
are out of the major scope of this book. Though this book does not have a
special chapter on problems with multiple criteria and constraints, it describes
the convex analytic approach which is the methodological foundation for study-
ing such problems. Several chapters mention particular results on constrained
MDPs and additional details can be found in books by Altman [1], Borkar [6],
Kallenberg [37], and Piunovskiy [44]. There are numerous areas of applications
of MDPs in addition to areas covered in this book. Some of them are summa-
rized in Puterman’s and Bertsekas’ books [37, 9, 10]. Here we just mention the
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fundamental importance of MDPs for economic dynamics methods [49], trans-
portation science [37], control of queues [36, 45], and production, inventory and
supply chain management [9, 31, 42, 2].

All papers of this volume have been refereed. We would like to thank our
colleagues for providing the editors and the authors with their comments and
suggestions. In addition to the authors of this volume, most of whom served
as referees, we would like to thank Igor Evstigneev, Emmanuel Fernandez-
Gaucher and, Michael Katehakis, Victor Pestien, Ulrich Rieder, and Chelsea
C. White, III for their valuable help. Dimitri P. Bertsekas and Matthew J.
Sobel provided us with valuable comments on some literature sources. We
are especially grateful to Martin L. Puterman who inspired us on this project.
Last, but definitely not least, we would like to thank Ms. Lesley Price, who
served as the de-facto technical editor of this volume. From re-typing a paper to
correcting author’s errors, Lesley withstood endless interchanges with authors
efficiently and patiently. Her contribution to both form and substance of this
volume is much appreciated.

Research of the first editor during his work on this volume was partially
supported by NSF grant DMI-9908258. Research of the second editor was
supported in part by the fund for promotion of research at the Technion, and
in part by the fund for promotion of sponsored research at the Technion.
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