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Chapter 1

Water reservoir applications
of Markov decision processes



Abstract

Decision problems in water resources management are usually stochastic, dy-
namic and multidimensional. Water inflows into reservoirs exhibit complex
behaviors, with high variability and often serial and spatial correlations, but
the statistical analysis of historical time series suggests the natural inflows
can be modeled adequately using a Markovian stochastic process. Moreover,
the transition equations of mass conservation for the reservoir storages are
akin to those found in inventory theory. Therefore, MDP models have been
used since the late forties for the planning and operation of reservoir sys-
tems. However, the “curse of dimensionality” has been a major obstacle to
the numerical solution of MDP models for systems with several reservoirs.
Also, the use of optimization models for the operation of multipurpose reser-
voir systems does not seem widespread. Instead, dam operators often rely
on operating rules obtained by simulation models. We feel many research
opportunities exist both in the enhancement of computational methods and
in the modeling of reservoir applications.



1.1 Introduction

Dams and reservoirs have long been used for storing surplus water during
rainy seasons to provide irrigation and drinking water during dry periods.
They prevent flooding during periods of thaw or unusually high rainfall.
They also serve to regulate flow and depth of water in lakes and rivers
for navigational purposes, and to move ships up and down locks as in the
Panama canal and the St-Lawrence seaway. Throughout the twentieth cen-
tury, hydroelectric production has become a major economic benefit of dams,
reservoirs and water resources.

The sequential nature of the reservoir management decisions, together
with the inherent randomness of natural water inflows, explains the frequent
modeling of reservoir management problems as Markov decision processes
(MDP), and their optimization by stochastic dynamic programming (SDP).
The first discussion of res%gv%i:ra management in this framework is usually
credited to Pierre Massé in 1946. Optimization results for the hydro-
electric production of a single reservoir were pu ﬁ}%%l a decade later, with
the numerical computation of an optimal policy an otr}&e:k%gﬂxtic struc-
ture of optimal policies for hydrothermal systems . ese results par-
alleled similar developments that occured in inventory theory at the same
epoch. There is an extensive literature on grﬁgglgglslk%g% gl?gg(o:(;s, Vfg{‘: geservoir
optimization. Surveys can be found in [20, 52, 53].

Nonetheless, large reservoir systems have been in operation for decades
before optimization models were developed. Reservoir operators have thus
relied on rule curves and other agreed upon operating rules, as well as
I!['[‘hei own &&Qgsgﬁem and experience in making reservoir release decisions

OUCKS :S1g . R . R
26]. While opfimization models are now often used in practice for plan-

ning purposes, their use i% lrevaeli—;qia ne ur&%ltiple—reservoir operation is not so

widespread. According to )

“The need for comprehensive negotiations and subsequent agree-
ments on how to operate a reservoir system seems to be a main
reason why most reservoir systems are still managed based on
fixed predefined rules. [ ... | Optimization models can help de-
fine these predefined rules, rules that satisfy various constraints
on system operation while minimizing future spills or maximiz-
ing energy production or minimizing expected future undesired
deviations from various water release, storage volume and /or en-
ergy production targets.”

The “optimization models” referred to in the above citation are usually



based on linear (LP) or nonlinear programming (NLP), with the random
variables of future inflows replaced by their most recent forecasts. These
(deterministic) models must be solved every period with updated forecasts
and their solutions provide an open loop control. By contrast, an optimal
policy of an MDP gives a closed loop control, or feedback solution, which is
more in the form of traditional operating rules.

On the other hand, for reservoir systems whose main purpose is hy-
droelectric gene{%trig%,etta}i(?tgﬁge&f: Ci%l%})toiglesa ufrom optimization models is
widespread. In [44,746], for instance, MDP models are presented for the
long term planning of the aggregated system, to obtain optimal policies for
mo 1£h1¥o¥n§1§9§1€ and storage targets. Then a hierarchy of deterministic mod-
els 'F[I%rarem for medium term (NLP) and short term scheduling (LP). A

comparison o (e)PtiI.Iéz%;lll\/[DP solutions with traditional rule curve solutions
was made in or the Brazilian system, where optimal MDP solutions

were shown to have the same reliability than rule curve solutions, but with
significantly increased profits.

Stochastic optimization models of hydroelectric production are usually
needed when the planning horizon has a length of one or several years, with
a time step of one month or longer. The long term scheduling of hydroelec-
tric production is mainly concerned with the larger (annual or multiannual)
reservoirs managed by a utility. Typical problems consider twenty or more
such reservoirs and are therefore multidimensional. In general, an opti-
mal decision rule for a given period would thus consist of twenty functions
of at least twenty variables, each function giving a release target for one
reservoir depending on the stored volumes at every reservoir in the system.
Such functions are obviously impossible to tabulate numerically (curse of
dimensionality). Hence research in this area has attempted to develop (1)
aggregation-disaggregation methods, (2) numeri(flagmgﬁ::)gcgﬁﬂ%gitoan and op-
timization methods, and (3) analytical solutions [20].

Research also addresses important modeling issues in statistical hydrol-
ogy (stochastic processes of natural inflows with adequate representation of
serial and spatial correlations) and energy economics (such as evaluating
marginal production costs in the context of deregulated markets).

The sequel is organized as follows. A brief review of the basic ressegé/:orirgc
management concepts and traditional operating policies, are given in §I.2.
survey of several géggisellslidescribing the stochastic processes of natural inflows
is presented in §h_.3_a%(fa dynamic prograrnm'S 2 0 ‘gﬂimization model for a
multireservoir hydroelectric system Slg C,giaven in §I.4. Different applications of
the MDP models are presented in §L.5. Asurvey of recent research on MDP

. . . . .r . . .
solution methods is presented in §I.6. Finally, §1.7 contains directions and




sec:rmcC

open problems, in water reservoir applications of MDP, and some concluding
remarks.

1.2 Reservoir management concepts

More than 5000 years ago the Egyptians measured fluctuations of the Nile
river and built dams and other hydraulic structures to divert water to agri-
cultural fields. Since then, practical water knowledge has proliferated among
dam operators, farmers and other users. But the concept of a water cycle
(hydrological cycle) becam Ermly established in the scientific literature only
in the seventeenth century . The hydrological cycle is the continuous cir-
culation of water from the sea to the atmosphere, then to the land and back
again to the sea. The water exchanges involved at the various stages of the
cycle are evaporation, water-vapor transport, condensation, precipitation,
and runoff. Runoff from land surface is the residual water of the hydrolog-
ical cycle, which has not been evaporated by plants and has not infiltrated
the ground surface, so it is available for use. The collection of land whose
surface waters drain into a river valley forms the hydrographic basin of that
river.

A dam is a barrier built across a watercourse for impounding water.
By erecting dams, humans can obstruct and control the flow of water in
a basin. A reservoir is a (possibly artificial) lake, usually the result of a
dam, where water is collected and stored in quantity for use. Reservoirs
must occupy the best available sites in the hydrographic basin because their
development requires unique geological, hydrological, topographical and ge-
ographical characteristics. Controlled inflows into a reservoir include all
releases from adjacent upstream reservoirs on the same river or its tribu-
taries. Uncontrolled or natural inflows include all other inflows from surface
runoffs, streams and undammed rivers. Water may flow out of a reservoir
through various outlets such as derivations (to draw water for irrigation or
other consumption), spillways (for flood protection) and penstocks (to pro-
duce electricity). Also, there may be water losses due to evaporation and
seepage into the ground.

One of the most important uses of reservoirs is to produce electricity.
In this case a hydro plant is provided near the reservoir. The quantity of
energy produced by a hydro plant depends both on the flow through the tur-
bines and the water head. The water head is the difference between forebay
elevation and tailwater elevation, which are the reservoir levels respectively
in front of the intake and at the exit of the draft tube.
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Figure 1.1: Storage allocation zones within a reservoir

Reservoir systems are also used for a variety of other purposes such as
flow control, depth regulation, flood control, water storage for irrigation or
supply of drinking water, recreation, navigation, and fish and wildlife en-
hancement. The management of a multi-purpose reservoir system is a com-
plicated process that must comply with public laws and regulations (public
safety, environmental protection, and so forth). It usually attempts to find
an effective compromise between the conflicting needs of different uses. For
example, flood control requires depletion of reservoirs in advance of floods,
and the maximum volume of unused storage has to be maintained until all
danger of flooding is past. But energy needs require a full reservoir to al-
low greater turbine efficiencies for power generation. Moreover, recreational
uses require a full pool during the vacation season, which coincides with
the need to lower the pool to supply irrigation. Reservoir operators thus
rely on reservoir operating policies to make release decisions that satisfy all
conditions and allocate water equitably between the different uses.

Rule curve and storage allocation zones have been the first operating
policies used to manage multi-purpose reservoirs. Operating policies asso-
ciated to rule curves define the ideal storage pool level and discharges at
different times of the year for each reservoir. The rule curve is based on
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historical operating practice. In operating policies based on multiple zones,
the total %_%orage volume of the reservoir is divided into several zones as
in Figure [I-1, based on the placement of outlet structures and operational
assignments. The inactive zone or dead storage zone represents the lower
part of the reservoir that is not normally used. The buffer zone is above the
inactive zone. Only essential needs are satisfied when the storage volumes
are within this zone, usually as a result of a dry period. The conservation
or active zone represents the volume of water that can be used to satisfy
various beneficial uses including recreational and environmental needs. The
flood control zone is above the conservation zone and it is reserved for flood
detention especially during periods of abnormally high runoff. The spill
zone is the upper portion of the pool, in which the do%gagﬁge}gr{gggﬁ% are at
or near their maximum. See Loucks and Sigvaldason [26] for defails about
traditional operating policies.

The management and planning of multireservoir systems are often sup-
ported by a hierarchy of mathematical models. Stochastic optimization
models usually lie in the top layer of this hierarchy, in which long term
planning is performed. The planning horizon in these models exceeds one
year, and reaches typically five to twenty years or more. Although reservoir
operation happens continuously, the long term planning exercise normally
separates the planning horizon into a number of time intervals, or periods,
with a fixed time step of one month to one year. The purpose of the planning
exercise is to assign storage and production targets in every period. These
targets, in turn, are passed on to the next layer (medium term scheduling)
in which a deterministic og;cligéiozr%teigﬁ model is applied to a shorter horizon
with a smaller time step Fm‘ce time MDP models are well suited
for the long term planning of reservoir systems, especially for hydro-power
production, because of the Markovian nature of the stochastic processes
governing the natural water inflows.

1.3 Stochastic processes of natural inflows

The natural phenomena governing rainfall, runoff, river flows, and flood and
drought characteristics are complex and largely unpredictable. The design
and operation of dams and reservoirs must therefore take into account the
high level of randomness present in these physical processes. The statistical
properties of hydrological phenomena are usually obtained by analysing the
time series based on historical records of river flows. In particular, largest
annual flood intensities in successive years have been found to be indepen-



dent random variables, while total annual flows tend to be autocorr lg,it de ot
and are often modeled as autoregressive or moving average pI‘OCGSSGS%

Let the random variable D;; be the volume of natural inflows received
in the ¢-th reservoir during period t. We denote by D, the column vector
of natural inflows in period t for all sites. The sequence {Dj, t € Z} is
the stochastic process of natural inflows at reservoir ¢. Normally, the time
index t = 1 corresponds to the first period of the planning horizon, and
past periods have a negative or zero time index. Similarly, the sequence
{Dy, t € Z} is the (vector) stochastic process of natural inflows at all sites
in the system.

Statistical hydrology

Statistical inflow data are usually available from historical records for a fi-

nite number of past periods, and most modelers also make a stationarity
assumption about the stochastic process of natural inflows. Then various
properties of the stochastic process can be inferred from the historical time
seriergolgi]%%k%ggﬁlolggila%% 8 ?rggﬁgig&le%?thods, such as the Box-Jenkins m tgl—e od:etal
ods [4, 14,730] for fime series analysis. For example, McCleod et al. 13”
analyzed the time series of average annual river flows from 1860 to 1957 for

the Saint-Lawrence at Ogdensburg, New York. They obtained the following
autoregressive model of order 3 (denoted AR(3)):

Z, = 0.6219Z;_1 +0.1771Z,_3 + Ey,

where Z; = Dy — D are the centered inflows (D is the historic mean) and
E; are i.i.d.! Gaussian errors (innovations) with mean zero and coefficient
of variation equal to six percent. Reservoir inflows can also be modeled as
moving average (MA) processes or, more generally, as autoregressive moving
average (ARMA) processes.

Multivariate models have also been proposed for the statistical analysis
og 1n2.‘:cgral inflows into multiple reservoir systems. For example, Salas et al.

examined the bivariate time series of annual river flows from 1932 to
1963 for the Skykomish and Green rivers located in the state of Washigton
(USA). They obtained the following autoregressive process:

Xlt . 0.407 0O Xl,t—l + Elt
Xo )\ 0O 0.345 Xoy 1 Ey )’

Yindependent, identically distributed




where Xj;, the standardized flow into site ¢ in period ¢, is given by

Xy — Dj; — Mz"
oy
with u; the historical mean of the flows D;; at site 4, and o; their standard
deviation. The residuals Fy; and FEo; are independent of previous periods
and follow a multivariate normal distribution with mean zero and variance-
covariance matrix

5 0.837 0.823
~\0.823 0.881 /-

Similarly, the annual flows of the Wolfe an(gl C]Ifl‘(g%carivers, located in the
state of Wisconsin (USA), were modeled in hgﬁnusTgrecords from 1899 to
1965. After a logarithmic transformation of data, the following moving
average process was obtained:

Zu\ —0.626 0
( Zoy ) =B+ ( 0 —0.543 )EH’

where Z;; = log(Dj;) — p; with p; the mean of log(Z;;), and the vector E;
of innovations is i.i.d., having a multivariate normal distribution with mean
zero and variance-covariance matrix

¥ — 0.0552 0.0502
~\ 0.0502 0.075

In the above models, the matrices of autoregressive and moving-average
coefficients are diagonal. Such models are said to be contemporaneous be-
cause the correlations between flows at different sites in a given period are
accounted for in the variance-covariance matrix, while serial correlations
between flows at different sites are neglected. Contemporaneous ARMA
models are much easier to estimate than the general multivariate ARMA
models, and they were found to reproduce well the main statistical char-

acteristics of the time series analyzed. M%;%%‘éﬁ%haﬂég o Ssg&eggg(&rlln’i{%r(_)gten
:a, ‘a, :

justified a priori by Iﬁ}%}é?gcnaleg(:)glsiderations 15, 35, 40].

Stedinger et al. examined different ways of fitting the following
ARMA(1,1) model to bivariate hydrologic time series by building upon sim-
ple univariate procedures:

Zy=®Zy 1 — OF; 1 + Ey,



where Z; = D; — p is the 2 X 1 vector of centered flows in period ¢, ® and
© are the 2 x 2 coeflicient matrices and FE; is the 2 x 1 vector of time-
independent normally distributed random fluctuations. Three models were
compared: a contemporaneous ARMA(1,1) model where the matrices ® and
O are diagonal, a univariate ARMA(1,1) model of aggregaiet%(ﬂvseg:nd both
rivers with a simple disaggregation procedure described in , and a non-
diagonal ARMA(1,1) model. The study concluded that the first two models
performed as well as the multivariate nondiagonal ARMA(1,1) model.
Aggregation/ disaggr%%gg%gerglz(aii%li efz?gilgl:%gggg{gate water resources time
series were proposed in [[41, 49]. These models reproduce (relevant) appro-
priate statistics at several time intervals. Aggregation/disaggregation can be
used to obtain flows at different sites and also to model seasonality. Seasonal
inflow models can also be modeled as periodic ARMA processes buatlltls}?zilr
estimation is sometimes difficult especially in the multivariate case )
Sophisticated ARMA or aggregation/disaggregation models have been
used mostly for forecasting purposes or for synthetic streamflow generation.
Inflow forecats are then used in deterministic optimization models to obtain
open loop solutions. On the other hand, synthetic inflow sequences are
generated at random for use in Monte Carlo simulation studies to evaluate
the design of a reservoir system, or to compare various oper tgv ‘Pl(c)}li:cges.
A review of stochastic models in hydrology is given in %%Hmver,
the stochastic structure of natural inflow phenomena is not fully understood
and is the object of intense research. For instance, recent studies indicate
that regional average streamflow statistics contain more information about

the variability and persistence of streamflow at a v]gag{i_cg%hr site than does
the individual streamflow record at this site. See 501

Discretized inflow models

Most stochastic optimization models for reservoir operations use discrete
random variables to model the natural inflows. This assumption is funda-
mental when a discrete dynamic programming model is used in which the
reservoir levels and discharges are discretized. However, in more realistic
models with continuous state and action variables, computation of the ex-
pected value of a state-action pair often requires the discretization of the
natural inflow diStrl},lg}llftg%?&:%V,]iij?‘gn%%.rsqsé)onds to a quadrature rule for nu-

merical integration [9, 18].“Anumerical study of discretization error was also

presented in 2 . Exceptions to this rule are the linear guaq)r&ltic Gaussian
sekas:a . R ond:sobel X

controller [3] and the myopic-affine dynamic model ZCLg , iIn which inflow dis-

cretization is avoided. Here, we review briefly some discrete inflow models




used in reservoir applications of MDP. dreeon:d

In the long-term reservoir scheduling model of %ﬁmyear is broken
down in two periods of six months, representing the winter and summer sea-
sons, respectively. The random variable D; expresses the inflows in terms of
potential energy added into the aggregate reservoir system during period t.
The energy inflows in period ¢ are assumed correlated with the previous
summer’s inflows through a seasonal autoregressive model with lag 1 de-
pendence if t is the winter season, and lag 2 dependence if ¢ is the summer
season:

D, = a1y + agijt_1 + ag,wé}, in winter,
ais +assDi o+ azgé, in summer,

where the coefficients o; ,, (for winter season) and «; s (for summer season),
i = 1,2,3, are constants and the &; are i.i.d. standard normal. Moreover,
the random variable D; is discretized in o) releyg)%la }evels.

In the aggregate reservoir model of 11 , the inflows are also expressed
in terms of energy. The seasonal autoregressive lag-one model, used to
represent the stochastic inflow process, has the form

(Dt —pt) _ (De—1 — pir—1)

pr +(1=p))"0,
o o1

where D is the energy inflow during period ¢ (a month), with mean p; and
standard deviation oy, p; is the correlation coefficient between inflows in
stage ¢t and stage ¢t — 1, and Uy is a 3-parameter (mean, standard deviation,
and shift) lognormal random variable. The energy inflows are discretized
into ten levels.

A different ap gi)aa%h:,a called sampling stochastic dynamic programming,
was presented in %’ﬁ:_W']th this approach, the serial and spatial structures
of the streamflow process are captured by using a large number of randomly
generated 12 month streamflow sequences. A conditional distribution, de-
veloped using a historical time series of streamflow forecasts, is then assigned
to various streamflow scenarios given a streamflow forecast. The approach
was applied to the North Fork Feather River hydroelectric system composed
of nine re%%\lfgi%sr :abnd located in California. Similarly, the DP models devel-
oped in erived a reservoir release policy by using the best forecast of
the current period’s inflow as hydrologic state variable instead of the previ-
ous period’s inflow. The potentiel advantage of the proposed approach was
illustr tgd &és;iélg the Nile river basin as a case study.

Tn 142 , the performance of operating policies derived using stochastic
DP models with different sets of hydrologic state variables were compared.



Different choices for hydrologic state variables were considered: current pe-
riod flow, previous period flow, and current period or seasonal flow forecasts.
The stochastic process representing the hydrologic variables was described
by a month-to-month Markov chain and was discretized to allow the calcu-
lation of transition probability matrices for the hydrologic state variables.
The authors found that for a benefit function stressing energy maximization,
all policies did nearly as well. However, for benefit functions involving large
water and firm power targets and severe penalties for shortages, the policies
that employed more complete hydrologic information performed significantly
better.

1.4 Dynamic programming model

We present general MDP model for the long term optimization of a mul-
tireservoir system composed of m reservoirs. The planning horizon of the
study is divided into 7" periods ¢ = 1,... ,7. Dynamic programming is an
attractive tool for modeling such problems because the stochastic nature of
inflows and the nonlinear functions associated with energy generation can
be modeled explicitly. Definitions of state variables, decision variables, con-
straints, and objective function for the general multi-reservoir system, whose
main purpose is hydro-power production, are provided below.

State variables

Including hydrologic variables in the state vector allows consideration of
the serial correlation of natural inflows. Additional hydrologic state vari-
ables can be added to model spatial correlation for multireservoir systems.
However, incorporating more hydrologic information in the model improves
reservoir operation, but it adds dimensionality into the model.

The state vector at period ¢, considered in the model, includes the volume
of water in storage in each reservoir and also some hydrologic information
describing recent hydrological activity (hydrologic variables). The volume
of water in storage in reservoir i at period t is denoted as S;;. We suppose
that the volume of water inflow D;; at site ¢ in period t is a function of the
inflows in the K previous periods. Hence, the state of the system X; at
period t is represented by K + 1 column m-vectors (m sites) and may be
written as X; = (Dy g,...,Dy 1,5;)%. The superscript T represents the
vector transpose. It is convenient to assume that the natural inflows D;; are
collected, at site 4, at a constant flow rate over the duration of period t.

10



Decision variables

The decision to be taken at each period represents the release through the
turbines Z; and the spill Y;. We assume t %‘g te}ég :gecision depends on both
the state X; and the inflow Dy (see e.g. 45 ). In practice, the release Z;
and the spill Y; represent the mean flow during the period, and the model
considers they will flow at a constant rate over the period. Thus, the action,
unknown at the beginning of the period, is a random variable with a well
known distribution conditioned on X;.

The action at each period, denoted as A, is represented by the pair
of m-vectors (Z;,Y;). The ith entry Z; of the vector Z; represents the
release at reservoir ¢ during period t, used to produce energy, and the ith
entry Y;; of the vector Y; represents the volume of water spilled (without
energy production) at reservoir ¢ during the period t. Usually, in reservoir
applications, the state X; and the action A; are assumed to be random
vectors resulting from random variables with continuous joint distributions,
except possibly for a small number of mass points (e.g., droughts, storage
capacities, etc.). However, to simplify the analysis and for the purpose of
numerical computations, many studies assume that X; and A; have finite,
discrete distributions instead. We denote the realisations of X; and A;
respectively by z; and a;.

Transition equations

The first transition equation describes the dynamic behavior of the system.
It is the usual water conservation equation

Sty1 =58t — BZy — CYy + Dy, (1.1)

where B and C are the m x m connectivity matrices (or network incidence
matrices), used to allocate releases and spills from upstream reservoirs. For
systems in which the spilled water is routed on the same river as the turbine
releases, we have C' = B. On other systems, the spilled water is expelled
from the system, so that C' = I. We note that evaporation and leakage
are neglected in this model. The second transition equation represents the
evolution of the stochastic process of the natural inflows. Models used to
represent such processes were discussed in the previous section. We can as-
sume, for example, a multivariate autoregressive process of order K, denoted

11



as AR(K), with transition equation

K

D= 4D+ B, (1.2)

=1

where <I>f is an m X m matrix of “lag £” autoregressive coefficients and E}
is a random vector of innovations, assumed independent of all prior states
and actions and with a known, arbitrary joint dlstrlbu‘?lonb Verification of

lanceleq:autoreg

the Markovian property is immediate by inspection of (Il Ty and (I.2).

Objective and economic structure

The total amount E; of energy produced by the whole system in period ¢
can be represented as

m

Ey(S1, Zy) = Z Eir(Sit, Zit)-

=1

The quantity of electricity F;; produced at the hydro-plant 7 in period % is a
nonlinear function of the volume of water in storage S;; and the volume re-

lease throu%lalr‘%he turbines Z;;. For instance, this function can be expressed
as in [38] T by

Ei(Sit, Zu) = K[H;" (Sur) — H{" (Zir) Zin
where K is a constant and H*? and H% are the upstream and downstream
reservoir level functions. The difference H;” — H&" is the water head factor,
which greatly influences the efficiency of electric generation turbines.

The objective is to determine a policy that will maximize the expected
discounted rewards of system operation over a finite horizon. The benefit
function is expressed as a nonlinear no concave function of the system states
and decisions variables. The system operating function (or one-step reward),
in period ¢, can be considered as

Ry = gt (Et(St, Zt)) + he(St)

where the function g; (E¢(St, Z¢)) is the benefit of the hydropower system in
period ¢ and the function hy(S;) represent the sum of revenues from other
uses of the water in the reservoirs. For many utilities, the function g¢; is a
concave piecewise linear function of the energy produced E¢(St, Z¢).

12



Inequality constraints

Inequality constraints account for physical limitations on the states and de-
cision variables. The set Ay(zy,d;) of allowable actions in period ¢ comprises
all pairs of yectars z; and y; satisfying these inequalities as well as the balance
equation (I.1). ere are lower and upper limits on the allowable storage
volumes during the period. These limits may include legal restrictions (such
as navigational safety, flood control or scheduled maintenance) as well as
reservoir capacity constraints. They are represented by constraints on the
stored volumes at epoch ¢ + 1:

Sitr1 < Sit+1 < Sigt1. (1.3)

There are lower an upper limits on the allowable volumes that can flow
through the turbine during the period. These limits incorporate nonnega-
tivity, legal requirements and turbine capacities:

Zip < 2zt < Zgt- (1.4)

Finally, there are nonnegativity and upper bound constraints on the spill
variables,

0<wyu <7, (1.5)

where 7; is the spillway capacity of the site <.

The case where there is no feasible solutions satisfying the previous con-
straints can be considered by adding penalty f %(%tiozré% aiP the objective to
control release water shortage and flood. See ;ZIZI, for objective function
with penalities for failure in load supply.

Optimization

The expected future consequence of choosing an action a; is given by the
cost to go function that can be written as

Vi(zy) = E[Vi(z4; Dy) | Dy = di—poy - . s Dy—1 = dy—1], (1.6)

where E is the expectation and V;(z;d;) is the dynamic programming opti-
mal value function, representing the expected operating reward from stage
t to the end of the planning horizon. This function is the recursive DP
equation that can be written, for period t =T —1,...,1, as

Vi(zesdy) =  max  [re(zy, ar) + BViga (Te41)], (1.7)
at €A (z4,dy)

13
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where 7¢(xt,a4) is the immediate reward.

T.he fu.nctlons Vt(:ct) angq%g%ﬁ}gﬁl qgggﬂg‘ggmed by backward induction,
starting with ¢ = T, eﬁlrﬁ%lqlﬁg) and (II.7). At each epoch ¢, we need to solve
Bellman’s equation (IT.7) for all possible states z; € X.

The expected terminal reward function, is assumed given and depends

only on the state at the final stage T'. It can be written as

Vr(zr) =E[f(zr) | X7 = 21],

where f(zr) is the terminal reward function.

The cost to go function generally cannot be calculated exactly even if all
the elements in the state vector are continuous. An approximate solution of
V; can be obtained after the discretization of D; and X;. So, the continuous
state space is replaced by a grid a]?g% f%}ﬁ ;/;aal’lﬁ ;%fn the cgsic o Olfml%llgjl?gln g;s
calculated at the grid points. See [9, 18, 19, 22].

1.5 Applications

The model of %%ﬂd%ted officially in 1979 to manage the Brazilian na-
tional electrical generating system, determines the optimal hydro and ther-
mal generations in the system. In addition, this model is used to calculate
the expected incremental costs of producing the thermal generation. These
costs represent the increase of the expected future operation cost if hydro
generation is increased by one Mwh. They are used to make decisions about
selling or purchasing energy. The model belongs to a chain of generation
expansion planning models used to establish when and where to build the
new plants. It has also been used, to determine the reliability indices of trial
expansion plans for 10 to 30 years.

The PERESE model for the long-term scheduling of res%rrvggls:, ddeveloped
especially for the Hydro-Québec system, is presented in . e model is
useful to study different generation expansion scenarios in order to determine
if the demand can be satisfied, for each scenario, with the desired reliability
and to calculate the expected benefits and costs. The model is also useful to
decide about construction of the generation expansion plan and to determine
guidelines for middle-term horizon studies. It can also be used to determine
if additional firm energy can be sold on the spot markets.

[furgeon: charbonneau

The optimal operating policy developed in [46] gives not only the hydro-
electric energy to produce in a month but also the expected marginal cost of
the hydroelectric energy produced. This last information is very important
in the current context of deregulated markets. To deal in this deregulated
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market, certain hydroelectric producers purchase energy in spot markets
when the price is low. They store it in their reservoirs (by letting them fill
with water) and sell it in the spot markets later when the prices are higher.
To realize a profit it is important for the producers to determine the exact
marginal production cost. The model can also be used to determine the
volume of energy that can be sold in the spot markets without endangering
the reliability of the system, and to study different scenarios of electrical
energy demand and system expansion.

A model of the Shasta-Trinity subsystem, which is a part of the Central
Valley Project located in Northern California Iéd g);):%rated by the United
States Bureau of Reclamation, is formulated in %ﬁ.—'ﬂie benefit function of
the model seeks to maximize energy production and to meet reliably water
and firm power targets. In addition, the Shasta-Trinity subsystem must
produce a part of the energy that the Central Valley Proje t Co&t:rbacted to
provide. Other applications on this system are reported in Tﬁg’]auﬁlg other
approaches with the objective of me tin Jyater :%nd energy targets.

The control method presented in [TI] can be used for real time operation
of a reservoir system as well as for developing policy-making guidelines. It
was implemented for the High Aswan dam on Lake Nasser in Egypt. The
application seeks to determine the optimal release sequence over a 36 months
horizon. In the case when storage exceeds the reservoir capacity, the spilled
water is diverted to a depression area where it evaporates. The objective
is to maximise the expected energy generation while satisfying downstream
water supply requirements, and taking into account the monthly evapora-
tion rates. In spite of the fact that the High Aswan dam suffers heavy
evaporation losses, its storage capacity is adequate for current water supply
purposes. The tradeoff sought in the Aswan dam application is to main-
tain the lowest reservoir elevation necessary for meeting the water supply
requirements at the expense of energy losses due to the lower hydraulic
head. This policy tends to minimize water losses due to evaporation, since
evaporation depends on the reservoir’s volume and surface. This policy has
practical interest since water rather than hydropower availability is the lim-
iting factor in the development of the Egyptian economy. Another benefit
of operating the High Aswan dam at low reservoir levels is safety in case
o1f:es ismic activity. The High Aswan Dam system has also been modeled in
}f39}‘ft_ogﬂEﬂne a reservoir release policy and to calculate the expected ben-
efits from future operations. The application used alternative formulations
of SDP models and numerical examples on the High Aswam dam system
to demonstrate that the approach used can identify more efficient reservoir
operations policies.
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A real time optimal control approach was applied in W%stem
of hydropower reservoirs in the Caroni river basin in Venezuela. The sys-
tem is composed of one very large and one moderately sized reservoir. The
objective of the application is to track an optimal trajectory that provides
a reliable power output to satisfy contractual obligations. Inflows records,
collected since 1960, allow consideration of the hydrologic seasonality inputs
for the application. The results of the Caroni system application illustrate
that there is a trade-off between operation strategies which sacrifice hydro-
logic complexity in exchange for a more nearly optimal solution and those
which sacrifice theorical optimality in exchange for more accurate hydrologic
predictions. For this specific application, the authors believe that improve-
ments in the model that predict reservoir inflows have more impact on the
performance of the system than improvements in the optimization algorithm.
The method used in this application is expected by its authors to work best

when used with large reservoi ¢ chor:a
The control approach of g was applied to the Great Lakes levels reg-

ulation problem. The Great Lakes, forming a chain of natural reservoirs
situated between USA and Canada, consist of Lakes Superior, Michigan,
Huron, Erie, and Ontario. The larger lakes, Superior, Michigan and Huron
are modeled in the application as infinite capacity reservoirs with no upper or
lower bounds. The management of the Great Lakes system should not cause
any disagreement between its five major groups of interest: commercial nav-
igation, riparian or shore property, hydro-power, recreational boating, and
environment. Thus, to provide a Great Lakes levels regulation plan, the
application is performed to minimize the variations of lakes levels over the
planning horizon, knowing the storage and release targets, prescribed over a
twelve month time horizon. The application can also provide the estimation
of reliability and failure probability. Such informations are useful to deter-
mine the risks associated with investment decisions involving lake resources
and they are useful also in the context of reservoir operation and design.

1.6 Computational issues

The optimization of operating policies for a multireservoir system is a stochas-
tic nonlinear dynamic programming problem. Its main drawback is the need
to discretize the state variables. This may lead to a very large number of
combinations even with a small number of variables. For small systems
the optimization problem can be solved by classical discrete dynamic pro-
gramming, but for large systems the usefulness of this approach is limited,
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because computational complexity increases exponentially with the number
of reservoHs in tlé System. This is the well known curse of dimensionality
(see, e.g., [ZUJ Tor tmore details).

Early water reservoir applications of MDP date back more than fifty
years. They were concentrated on single reservoir and on dynamic program-
ming algorithms for solving these problems. I a‘rkhe sniltles and seventies,
models with two reservoirs were solved by SDP}SZ_T%UL%ngdeIS with
three or four reservoirs were solved in the eighties esearchers have
thus had to resort to other methodologies by combining SDP with other
sophisticated approaches to extend the studies to models with more than
four reservoirs.

Multistage stochastic programming has been intensively used recently for
water reservoir applications. The notion of inflow scenarios is normally used
in algorithms based on this approach. In this field, Benders decomposition
type models seem to perform well for thelphnear agu%l) e}gleceW&se linear prob-
lems. The approach of Pereira and Pinto [32, 33], called SDDP (Stochastic
Dual Dynamic Programming), is based on Benders decomposition and it
uses duality theory to approximate the value function by a piecewise linear
function. A compal]"alsgnb ﬁf tbl%l%h];)nearrlldrengﬁland dynamic programming ap-
proaches is given in [2].” An approach using duality theory and param trl .
linear programming, but not Benders decomposition, was developed in
This approach was applied to the stochastic problem of scheduling hydro
and thermal powe ,a%%gse%"gfion of a system with two reservoirs. The proce-
dure presented in ﬁ'l'{&']—ls_lﬁsed on the same concepts as Pereira and Pinto’s
algorithm and it was used for scheduling a large hydroelectric generation
problem with a 24 month planning horizon. Another algorithm, based on
Benders decomposition, but for nonli eqL conyex multistage stochastic pro-
gramming problem was developed in%ﬁi’%‘—gﬂn‘s algorithm is specialized for
a hydropower scheduling application and was applied to a problem with 176
powerhouses on 94 reservoirs with 174 additional controlled water spillways
over a 24 month planning horizon. The weakness of these approaches is that
the head effects were neglected.

Other multi-reservoir methods with continuous state and action variables
have been developed using an approximation of t%eaﬁ(;iapected value function.

In the parameter iteration method, developed in , the value function (or
cost to go function) is approximated at each stage, of the dynamic pro-
gram, by a simple functional form with a small number of parameters. The
control is a function of the state characterized by a set of parameters that
are improved at each iteration by least squares minimization. In their g b ol
dient dynamic programming method, Foufoula-Georgiou and Kitanidis %7
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use Hermite interpolation to approximate the cost to go function and they
reduce dimensionality by using a coarser state discretization. A similar.0 - onietal:a

proach, but using tensor-product cubic slgggﬁaalg.ﬂ:se?aeien developed in )
with a par lée&:gggputing extension in T]%._T'W)ach was further ex-
tended in g to higher dimensions using multivariate adaptive regression
splines on orthogonal arrays.

Another way to avoid the curse of dimensionality consists of formulating
an MDP problem with a small number of discrete state and action variables
by using composite reservoirs that can be solved by discrete DP. Models in
which the storage capacities of the many reservoirs in the system are aggre-
r%g;“%(;i: é%l;]g guﬁg;ggfllg dcomposite reservoir of potentiel energy are proposed in
[44,"45]. The mains drawbacks of such single composite reservoir models is
that it is difficult to derive optimal operating policies for individual reser-
voirs in the system, from the aggregate policy. To addlrlgs% (;cglzig difficulty, an
approach for the optimal operation was ero(l)l]:o((:)sed in or a system com-
posed of reservoirs in parallel and in %ISFI)leEe case where reservoirs are in
series. The two approaches consist of using aggregation and decomposition
to break up the original model into subproblems of two reservoirs. In the
case of a general arborescent multireservoir system, an aggregate stochas-
tic dynamic E%%E%ﬂ%%%% model for determining an operating policy was
proposed in I .

Another set of models, belonging to the optimal control approach, and
involving no discretization of the system variables, have been used in wa-
ter reservoirs applic gi(%ggkag{lathese models, based on the linear quadratic
Gaussian controller }3 , the opfimal solution of the cost to go function is de-
duced analytically, with parameters that can be determined numerically by
solution of a “static” optimization problem. An extended linear quadratic
G uggiela]l{@%g(}) control technique was applied to a three reservoir system
in%l_f]g.g—ln_ﬂﬁapproach the state variables are replaced by the mean and
variance of the storages and an assumption on the probability distribution of
the storage state variables is required. The ELQG technique ligaaircliiterative

. . . ga:a,wasimi:a
refinement of the linear-quadratic control approach, used in [[25, 51| in the

context of operation o% % I{lnhlﬂggsaervoir system for flood control. A similar
approach was used in or the real-time control of a hydropower system
with two reservoirs. The main drawback of the linear quadratic Gaussian
controller is that it is limited to unbounded %%rcxﬂg;r: systems. The stochas-
tic control approach presented recently in g remedy to this problem by
considering the storage bounds explicitly in the expressions for the reservoir
systems dynamics by modifying the dynamic equation. As in ELQG, the
state variables are the mean and variance of the storages but no assumption
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on the probability distribution of the storage state variables is required. The
limitation of this method lies in the fact that Taylor series approximations
are used in the derivation.

1.7 Research perspectives

Rising demands for water for different uses are forcing stiff competition over
allocation of scare water resources among different users. Decision makers
face the challenge of having to arbitrate between two conflicting objectives:
on the one hand to manage and conserve water supplies, and on the other
hand, to satisfy all needs in face of growing demand from population growth
and industries. There is a clear need for more research in the development
and refinement of models and methods to help deriving efficient operating
policies for reservoir systems, and we feel that the potential of the MDP
tools has not yet been fully exploited.

Recent technological developments in digital computing have permitted
an evolution in the size of models that can be solved by discrete DP, spline
approximations, and stochastic programming. But despite this progress,
more research is still needed to solve large stochastic reservoir systems in a
precise, detailed manner, under more realistic assumptions. Methods still
have to be developed that consider a realistic representation of the nat-
ural nonlinearities of hydroelectric generation, by taking head effect into
account, and reservoir operations. These methods should also consider a
more detailed description of the physical system and uncertainty on inflows,
demands, and price of energy and fuel.
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