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Chapter 1

The linear programming
approach



Abstract

Abstract of the paper



1.1 Introduction

In this chapter we study the linear programming (L.P) approach to Markov
decision problems and our ultimate goal is to show how a Markov decision
problem (MDP) can be approximated by finite linear programs.

The LP approach to Markov decision problems dates back to the early
sixties with the pioneering work of De Ghellinck [10], d’Epenoux [11] and
Manne [26] for MDPs with finite sate and action spaces. Among later contri-
butions for finite or countable state and action MDPs let us mention Altman
[1], Borkar [8], [9], Denardo [12], Kallenberg [24], Hordijk and Kallenberg
[22], Hordijk and Lasserre [23], Lasserre [25], and for MDPs in infinite di-
mensional spaces and in discrete or continuous time, Bhatt and Borkar [7],
Haneveld [13], Heilmann [14], [15], Hernandez-Lerma [16], Hernandez-Lerma
and Lasserre [17], [19], Mendiondo and Stockbridge[27], Stockbridge [32],
Yamada [35]...

Among the nice features of the LP approach, the most evident is that
it is valid in a very general context. For instance, for the long-run expected
average cost (AC) problem, one does not need to assume that the Average
Cost Optimality Equation (ACOE) holds, a restrictive assumption. Also, to
our knowledge, it is the only approach that permits to handle constrained
MDPs in a very natural way. Finally, it is possible to devise simple conver-
gent numerical approximation schemes that require to solve finite LPs for
which efficient codes are now available.

Let us briefly outline one simple way to see how the LP approach can
be naturally introduced, although it was not the idea underlying the first
papers on the LP approach to MDPs. The starting point is to observe that
given a policy © € II, an initial distribution v and a one-step cost function
c¢: X x A = R, the finite-horizon functional

N-1
J(v,m,N,1,¢) := N7'ET Z ETRR

t=0

can be written as a linear functional [ edp}y” with p}” the expected (state-
action) occupation measure

N-1
py’(B) == NT'EI > 1{(z,ar) € B}, BeB(XxA).

t=0

Under some conditions, and with some limiting arguments as N — oo,
one may show that, for instance, minimizing the long-run expected average



cost criterion (the AC problem) reduces to solving a linear program. More
precisely, the AC problem reduces to minimize the linear criterion [ cdy over
a set of probability measures p on X x A that satisfy some linear “invariance”
constraints involving the transition kernel PP. This approach for MDPs is of
course related to the Birkhoff Individual Ergodic Theorem (for noncontrolled
Markov chains) which states that given an homogeneous Markov chain X4,
t=20,1,... on X, a cost function ¢: X — R, and under some conditions,

N-1
lim N7'E, X,) = du”
i N 3 elX) = f et

for some invariant probability measure p”.

However, we should note that the first papers on the LP approach to
MDPs used a different (in fact, dual) approach. Namely, the LP formulation
was a rephrasing of the average (or discounted)-cost optimality equations.
We briefly discuss this approach in Remark 13 that yields a dual linear
program.

Although the LP approach is valid for several criteria, including the V-
step expected total cost, the infinite-horizon expected discounted cost, the
long-run expected average cost, constrained discounted and average cost
problems, we have chosen to illustrate the LP approach with the AC prob-
lem. With ad hoc modifications and appropriate assumptions, the reader
would easily deduce the corresponding linear programs associated with the
other mentioned problems.

We shall first proceed to find a suitable linear program associated to the
Markov decision problem. Here, by a “suitable” linear program we mean a
linear program (P) that together with its dual (P*) satisfies that

sup(P*) < (MDP)* <inf(P), (1.1)

where (using terminology specified in the following section)

inf(P) := value of the primal program (P),
sup(P*) := value of the dual program (P*),
(MDP)* := value function of the Markov decision problem.

In particular, if there is no duality gap for (P), so that

sup(P*) = inf(P), (1.2)



then of course the values of (P) and of (P*) yield the desired value function
(MDP)*.

However, to find an optimal policy for the Markov decision problem, (1.1)
and (1.2) are not sufficient because they do not guarantee that (P) or (P*)
are solvable. If it can be ensured that, say, the primal (P) is solvable—in
which case we write its value as min (P)—and that

min(P) = (MDP)*, (1.3)

then an optimal solution for (P) can be used to determine an optimal policy
for the Markov decision problem. Likewise, if the dual (P*) is solvable and
its value—which in this case is written as max (P*)—satisfies

max(P*) = (MDP)*, (1.4)

then we can use an optimal solution for (P*) to find an optimal policy for
the Markov decision problem. In fact, one of the main results in this chapter
(Theorem 16) gives conditions under which (1.3) and (1.4) are both satisfied,
so that in particular strong duality for (P) holds, that is,

max(P*) = min(P). (1.5)

Section 1.2 presents background material. It contains, in particular, a
brief introduction to infinite LP. In Section 1.3 we introduce the program
(P) associated to the AC problem, and we show that (P) is solvable and
that there is no duality gap, so that (1.2) becomes

sup(P*) = min(P).

Section 1.4 deals with approximating sequences for (P) and its dual (P*).
In particular, it is shown that if a suitable maximizing sequence for (P*) ex-
ists, then the strong duality condition (1.5) is satisfied. Section 1.5 presents
an approximation scheme for (P) using finite-dimensional programs. The
scheme consists of three main steps. In step 1 we introduce an “increasing”
sequence of aggregations of (P), each one with finitely many constraints.
In step 2 each aggregation is relazed (from an equality to an inequality),
and, finally, in step 3, each aggregation-relaxation is combined with an in-
ner approrimation that has a finite number of decision variables. Thus the
resulting aggregation-relaxation-inner approximation turns out to be a finite
linear program, that is, a program with finitely many constraints and deci-
sion variables. The corresponding convergence theorems are stated without



proof, and the reader is referred to [19] and [20] for proofs and further techni-
cal details. These approximation schemes can be extended to a very general
class of infinite-dimensional linear programs (as in [18]), not necessarily re-
lated to MDPs.

1.2 Linear Programming in infinite-dimensional spaces

The material is divided into four subsections. The first two subsections
review some basic definitions and facts related to dual pairs of vector spaces
and linear operators whereas the last two subsections summarize the main
results on infinite LP needed in later sections.

1.2.1 Dual pairs of vector spaces

Let X and Y be two arbitrary (real) vector spaces, and let (-, -) be a bilinear
form on X' x Y, that is, a real-valued function on X X Y such that

e the map 2 — (z,y) is linear on X for every y € Y, and
e the map y — (z,y) is linear on Y for every z € X.

Then the pair (X,)) is called a dual pair if the bilinear form “separates
points” in z and y, that is,

e for each z # 0 in X there is some y € Y with (z,y) # 0, and
e for each y # 0 in Y there is some z € X with (z,y) # 0.

If (X,Y) is a dual pair, then so is (Y, X).

If (X1, 1) and (A%, Y;) are two dual pairs of vector spaces with bilinear
forms (-,-)1 and (-, -)q, respectively, then the product (X7 x X3, Yy X YVs) is
endowed with the bilinear form

((z1,22), (Y1, ¥2)) = (T1, 1)1 + (T2, Y2)2. (1.6)

For MDPs, a typical dual pair of vector spaces is the following. Let S be a
Borel space with Borel o-algebra B(S), and let X' := M(S) be the normed
linear space of finite signed measures p on B(S), with finite w-norm

Il = | walal, (1.7)



for some weight function w > 1. Now, let  := B, (S5) be the normed linear
space of real-valued measurable functions on S with finite w-norm

[[wll == sup [u(s)|/w(s). (1.8)
s

Then, the dual pair (X,)) = (M, (S5),F,(5)) endowed with the bilinear

form
(p, u) ::/Sud.,u (1.9)

is easily seen to be a dual pair. Moreover, by (1.6), the bilinear form corre-
sponding to the dual pair (R™ x M, (S),R" x F,,(9)) is

<(m,u),(y,u)>:m-y—|—<,u,u> (1-10)

where 2 -y := Y ", ;y; denotes the usual scalar product of n-vectors.

Given a dual pair (X,)), we denote by o(X,)) the weak topology
on X (also referred to as the o-topology on X'), namely, the coarsest—or
weakest—topology on X under which all the elements of Y are continu-
ous when regarded as linear forms (-,y) on X'. Equivalently, the base of
neighborhoods of the origin of the o-topology is the family of all sets of the
form

N(l,e):={z e X|{(z,y)|<e Vyel}, (1.11)

where ¢ > 0 and [ is a finite subset of Y. (See, for instance, Robertson and
Robertson [30], p. 32.) In this case, if {z,} is a sequence or a net in X,
then z,, converges to x in the weak topology o(X,Y) if

(Tn,y) = (z,y) Vyed. (1.12)

For instance, for the dual pair (M, (5),F,(5)), a sequence or a net of mea-
sures p, converges to p in the weak topology o(M,, (5), F,,(95)) if

(pn, u)y = (pyu) Yu € Fy(9), (1.13)

where (-, -) stands for the bilinear form in (1.9).

Remark 1 (a) Let (X,)) be a dual pair such that Y is a Banach space and
X = Y* is the topological dual of Y. In this case, the weak topology o(X,))
is called the weak* (weak-star) topology on X, and so (1.12) is referred
to as the weak* convergence of z,, to x.



(b) For instance, with S a locally compact separable metric (LCSM)
space, let X := M(S) be the Banach space of finite signed measures on S,
endowed with the total variation norm |u|rv = |u|(S), and let Y := Co(S5)
be the (separable) Banach space of continuous functions that vanish at in-
finity, equipped with the sup-norm. By the Riesz Representation Theorem
(see, for example, Rudin [31]), M(S) is the topological dual of Cy(S), and
so the weak topology o(M(S), Co(S)) on M(S) is in fact the weak* topology.

Definition 2 Let (X,Y) and (Z, W) be two dual pairs of vector spaces, and
G : X — Z a linear map.

(a) G is said to be weakly continuous if it is continuous with respect to
the weak topologies o(X,Y) and o(Z,W); that is, if {z,} is a net in
X such that z, — z in the weak topology o(X,)Y) [see (1.12)], then
Gz, — Gz in the weak topology o(Z, W), i.e.,

(Gzp,v) = (Gz,v) YveW. (1.14)

(b) The adjoint G* of G is defined by the relation

(Gz,v)=(z,G™v) Vze X, veW. (1.15)

The following proposition gives a well-known (easy-to-use) criterion for
the map GG in Definition 2 to be weakly continuous—for a proof see, for
instance, Robertson and Robertson [30], p. 38.

Proposition 3 The linear map G is weakly continuous if and only if its

adjoint G* maps W into Y, that is, G*(W) C Y.

Positive and dual cones. (a) Let (X', ) be a dual pair of vector spaces,
and K a conver cone in X, that is,  + 2’ and Az belong to K whenever
z and z’ are in K and A > 0. Unless explicitly stated otherwise, we shall
assume that K is not the whole space, that is, K # X', and that the origin
(that is, the zero vector, 0) is in K. In this case, K defines a partial order
> on X such that

z>12 & r-2' €K,

and K will be referred to as a positive cone. The dual cone of K is the
convex cone K* in ) defined by

K ={yeY|(z,y) >0 Vae K} (1.16)



(b) If X = M, (5), we will denote by M, (S)+ the “natural” positive
cone in M, (S), which consists of all the nonnegative measures in M, (5),
that is,

M, ()4 1= {1 € M, ($)|p > 0}.

The corresponding dual cone M, (S)7 in F,, (S) coincides with the “natural”
positive cone

Fu(S)+ :={u € Fy(S)|u > 0}.
1.2.2 Infinite linear programming

An infinite linear program requires the following components:
e two dual pairs (X,)) and (Z, W) of real vector spaces;
e a weakly continuous linear map L : X — Z, with adjoint L* : W — J;
e a positive cone K in X', with dual cone K* in Y [see (1.16)]; and
e vectorsb€ Z and c€ ).

Then the primal linear program is

P: minimize (z,c)
subject to: Lz =b, z € K. (1.17)

The corresponding dual problem is

P*: maximize (b, w)
subject to: ¢ — L*w € K*, w e W. (1.18)
An element z of X' is called feasible for P if it satisfies (1.17), and P is

said to be consistent if it has a feasible solution. If P is consistent, then
its value is defined as

inf P := inf{(z, ¢)|z is feasible for P}; (1.19)

otherwise, inf P := 4o00. The program P is solvable if there is a feasible
solution z* that achieves the infimum in (1.19). In this case, 2* is called an
optimal solution for P and, instead of inf P, the value of P is written as

min P = (2%, ¢).



Similarly, v € W is feasible for the dual program P* if it satisfies (1.18),
and P is said to be consistent if it has a feasible solution. If P*is consistent,
then its value is defined as

sup P* := sup{(b, v) | v is feasible for P*}; (1.20)

otherwise, supP* := —oo. The dual P* is solvable if there is a feasible
solution v* that attains the supremum in (1.20), in which case we write the
value of P* as

max P* = (b, w™).

The next theorem can be proved as in elementary (finite-dimensional)

LP.

Theorem 4 (a) (Weak duality.) If P and P* are both consistent, then
their values are finite and satisfy

sup P* < infP. (1.21)
(b) (Complementary slackness.) If z is feasible for P, v is feasible for
P*, and
(z,c— L™v) =0, (1.22)
then x is optimal for P and w is optimal for P*.

The converse of Theorem 4(b) does not hold in general. It does hold,
however, if there is no duality gap for P, which means that equality holds
in (1.21), i.e.,

supP* = inf P. (1.23)

On the other hand, it is said that the strong duality condition for P

holds if P and its dual P* are both solvable and
max P* = min P. (1.24)

The following theorem gives conditions under which P is solvable and
there is no duality gap—for a proof see Anderson and Nash [1, Theorem

3.9].
Theorem 5 Let H be the set in Z X R defined as
H:={(Lz,(z,c)+r)|z € K, r>0}.

If P is consistent and H is weakly closed [that is, closed in the weak topology
0(Z x R,W x R)J, then P is solvable and there is no duality gap, so that
(1.23) becomes

sup P* = min P.



1.2.3 Approximation of linear programs

An important practical question is how to obtain—or at least estimate—the
value of a linear program. In later sections we shall consider two approaches
related to the following definitions.

Definition 6 (Minimizing and maximizing sequences.)

(a) A sequence{z,} in X is called a minimizing sequence for P if each

z,, is feasible for P and (z,,c) | infP.

(b) A sequence {v,} in W is called « maximizing sequence for the dual
problem P* if each v,, is feasible for P* and (b,v,) 1 sup P*.

Note that if P is consistent with a finite value inf P, then [by definition
(1.19) of inf P] there exists a minimizing sequence. A similar remark holds
for P*.

The equality Lz = b in (1.17) is of course equivalent to write Lz —b =0,
or (Lz — b,v) = 0 for all v € W. If the latter equality is required to hold
only in a subset W of W, we then have an aggregation of constraints of P.
On the other hand, if (1.17) holds only in a subset K’ of K, we obtain an
inner approximation of P. The corresponding linear programs become as
follows.

Definition 7 (Aggregations and inner approximations.)
(a) Let W be a subset of W. Then the linear program
P(W) : minimize (z,c)
subject to: (Lx —b,w)=0 YweW, ze€ K, (1.25)
is called an aggregation (of constraints) of P.
(b) If K' C K is a subset of the positive cone K C X, then the program
P(K") : minimize (z,c)
subject to: Lx = b, z € K', (1.26)
is called an inner approximation of P.

As K' is contained in K, we have inf P < inf P(K”’). On the other hand,
if  satisfies (1.17), then it satisfies (1.25), and so inf P(W) < inf P. Hence

inf P(W) < inf P < inf P(K").



Thus, we can use an aggregation (of constraints) to approximate inf P from
below, whereas an inner approximation can be used to approximate inf P
from above. One can also easily get the following (for a proof see Hernandez-
Lerma and Lasserre [18]):

Proposition 8 Suppose that P is solvable.

(a) If W is weakly dense in W, then P(W) is equivalent to P in the sense
that P (W) is also solvable and

min P(W) = min P.

(b) If K' is weakly dense in K, then there is a sequence {z,} in K' such
that
(zn,c) — minP.

1.3 Linear programing formulation of the AC-problem

Let (X, A {A(z),z € X}, P,¢) be an MDP with Borel state and action spaces
X, A, one-step cost function ¢ : X x A — R, transition kernel P, and with
the long-run expected average cost criterion, that is, given a policy = € 11
and an initial distribution v € P(X) (the space of probability measures on
B(X)), its long-run expected average cost .J(m,v) is given by:

N-1
J(m,v) = 11]1\1;1 sup N"'ET Z c(xe, ay).
—+00 +=0

We recall that to the state space X and the action space A is associated the
space K of feasible state-action pairs, i.e.,

K = {(z,a) e Xx Alz € X,a € Alz)}. (1.27)

It is assumed that K is a Borel subset of X x A and contains the graph
of a measurable function from X to A. This implies in particular that the
set of stationary deterministic policies F is not empty. Let ® be the set of
stochastic kernels ¢ on A given X for which ¢(A(z)|z) =1 for all z € X. In
other words, ® stands for the family of randomized stationary policies.

Remark 9 Fvery p.m. p on X XA concentrated on K can be “disintegrated”
as

W(BxC) = /Bgo(m 2)fdz) VB e B(X),C € B(A), (1.28)

10



for some ¢ € ®, where i is the marginal of p on X, that is, p(B) :=
u(B x A) for all B € B(X). Sometimes we shall write the disintegration
(1.28) of p as p= [ - .

Throughout the rest of this chapter we suppose that the following as-
sumption is satisfied.

Assumption Al. (a) J(7,7) < oo for some policy T and some initial state
T.

(b) The one-stage cost function c(z,a) is nonnegative.

(c) c(z,a) is inf-compact, that is, the set C, = {(z,a) € K|e(z,a) <
r} C K is compact for each r € R.

(d) The transition law P is weakly continuous, that is,

(z,a) — /u(y)P(dy|:C,a)

is a continuous bounded function on K for every continuous bounded function
u on X.

Remark 10 (a) Assumption Al(c) clearly implies that the one-stage cost ¢
is lower semicontinuous, that is, the set C., is closed for each r € R. It also
implies that the set A, (z) := {a € A(z)|c(z,a) < r} is compact for each
z € X and r € R. These facts, together with Assumption A1(b), yield, in
particular, that the function x — min,ga(y) ¢(z, a) is measurable (see Rieder
29))

(b) Another important consequence of Assumption Al(c) is as follows.

Let M = {u;,1 € I} be an arbitrary family of p.m.’s on X x A, concentrated
on K. If

b= sup (iy ) < o,
el

the M is tight, that is, for each € > 0 there is a compact subset K = K. of

K such that

sup pi(K°) < ¢,
el

where K¢ stands for the complement of K. Indeed, let C,. be as in Assump-
tion Al(c), with r > 0, and note that, for alli € I,

E2 o) > [ loa) (o)
> ui(CE) - inf{e(a,a) | (v,a) ¢ C,)
> pi(CF) -

11



Hence sup;cp i (CF) < k/r for all v > 0, which implies that M is tight. Note
also that the latter condition is obviously true if M is a bounded set of
measures (that is, sup;cy pt;(K) < m for some m > 0) rather than p.m.’s

Let pmin be defined as

Pmin = ;I&)J*(V) = ;?ng)irﬁf J(m,v). (1.29)

A pair (7*,v*) € Il x P(X) that satisfies
J(7*,v") = pmin (1.30)

is called a “minimum pair”.
In this section we introduce a linear program (P) such that

sup(P*) < pmin < inf(P). (1.31)

Then we will show that (P) is solvable and that there is no duality gap, so
that instead of (1.31) we will have the stronger relation

sup(P*) = pmin = min(P). (1.32)

Moreover, disintegrating any optimal solution p* of (P) as p* = ,l/L: - @y (see

—~—

Remark 9) for some ¢, € ®, yields that (¢, p*) satisfies (1.30), that is,
(¢x, p*) is @ minimum pair, and, in addition,

——

J(@s, ) = Pmin  p*-a.e. (1.33)
1.3.1 The linear programs

We first introduce the components of the linear program (P) as in §1.2.2.

The dual pairs. Let K C X X A be the set defined in (1.27), and let w(z, a)
and wg(z) be the weight functions on K and X, respectively, defined as

w(z,a) :=14c(z,a), wo(z):= g&r)lw(m,a). (1.34)

By Remark 10(a), wo(z) is measurable. The dual pairs we are concerned
with are

(¥,Y) := (M, (K), By, (K)) (1.35)

12



and
(Z, W) := (R x My, (X),R x By, (X)). (1.36)

In particular, the bilinear form on (M, (K), B, (K)) is as in (1.9), namely,

(g, u) ::/Kudu, (1.37)

and on (R x M, (X),R x B, (X)) is

((r,v), (pyv)):=r-p+ / vdv. (1.38)

JX

Note that, since ¢(z, a) is nonnegative [Assumption A1(b)], (1.34) yields
0< C(‘r7a) < ‘w(i’%a) ‘v’(m,a) €K,

which implies that the cost-per-stage function c is in B, (K), and, on the
other hand,

1 <wp(z) <w(z,a) VY(z,a) € K (1.39)

Moreover, the policy 7 and the initial state Z in Assumption Al(a) satisfy

lim sup — ZEA w(z,a)] =14 J(7,7) < o0. (1.40)

n—oo N

We also need the following additional assumption.

Assumption A2. There is a constant k such that
[ o Pasle.a) < ku(e,a) V(o0 € K
X
In other words, Assumption A2 states that the function

(z,a r—>/ wo(y)P(dylz,a) isin B, (K).

The linear maps. Let Ly and L; be the linear maps

Ly :M,(K) - R and L;:M,(K) — M,, (X),

13



with
Lop = (p, 1) = p(K) (1.41)

and

(Lip)(B) :==u(B) — /H<P(B|:C,a)u(d(m,a)) for B e B(X), (1.42)

where 11 denotes the marginal of g on X. Finally, let
L:M,(K) - R x M,, (X)
be the linear map
Ly = (Lop, Lyp)  for  p € My, (K), (1.43)

with adjoint
L™ :R x By, (X) = By, (K)

given by
L)) = p+ ula) = [ ul)Pldsle,a) (1.44)

for every pair (p,u) in R x B,,, (X) and (z,a) in K. Hence, (1.39), Assump-
tion A2 and Proposition 3 yield that

the linear map L in (1.43) is weakly continuous, (1.45)

that is, continuous with respect to the weak topologies
o(M, (K), B, (K)) and o(R x M, (X),R x B,, (X)).
The linear programs. Consider the vectors
b:=(1,0) in R x M, (X), and ¢ in B, (K),
where ¢ is the cost-per-stage function, as well as the positive cone
K =M, (K);, (1.46)

whose dual cone is

K* =By (K);. (1.47)

14



Then the primal linear program is
(P) minimize (u,c)
subject to: Lp = (1,0), p€ M, (K);. (1.48)
More explicitly, by (1.41)—(1.43), the constraint (1.48) is satisfied if
p(K)y =1 with peM, (K4, (1.49)
and Lip =0, i.e.,
AB) - [ P(Blo.ou(dz,a) =0 VBeBX), (150
K
with 1 € M, (K)4. Observe that (1.49) requires p to be a probability measure

(p.m.). Moreover, disintegrating p into ¢- /i (see Remark 9) for some ¢ € ®,
and using the notation

Pofels) = [ Plela.a)pldalo)

(1.50) can be written as

i(B) = [ P(Bla,)itds) VB € B(X),

which means that p is feasible for (P) if u is a p.m. on K such that its
marginal i on X is an i.p.m. for the transition kernel P,(e|®) = P(yp).
On the other hand, observe that

(b,0) = {(1,0), (0, u)) = p Vo = (p, ) € R x By (X).
Hence, by (1.47) and (1.44), the dual of (P) is
(P*) maximize p
subject to: p+ u(z) — / u(y)P(dylz,a) < c(z,a) (1.51)
X

V(z,a) € K, with (p,u) € R x By, (X).

This completes the specification of the linear programs associated to the

AC problem.

15



1.3.2 Solvability of (P)

Before proceeding to verify (1.31) and (1.32), let us note the following.
Remark 11 We will use the following conventions:

(a) A measure pn on K C XX A may (and will) be viewed as a measure on

all of X x A by defining p1(K°) := 0, where K° := X x A\ K.

(b) We will regard c : K — Ry as a function on all of X x A with ¢(z, a) :=
+oo if (z,a) is in K°. Observe that this convention is consistent with
Assumption Al(c), and, moreover, the weight function w = +oco on
Ke. Any other function u in By, (K) can be arbitrarily extended to
X x A, for example, as u:=0 on K°.

(c) 0-(+00):=0

(d) A function u in By, (X) will also be seen as the function in B, (K)
given by u(z,a) == u(z) for all (z,a) in K.

Then, in particular, we may write the bilinear form in (1.37) as

(p, u) = / wdp
XxA

for any measure g in My, (K) and any function u in B, (K) or in B,, (X).
We will next show that (P) is solvable and
sup(P*) < pmin = min(P). (1.52)
To do this let us first recall that a randomized stationary policy ¢ € @ is

said to be stable if there exists an invariant probability measure (i.p.m.) p,
for the transition kernel P, (B|z) := [, P(B|z,a)¢(da|z), i

po(B) = / P, (B|z) p,(dz),

and, in addition, the average cost J(¢, p,) satisfies that

Tepo) = [ colo)putda),

where ¢, (z) = [, c(z,a)¢(dalz).
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Theorem 12 Suppose that Assumptions A1 and A2 are satisfied. Then:

(a) [Solvability of (P)]. There exists an optimal solution u* for (P), and
min(P) = pmin = (1", ). (1.53)

The disintegration of u* as ;/L;-g’p* for some @, € ® yields that (¢« ;/ﬁ)
is a minimum pair and, in addition,

J(£uy®) = pmin  [H*-a.e.. (1.54)

(b) [Consistency of (P*)]. The dual problem (P*) is consistent and it
satisfies the inequality in (1.52).

Proof. (a) By Theorem 5.7.9(a) in [17], there exists a stable randomized

stationary policy ¢, such that (¢, p,,) is @ minimum pair. That is, p,, is
an i.p.m. for the transition kernel

Pou(Blo) 1= | P(Bla.)g.(dala),
and
J(o" pos) = /X o (@)D (dE) = pin < 00, (1.55)

where

o, (2) ::Ac(m,a)w*(da|x).

Furthermore, as p,, is an i.p.m. for P,,, for every B in B(X) we have

Pou(B) = /X Py (Bl2)py. (d),

po(B) = /X /A P(Blz, a) g (dal2)po. (dz). (1.56)

Now let p* be the measure on X X A defined as

pr (B xC) ::/B@*(C|x)p¢*(da‘) VB € B(X), C € B(A).
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Then, p* is a p.m. on X X A, concentrated on K, and its marginal on X
coincides with p,,:

7*(B) i= 1" (B x &) = p,.(B) VB e B(X).

It follows that we may rewrite (1.56) and (1.55) as

i°(B) = [ P(Bleau(d(e,a) =0 VB € BX),
and

(™ pe,) = (175 €) = pmin < 00, (1.57)

which means that we already have the second equality in (1.53), as well as
the equalities p*(K) =1 and Lyp* =0 in (1.49) and (1.50).
Therefore, to prove (1.53) in part (a) it suffices to show that

(i) p*isin M, (K) so that p* is indeed feasible for (P); and

(ii) (@,¢) > pmin for any feasible solution p for (P), which would yield
inf(P) > pmin-

In other words, (i), (ii) and (1.57) will give that p* is feasible for (P) and

Pmin = <:u*7 C> > lnf(P) 2 Pmins i'e'7 <N*7 C> = Pmin-

Proof of (i). This is easy because, by (1.34) and (1.57),
(u*,wy =14 (u*, ¢) < 0.

Proof of (ii). If p satisfies (1.49) and (1.50), then, in particular, p is a
probability measure on X x A concentrated on K. Thus, p can be “dis-
integrated” as i - ¢ for some ¢ € ¢ (see Remark 9). Furthermore, taking
(¢, ps) == (¢, 11), (1.50) gives that ¢ is a stable randomized stationary policy,
and, therefore, by the definition of puyin,

(u,¢) = J(¢,18) > pmin-

This proves (ii).

To complete the proof of part (a), observe that from (c,*) = pmin,
it follows that c,, € Ll(ﬁ;). Therefore, by Birkhoff’s Individual Ergodic
Theorem

[ H6e21 i = [ cordiF = pui
X X
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and (1.54) follows from combining the above equality with J(¢x, ) > pmin-

(b) By (a) and the weak duality property (1.21), to prove (b) it suffices
to show that (P*) is consistent. This, however, is obvious: for example, the
pair (p,u) with p = u(-) = 0 satisfies (1.51). .

Remark 13 As mentioned in the Introduction, the L P formulation of MDPs
began in the early 1960s as a way to solve the associated optimality (or dy-
namic programming) equation. In particular, for the average cost problem
the question was to find a solution (p,u) to the Average Cost Optimality
Fquation (ACOE) studied in previous chapters, that is, a number p and a
function v on X such that

p+u(z) = aglg(rglg) [e(z,a)+ /Xu(y)P(dy|m,a)] V(z,a) € K (1.58)

The idea was the following. If (p,u) satisfies (1.58), then we obviously have

ptale) < oo, + [ a)Pldyle,a) Vo) € K

or, equivalently,
ptule) = [u)Plyle,a) < e(z,0) V(s0) € K (1.59)
X

which is exactly the same as (1.51). On the other hand, from (1.39) and
Assumption A2, it is easy to check that

1
lim —FEJu(z,) =0
n—oo n
for any function u € By, (X), any policy = and any initial distribution v for
which J(m,v) < oo, which in turn, by (1.59), yields that

p < J(m,v).

As this holds for any pair (p,u) € R X By, (X) that satisfies (1.59), that is,
for any feasible solution for (P*), we obtain the inequality sup(P*) < pmin,
already obtained in Theorem 12(b) using standard L P arguments. Thus, the
essence of the original LP approach to MDPs was to give conditions for the
dual (P*) to be solvable, and for the absence of a duality gap. We will now
address these questions in Theorems 1/ and 16.
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1.3.3 Absence of duality gap

We now prove (1.32).

Theorem 14 (Absence of duality gap.) If Assumptions Al and A2 are
satisfied, then (1.32) holds.

Proof. We wish to use Theorem 5 with Z and L as in (1.36) and (1.43),
respectively. Hence, we wish to show that the set

H = {(Lp, {,c)+r)|p € M, (K)4, r >0}
is closed in the weak topology
(R X My, (X) X R, R X By, (X) x R).

Let (D,<) be a directed set, and consider a net {(pa,7s), @ € D} in
M, (K);+ x R4 such that

Lopie = pa(K) — 1. (1.60)
(Lipto, u) = (vs, u) Vu € By, (X), and (1.61)
(o €) F+ 70 — ps. (1.62)

We will show that ((rs«,v4), ps) is in H; that is, there exists a measure g in
M, (K)+ and a number r > 0 such that

re = Lop = p(K), (1.63)
vie = Lyip, and (1.64)
px = (p,0)+r. (1.65)

We shall consider two cases, r, = 0 and 7, > 0.
Case 1: r, = 0. By definition (1.41) of Ly,

Lopta = pa(K). (1.66)

Therefore, if r, = 0 in (1.60), it follows easily that (1.63)—(1.65) hold with
p(-) =0 and r = p,.

Case 2: r, > 0. By (1.60) [together with (1.66)] and (1.62), there exists
ag in D such that

0 < po(K) < 2r, and (pq,c) < 2p. Va > ap. (1.67)
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Hence, as (fia, ¢+ 1) = (o, €) + p1a(K), we get that ' := {u,, 0 > ap} is a
bounded set of measures, which combined with Assumption Al(c) yields that
' is tight (see Remark 10(b)). Moreover, if 1, (K) > 0, we may “normalize”
Ho Tewriting it as o () /1a(K), and so we may assume that [' is a (tight)
family of probability measures. Then, by Prohorov’s Theorem (see e.g. [4]),
for each sequence {yu,} in I" there is a subsequence {y,,} and a p.m. p on
K such that

(o, v) = (,v) Vv € Cy(K), (1.68)

where Cy(K) denotes the space of continuous bounded functions on K.
In particular, taking v(-) = 1, (1.60) yields that u satisfies (1.63). We
will next show that
(i) pisin My, (K)4, that is, ||g||w = (i, w) < oo [see (1.7)], and
(ii) p satisfies (1.64).

Proof of (i). As w := 1+ ¢, to prove (i) we need to show that (u,c) is
finite. We will prove the latter by showing that

[(1.68), ¢ > 0 and Ls.c.] = liminf(u,,,c) > (u,c). (1.69)

Indeed, if ¢ > 0 and l.s.c. [as in Assumption A1(b)], then there exists an
increasing sequence of functions v; in Cy(K) such that vy T c. It follows
from (1.68) that for each k

lim inf (g, €) > lim_>inf<,um, vg) = (1, vk).

m—r00

Thus, letting & — oo, the Monotone Convergence Theorem gives (1.69).
Proof of (ii). The weak continuity condition on P [Assumption Al(d)]
implies that the adjoint of Lq, namely,

(Lia.a) = (o) = | ) Pldyle,a),
maps C3(X) into Cy(K). Therefore, (1.68) and (1.61) yield that for any
function » in Cj(X)
(Lapy ) = (uy Lyw) = 1 (pim, Lyu) [by (1.68)]
= lim (Lipy,,u)

m—r00

= (v«,u) [by (1.61)].
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That is, (L1p, u) = (v«, u) for any function u in C(X), which implies (1.64).
This proves (ii).

Summarizing, we have shown that p is a measure in M, (K); that sat-
isfies (1.63) and (1.64). Finally, from (1.69) and (1.62) we see that

pe > (u,c) —}—Hm_}inf Pm > () as 1, >0 Ym.
Thus, defining r := p.— (i, ¢) (> 0), we conclude that p and r satisfy (1.63),
(1.64) and (1.65). This shows that H is indeed weakly closed, and so (1.32)
follows. ]

Having (1.32), in the following sections we consider conditions for the
solvability of the dual problem (P*) and for the convergence of approxima-
tions to the optimal values max(P*) and min(P).

1.4 Approximating sequences and strong duality

In the rest of this chapter we are mainly interested in the approximation
of the AC-related linear program (P) and its dual (P*). In this section we
first study minimizing sequences for (P), and then maximizing sequences for

(P%).
1.4.1 Minimizing sequences for (P)

By Definition 6(a), a sequence of measures p, in M, (K)+ is a minimizing
sequence for (P) if each p,, is feasible for (P), that is, it satisfies (1.48),
and in addition

(ttn, €) § min(P), (1.70)
where we have used that (P) is solvable [Theorem 12(a)] to write its value

as min (P) rather than inf (P).

Theorem 15 Suppose that Assumptions Al and A2 are satisfied. If {p,}
is a minimizing sequence for (P), then there exists a subsequence {7} of {n}
such that {u;} converges in the weak topology o (M(K), C}(K)) to an optimal
solution for (P).
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Proof. Let {y,} be a minimizing sequence for (P); that is [by (1.48)],
(fn,1)=1 and Lyp, =0 Vn, (1.71)

and (1.70) holds. In particular, (1.70) implies that for any given € > 0 there
exists n(e) such that

min(P) < (g, c) <min(P)+e Vn > n(e). (1.72)

By the second inequality [together with Assumption Al(c)], the sequence
{1tn} is tight (see Remark 10(b)), so that there exists a p.m. p* on K and
a subsequence {7} of {n} such that

(uj,v) = (@, v) Yo e Cyp(K). (1.73)
Moreover, by (1.69),
(p*,c) <liminf(u;, c) < min(P) +«. (1.74)
J—00

Thus, as € was arbitrary, the latter inequality and (1.72) yield
min(P) = (u*, ¢). (1.75)

This will prove that p* is optimal for (P) provided that p* is feasible for
(P); in other words, provided that p* is a measure in M, (K); and that

Lp* = (Lop™, L1p™) = (1,0). (1.76)

This, however, is obvious because (1.74) yields (p*,w) = 1+ (u*, ¢) < o0,
whereas (1.76) follows from (1.71) and (1.73). .

1.4.2 Maximizing sequences for (P*)

By Definition 6(b) and the definition of the dual program (P*), a sequence
(pnsupn) in R X By, (X) is a maximizing sequence for (P*) if

P+ tn(2) < e, a) + /X un (1) Q(dyl, a) (1.77)

for all n and (z,a) € K, and, in addition,

pn = ((1,0), (pn, un)) T sup(P*). (1.78)

The following theorem shows that the existence of a suitable maximizing
sequence for (P*) implies, in particular, that the strong duality condition

for (P) holds [see (1.24)].
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Theorem 16 [Solvability of (P*), strong duality and the
ACOE.] Suppose that Assumptions Al and A2 are satisfied, and, fur-
thermore, there exists a mazimizing sequence (pn,u,) for (P*) with {u,}
bounded in the wo-norm, that is,

ltn|lw, <k Vn, (1.79)
for some constant k. Then:
(a) The dual problem (P*) is solvable.
(b) The strong duality condition holds, that is, max(P*) = min(P).

(c) If u* is an optimal solution for the primal program (P), then the ACOE
holds [i*-a.e., where [* is the marginal of u* on X; in fact, there is
a function h* in By, (X) and a deterministic stationary policy f. such
that

p*+ h*(z) = min [c z,a —I—/h* y)P(dylz,a
@ = minew 0+ [ PGl
= c(x, f) + [x P () Pdylz, f.)
for p*-almost all z € X.

Proof. (a) By Theorem 14 we have
sup(P*) = p* = min(P) (1.81)

and, moreover, we can write (1.78) as
pnt P (1.82)

Now define the function

h*(z) == lim sup uy,(z),

n—oo

which belongs to By, (X), by (1.79). Therefore [by (1.82) and Fatou’s
Lemmal, taking lim sup,, in (1.77) we obtain

P+ h*(2) < ofw,a) + /X h*(y) P(dyle,a) ¥(z,0) € K.

This yields that (p*, h*) is feasible for (P*) [see (1.51)], which together with
the first equality in (1.81) shows that (p*, h*) is in fact optimal for (P*).
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(b) This part follows from (a) and (1.81).
(c) Let us first note that if u is feasible for (P) and (p, u) is feasible for
(P*), then

(Lp, (pyu)) = ((1,0), (pyu)) = p,

or, equivalently,

(1, L*(p, u)) = p, (1.83)

where L* is the adjoint of L, in (1.44). Now let p* be an optimal solution
for (P), and (p*, h*) an optimal solution for (P*). By part (b) we have

whereas (1.83) gives
(W, L*(p™, b)) = p".

Thus, subtracting the last two equalities we get
(W c=L*(p", h")) = 0,

| o) = 1 ) @ ) (A, ) =0, (1.84)
XxA

We may disintegrate p* as p*(d(z,a)) = ¢(da|z)p*(dz) for some stochastic
kernel ¢ € ®, and then [using (1.44)] we can rewrite (1.84) as

/X |:c(l‘,99) = () + /Xh*(y)P(dmx,@)] 2*(dz) = 0.

Therefore, as the integrand is nonnegative [by (1.51)], we get that for i*-a.a.
(almost all) z in X

PR ) = o)+ [ 1Pl
= [ Jete.a+ [ 1@ Ptsle,0)] elaae),

and so

PR @) 2 o f) 4 [ WPl f) B e se X (185)
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for some decision function f, € F whose existence is guaranteed by a mea-
surable selection result (see Lemma 15.1 in Hinderer [21]). Finally, as (1.51)
implies

p*+ h*(z) < min [c(m,a) —I—/Xh*(y)P(dy|m,a)] for all (z,a) € K,

- A=)

we get that, by (1.85), for p*-a.a. z € X

b)) > ele f) /X W (y) P(dy|e, 1)

> min [c(m,a)—l—/h*(y)P(dy|m,a)]
Az) X
> P h(e),
and (1.80) follows. .

For MDPs with finite state and action spaces it is well known that the
policy iteration (or Howard’s) algorithm is equivalent to solving the primal
program (P) by the simplex method. For non-finite MDPs there is nothing
similar. In fact, for general infinite-dimensional linear programs it is not
even known what the “simplex method” is! However, every algorithm that
would produce a minimizing sequence for (P) can be interpreted as a “policy
iteration” method since every feasible point u of (P), when disintegrated as
i - for some ¢ € ®, can be associated with the stationary randomized
policy ¢. Similarly, every “policy iteration” algorithm moving in the space
of stationary policies with an i.p.m. would produce a minimizing sequence
for (P).

On the other hand, by “duality”, one would expect that value iteration
should be somehow related to solving the dual program (P*). This relation
can be seen as follows.

Remark 17 [(P*) vs. value iteration.] Consider the n-step cost

|
-

n

EZ[) e(wr,ar)]

T

o+
Il
=]

and the corresponding value function v,(z), which can be computed recur-
sively by

v, (z) = agné&(r;) [c(z,a)+ /Xvn_l(y)P(dy|ac, a)] forn=1,2,..., (1.86)
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with vo(.) = 0. Define mg :=0, and forn=1,2,...,

m, = i%f [Vn(2) — v ()] + M1,
Pn = My — My = ir;\{f [Vn(2) — voo1(2)],
un () = () — M.

Then (1.86) can be rewritten as

ot n(e) = min [e(e,0) + [ w1 () Pl ) (1.87)

which yields

pot tn(e) < ele,a) + [ ms () Pz ).

Moreover, as

0a() = vt () = o

the sequence {u, ()} is nondecreasing, and so from (1.87) we obtain

ot tn(a) < ela,a) + [ ua () Pl 0),

which means that the pairs (pn,u,) are feasible for (P*); see (1.77). In
addition, the sequence {p,} is nondecreasing, and, therefore, there exists a
number p < sup(P*) such that

pn = ((1,0), (pn; un)) 1 p. (1.88)

Thus, comparing (1.88) and (1.78) we conclude that the pairs (p,,u,) form
a mazimizing sequence for (P*) provided that p = pmin (see (1.32)) or,
equivalently, provided that the value iteration algorithm converges.

1.5 Finite LP approximations

We will now show a procedure to approximate the AC-related primal linear
program (P) by finite-dimensional linear programs. We will work in essen-
tially the same setting of the previous sections except that now we shall
require the spaces X and K to be locally compact separable metric (LCSM)
spaces. Hence throughout the following we suppose:
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Assumption A3. Assumptions Al and A2 are satisfied, and in addition X
and K are LCSM spaces.

A sufficient condition for K to be LCSM is that X and A are LCSM
spaces and that K is either open or closed in X x A. On the other hand, the
hypothesis that X and K are LCSM spaces ensures that Cy(X) and Cy(K)
are both separable Banach spaces [See Remark 1(b).] In particular, Cy(X)
contains a countable subset C(X) which is dense in Co(X). This is a key fact
to proceed with the first step of our approximation procedure.

1.5.1 Aggregation

Let P, (K) be the family of probability measures (p.m.’s) in M, (K)4, that
is, the family of measures u that satisfy (1.49). Thus, by (1.48), we may
rewrite (P) as:

(P) minimize (u, c)
subject to: Lip =0, p€ Py(K), (1.89)

where Lqp is the signed measure in M, (X) C M(X) defined by (1.42). We
also have:

Lemma 18 Let C(X) C Cy(X) be a countable dense subset of Co(X). Then
the following are equivalent conditions for p in P, (K):

(a) Lip=0.
(b) (Lip,u) =0 Vu e Cy(X).
(c) (Lip,u)y =0 Vu € C(X).
Proof. The equivalence of (a) and (b) is due to the fact that (M(X), Co(X))

is a dual pair—in fact, M(X) is the topological dual of Cy(X) [Remark 1(b)].
Finally, the implication (b) = (c) is obvious, whereas the converse follows

from the denseness of C(X) in Cp(X). .
By (1.89) and Lemma 18, we may further rewrite (P) in the equivalent

form:

(P) minimize (u, c)

subject to: (Lip,u) =0 Vu e C(X); p € Py(K). (1.90)
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Observe that (1.90) defines an aggregation (of constraints) of (P); see
Definition 7(a). In other words, the constraint Lypx = 0 in (1.89) is “aggre-
gated” into countably many constraints (Liu,u) = 0 with u in C(X). We
next reaggregate (1.90) into finitely many constraints as follows.

Let {Cr} be an increasing sequence of finite sets Ci 1T C(X). For each £k,
consider the aggregation
P (Cy) minimize {(u, c)

subject to: (Lip,u)y =0 VYu € Cy; p € Pu(K). (1.91)
This linear program has indeed a finite number of constraints, namely, the
cardinality |Cg| of Cx. We also have our first approximation result:
Theorem 19 Suppose that Assumption A3 is satisfied. Then
(a) P(Cy) is solvable for each k = 1,2,...; in fact, the aggregation P(W)
is solvable for any subset W of Cp(X).
(b) For each k=1,2,..., let py be an optimal solution for P(Cy), i.e.,
(ur, c) = min P(Cy).
Then
(k, ¢) T min(P) = pmin, (1.92)
where the equality is due to Theorem 12(a).

Furthermore, there is a subsequence {y,} of {uxr} that converges in
the weak topology o(M(K), Cy(K)) to an optimal solution p* for (P),
i.e.,

{pm, v) = (%, 0) Vv € Cy(K); (1.93)
in fact, any weak-0(M(K), Cy(K)) accumulation point of {ur} is an
optimal solution for (P).

1.5.2 Aggregation-relaxation

The equality constraint (Lyp,u) = 0 in (1.91) will now be “relaxed” to
inequalities of the form |(Lipu, u)| < e with € > 0.
Let Cr T C(X) be as in (1.91), and let {4} be a sequence of numbers

€r 4 0. For each k£ =1,2,..., consider the linear program
P(Ci,ek) minimize (u, c)
subject to: |[(Lip, u)| <er Vu € Cr; p € Pyu(K). (1.94)
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Remark 20 [fe > 0 and I C Cy(X) is a finite subset of Co(X), then [by
(1.11)] the set

N(I,¢) = {v € M(X)||(v, u)| < ¢ VYu € I}

defines a (closed) weak—actually weak*—neighborhood of the “origin” (that
is, the null measure) in M(X). In particular, if we take ¢ and I as ¢ and
Cr, respectively, then the constraint (1.94) states that Liu is in the weak*
neighborhood N (Cy, i), i.e.,

Lip € N(Ck,ex)- (1.95)

This provides a natural interpretation of P(Cy,ex) as an approrimation of
the original program (P) in the weak* topology o(M(X),Co(X)).

The following result states that Theorem 19 remains basically unchanged

when P(Cy) is replaced by P(Cy, ).
Theorem 21 Suppose that Assumption A3 is satisfied. Then
(a) P(Ck,ex) is solvable for each k =1,2,....
(b) If pr is an optimal solution for P(Cy,cr), i.e.,
(g, c) = minP(Cy,ex) for k=1,2,...,

then {ui} satisfies the same conclusion of Theorem 19(b); in particu-
lar,

(ttr, ¢) T min(P) = pmin- (1.96)

1.5.3 Aggregation-relaxation-inner approximations

The programs P(Cy) and P(Cy,ex) have a finite number of constraints and
give “nice” approximation results—Theorems 19 and 21. However, they
are still not good enough for our present purpose because the “decision
variable” p lies in the infinite-dimensional space M, (K) C M(K). (For the
latter spaces to be finite-dimensional we would need the state and action
sets, X and A, to be both finite sets.) Now, to obtain finite-dimensional
approximations of (P) we will combine P(Cy, £x) with a suitable sequence of
inner approzimations [see Definition 7(b)]. These are based on the following
well-known result (for a proof see, for instance, Theorem 4, p. 237, in
Billingsley [4], or Theorem 6.3, p. 44, in Parthasarathy [28]).
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Proposition 22 [Existence of a weakly dense set in P(S5).] Let S be
a separable metric space and D C S a countable dense subset of S. Then
the family of p.m.’s whose supports are finite subsets of D is dense in P(S)
in the weak topology o(M(S), Cy(S)).

We will now apply Proposition 22 to the space S := K. Let D C K be
a countable dense subset of K, and let {D,} be an increasing sequence of
finite sets D, T D. For each n =1,2,..., let A, := P(D,,) be the family
of p.m.’s on D,; that is, an element of A, is a convexr combination of the
Dirac measures concentrated at points of D,. Then, as D, T D, the sets A,
for an increasing sequence (of sets of p.m.’s) whose limit

A= QAn (1.97)

is dense in P(K) in the weak topology o(M(K),C3(K)); that is, for each
p.m. p in P(K), there is a sequence {v;} in A such that

(vg,v) = (u,v) Yo € Gyp(K). (1.98)

Let us now consider a linear program as P(Cg, ) except that the p.m.’s
pin (1.94) are replaced by p.m.’sin A, NP, (K). That is, instead of P(C, %)
consider the finite program

P(Ck,er, Ap): minimize (u, c)
subject to: |[(Lip, u)| <ex Vu € Cr, p € A, NP, (K). (1.99)

This is indeed a finite linear program because it has a finite number |C| of
constraints, and a finite number |D,| of “decision variables”, namely, the
coefficients of a measure in A, NPy (K).

The corresponding approximation result is as follows.

Theorem 23 [Finite approximations for (P).] If Assumption A3 is sat-
isfied then:

(a) For each k = 1,2,..., there exists n(k) such that, for all n > n(k),
the finite linear program P(Cg,er, Ay) is solvable and

min P(Cg,ex) < minP(Cy, e, A,,). (1.100)
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(b) Suppose that, in addition, the cost-per-stage function c(z,a) is contin-
uous. Then for each k= 1,2, ... there exists n*(k) such that

min P(Cy, €5, Ay) < min(P) ¢ Vn > n™(k); (1.101)
hence [by (1.100) and (1.96)]
min P (Cg, €5, Ay,) = min(P) = pmin as k — oo, (1.102)

where of course the limit is taken over values of n > n*(k). More-
over, if pg, [for kK > 1 and n > n*(k)] is an optimal solution for
P(Ck, ek, Ay), then every weak accumulation point of {jik,} is an op-
timal solution for (P).

The approximation results in this section are based on Hernandez-Lerma and
Lasserre [19]. A similar approach, combining aggregations, relaxations and
inner approximations, can be used to approximate general (not necessarily
MDP-related) infinite linear programs, as in Hernandez-Lerma and Lasserre
[18]. These two papers provide many related references.

The approximation schemes in Section 1.5 are somewhat similar in spirit
to schemes proposed by Vershik [33] and Vershik and Temel’t [34], but with
a basic difference. Namely, we use weak and weak* topologies (see Remark
20 and Lemma 22), whereas Vershik and Temel’t use stronger—for instance,
normed—topologies. This is a key fact because we only need “reasonable”
things, whereas their context would require convergence in the total variation
norm, which is obviously too restrictive. For instance, for an uncountable
metric space, the density result in Proposition 22—with finitely supported
measures—is, in general, virtually impossible to get in the total variation
norm.

Finally, it is worth noting that the approach in this section can be used
to approximately compute an i.p.m. for a noncontrolled Markov chain on
a LCSM space whose transition kernel satisfies the (weak) Feller condition
in Assumption A1(d). The idea would be to introduce an “artificial” MDP
with a singleton control set A and with a continuous “cost” function that
satisfies the hypothesis of Theorem 23.

1.6 Conclusion

In this chapter we have developed an LP approach for MDPs with the aver-
age cost criterion. As mentioned in the introduction, this LP approach can
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be adapted to other optimality criteria, and to constrained MDPS with ad
hoc modifications left to the reader.

From an approximation point of view, it was shown how finite LP ap-
proximations schemes can be designed to approximate the optimal value.
Validating such numerical schemes on a significant sample of problems re-
mains to be done. In addition, an important computational issue is to con-
struct control policies that are e-optimal, i.e., whose cost is within ¢ of the
optimal value. The numerical schemes for the optimal value might provide a
valuable tool. Indeed, from the converging sequence of finite LPs, one may
construct (incomplete) stationary “policies” defined only at some points of
the state space X. Extending such policies to the whole space X and proving
their e-optimality is a topic for further research. Another interesting isssue
is to compare the LLP approach with others, notably those that approximate
from the beginning the original problem with a finite or countable state and
action model.

Finally, as already noted, such numerical schemes might prove to be
a valuable tool to compute invariant probability distributions for (noncon-
trolled) Markov chains.
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