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Cellular metabolism is highly dependent on environmental factors, such as nutrients, toxins

and drugs, genetic factors, and interactions between the two. Previous experimental and

computational studies of how environmental factors affect cellular metabolism were limited to the

analysis of only a small set of growth media. In this study, we present a new computational

method for predicting metabolic gene–nutrient interactions (GNI) that uncovers the dependence

of gene essentiality on the presence or absence of nutrients in the growth medium. The method is

based on constraint-based modeling, permitting the systematic exploration of a large putative

growth media ‘space’. Applying this method to predict GNIs in the amino-acid metabolism

system of yeast reveals complex interdependencies between amino-acid biosynthesis pathways.

The predicted GNIs also enable the ‘reverse-prediction’ of growth media composition, based on

gene essentiality data. These results suggest that our approach may be applied to learn about the

host environment in which a microorganism is embedded given data pertaining to gene lethality,

providing a means for the identification of a species’ natural habitat.

Introduction

The study of cellular systems is focused not only on the

separate effects of genetic and environmental factors, but also

on the interactions between the two. The investigation of

gene–environment interactions has its roots in the identification

of the joint effect of genetic and environmental factors on

disease susceptibility1 and many interactions of that kind are

already known today.2 Previous research in this field involved

the development of high-throughput assays for measuring

gene–chemical interactions in micro-organisms, which were

shown to uncover molecular mechanisms that underlie drug

function.3,4 Large-scale experiments of condition-dependent

gene essentiality have provided further insight into the

relationship between environmental and genetic factors that

affect an organism’s growth.5,6

The central role of metabolism in cellular function and its

close interaction with numerous environmental factors such as

nutrients, toxins and drugs, makes studying metabolic gene–

environment interactions a particularly important field of

investigation. However, this is a complex task due to the highly

interconnected nature of metabolic pathways. Computational

models of cellular metabolism were previously used to

predict chemical–chemical interactions7 and gene–gene inter-

actions using double8 or higher-order knockouts.9,10 Other

computational studies have analyzed the environmental

specificity of numerous factors, including gene essentiality,11

genetic interactions,12 and the contribution of genes to bio-

synthetic processes.13 These studies relied on the constraint-

based modeling approach, which enables the large-scale

modeling of metabolic network function under a diverse range

of genetic and environmental conditions (see ref. 14 for a

review). Relying on a limited number of growth environments

(ranging from 4 up to 53 media), these studies identified

specific genes whose essentiality varies across different growth

media. However, obtaining a comprehensive map of inter-

actions between genes and nutrients in the growth media

requires the inspection of a markedly higher number of

growth media. This constitutes a major computational

challenge, as the number of potential growth media to

which an organism may be exposed may be very large. For

example, according to the metabolic network model of ref. 15,

the number of compounds that may be taken up by the yeast

Saccharomyces cerevisiae is 116, which gives rise to an

enormous set of 2116 possible growth media conditions

consisting of subset combinations of these compounds.

In this study, we present a new constraint-based computa-

tional framework for predicting metabolic gene–nutrient

interactions (GNI) that affect an organism’s growth rate.

Specifically, we denote the existence of a gene–nutrient inter-

action between gene x and nutrient y if the essentiality of gene

x is modified by the presence or absence of nutrient y in the

growth medium (where ‘essentiality’ does not necessarily entail

lethality, but refers to a significant drop in growth rate). We

classify GNIs according to two main criteria. The first relates

to the presence/absence of nutrients in the media: a positive
GNI is defined if the nutrient is commonly present in growth

media under which the gene is essential. Conversely, a negative
interaction is defined in cases where the nutrient is commonly
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absent in media under which the gene is essential. The second,

relates to the extent of the GNI: a strong GNI reflects a tight

dependency between gene essentiality and nutrient availability.

In this case, a gene is essential for growth only when a certain

nutrient is always present in the growth media (strong positive

interaction) or always absent from it (strong negative inter-

action). GNIs where the dependency is not absolute as above

(i.e., which are present/absent most of the time but not always)

are referred to as weak. Positive GNIs are expected between

genes that are involved in a catabolic pathway and the

corresponding uptake nutrients they catabolize. For example,

genes involved in galactose catabolism can be expected to have

a positive interaction with galactose, as their knockout will

affect the organism viability only when galactose is present in

the growth media and they are normally active. Inversely,

genes involved in anabolic pathways, are expected to have

negative interactions with the metabolites they synthesize, as

their knockout will affect growth only when the synthesized

metabolite is absent from the growth media and needs to

be synthesized. For example, genes involved in histidine

biosynthesis are expected to have a negative interaction with

histidine, as their knockout will affect growth only when

histidine is absent from the media.

Considering these definitions, we conduct, for each gene, a

comprehensive search through the space of possible growth

media, aiming to identify media under which the gene is essential

and hence account for its GNIs. We applied this computational

approach to predict GNIs that affect yeast growth, focusing on

amino-acid containing growth media. Amino-acid biosynthesis

involves a significant fraction of the metabolic genes in the

model, and we expect negative GNIs with the amino-acids

that they are annotated to synthesize. The prediction of

these negative GNIs serves as an initial validation of our

computational approach. Focusing on GNIs for a defined

set of related metabolites (i.e. amino-acids) has led to the

identification of novel, interesting GNIs that reflect an inter-

dependency between different biosynthetic pathways. We then

show how GNIs can be used to ‘reverse-predict’ the growth

media composition of the yeast from gene essentiality data.

Results and discussion

A constraint-based approach for predicting gene–nutrient

interactions

To predict strong GNIs, we developed a method that, in

contrast to common constraint-based methods, which predict

gene essentiality given a growth medium of interest, actually

goes the other way around. Our method searches through the

space of possible growth media for a medium under which a

given gene of interest is essential, thus enabling the identification

of strong GNIs as shown below. A metabolic growth medium

consists of a set of metabolic nutrients that can be taken up by

the organism, while the space of all possible media is the

collection of all such sets. A gene is considered essential if its
knockout causes a significant drop in growth rate to a value

that is below a pre-defined threshold (Methods).

The method for predicting strong GNIs is based on an

optimization problem that, given a gene of interest, finds

whether there is at least one medium under which this gene

is essential. Specifically, we employ a bi-level optimization that

searches for a medium in which: (i) there exists a feasible flux

distribution for the wild-type strain, satisfying stoichiometric,

thermodynamic (i.e. reaction directionality constraints as

embedded in the network model) and flux capacity constraints,

and providing substantial growth rate; and (ii) the drop in the

organism’s growth rate following the knockout of the gene is

maximal (Fig. 1; Methods). The bi-level optimization consists

of an outer problem that searches for a medium under which

the drop in the organism’s growth rate following a gene

knockout is maximized, and inner problems that identify

feasible flux distributions for the wild-type and knocked-out

strains. The organism’s growth rate is computed based on the

maximal possible synthesis rate of its essential biomass

precursors under a given growth medium, as conventionally

done in the flux balance analysis (FBA) method.16,17

The optimization problem is solved optimally via a mixed

integer linear programming (MILP) formulation (Methods).

Notably, previous constraint-based metabolic modeling

studies have already used MILP and bi-level optimization

for exploring metabolic flux distributions,18 metabolic-regulatory

steady-states,19 gene knockout sets that lead to metabolite

over-production,20 possible biomass coefficients,21 and system

objectives.22 In difference to these studies, our method is the

first to systematically explore the space of possible growth

media related to gene essentiality. As an alternative to employing

MILP (which may require long running times), the optimization

problem can be efficiently solved via a heuristic coordinate

Fig. 1 An overview of the method used to predict strong gene–nutrient

interactions. (a) The bi-level optimization searches for a growth

medium under which a given gene is essential for growth. It is

formulated as a mixed integer linear programming (MILP) problem

consisting of an outer and two inner problems. The outer problem

searches through the space of possible growth media for a medium

under which the drop in the organism’s growth rate following a gene

knockout is maximized. The inner problems identify optimal flux

distributions satisfying various flux constraints for the wild-type and

knocked-out strains. (b) A pseudo-code of the method used to

predict strong GNIs by applying constrained variants of the bi-level

optimization where specific nutrients are forced to either be present or

absent from the growth media.
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descent method23 (involving a series of linear optimization

problems), which is shown to extend its scalability while

maintaining accurate results (Methods).

The prediction of strong GNIs for a given gene begins with

the application of the above bi-level problem to find whether it

is essential for growth in at least a single growth medium. In

the case that the gene is found to be essential in at least a single

medium, the prediction of strong GNIs for this gene involves

the application of a constrained variant of the bi-level optimi-

zation method (Fig. 1b; Methods). Specifically, to identify a

strong positive GNI, the optimization method examines

whether all growth media in which the gene is essential for

growth contains a certain nutrient. This is done by restricting

the search to growth media that lack the nutrient and looking

for at least a single medium under which the gene is essential

(i.e., by re-employing the bi-level optimization). A failure to

identify such a growth medium reflects a positive GNI.

Inversely, to identify a strong negative GNI, the optimization

method examines whether all growth media in which the gene

is essential for growth lacks a certain nutrient. This technique

is akin to flux variability analysis (FVA),24 which is commonly

used to explore the space of alternative flux distributions under

a given growth medium, but is employed here to explore the

whole space of possible growth media that give rise to gene

essentiality.

To predict weak GNIs, we perform a sampling of the space

of possible growth media, and apply FBA to predict gene

knockout effects under each sampled medium (Methods). A

positive (or negative) weak GNI is identified when a nutrient is

present (or absent) in a significantly high number of media

under which the gene is essential (Methods). In cases where a

nutrient is found to be present (or absent) in all sampled

growth media, the sampling method may also hint to the

existence of strong GNIs. However, the sampling method is

applicable only for genes that are essential for growth under a

high number of growth media, where the sampling can obtain

sufficient data to provide reliable statistics (Methods; ESIz
Fig. S2). Notably, the optimization-based method for inferring

strong GNIs, by comprehensively searching the whole of

media space, does not suffer from this limitation.

An illustrative example of the method’s predictions is shown

in Fig. 2a–b. The growth media consist of a subset of four

metabolites (M1–M4). The organism’s growth depends on its

ability to produce its biomass precursors M5 and M8.

The method predicts strong positive interactions between

gene G1 and M1 and M2, as both M1 and M2 must be

present in growth media for G1 to be essential. It also

predicts strong negative interactions between G1 and M3

and M4, which must be absent from the medium for G1 to

be essential. In order for G2 to be essential, either M3

or M4 must be present in the growth medium but not

necessarily both; hence both metabolites form a weak positive

interaction with G2. G2 is predicted to have a strong negative

interaction with M2, as the presence of M2 (together with

either M3 or M4, which lead to the synthesis of M1)

renders the gene G2 dispensable. Gene G3 is predicted to

be non-essential under all possible growth media (as its activity

is backed-up by an alternative pathway) and hence has

no GNIs.

Predicting interactions between yeast genes and amino-acid

nutrients

We applied our method to predict GNIs that affect yeast

growth, focusing on amino-acid containing growth media.

The analysis was performed using the genome-scale metabolic

network model of the yeast S. cerevisiae by ref. 15, revealing 88
strong GNIs and 188 weak GNIs, involving a total number of

169 genes (Fig. 3). As expected, a high fraction of the inter-

acting genes (83%) are annotated as involved in amino-acid

biosynthesis. The predicted interactions of these genes show an

expected pattern in which many of the genes have a negative

interaction with the amino-acids that they are annotated to

synthesize (as evident by the red diagonal mark in Fig. 3). For

example, the genes HIS1–HIS7, which form the histidine

biosynthetic pathway, have strong negative interactions with

histidine, as they are essential for growth only in media that

lack histidine. To validate the predicted GNIs, we extracted

data on substrate auxotrophy experiments (measuring the

dependency of knocked-out yeast strains on the availability

of nutrients in the growth medium) from the Saccharomyces
genome database (SGD). The substrate auxotrophy data

is displayed in Fig. 3, super-imposed on-top of the GNI

predictions. We found that 65% of the genes that were

predicted to have a single strong interaction with a certain

amino-acid are known to be auxotrophic to that amino-acid

(i.e. they require the presence of the amino-acid in the growth

media to enable growth; Fig. 3). This high overlap between the

predicted GNIs and amino-acid auxotrophy is highly significant

(a hyper-geometric p-value o 10�300, which reflects the

probability of achieving a similar overlap with the substrate

auxotrophy data for randomly generated GNIs).

In addition to the expected negative interactions between

genes and the amino-acids they are annotated to synthesize,

we identify 201 GNIs that reflect the complex interdependency

between amino-acid biosynthetic pathways (off-diagonal

interactions in Fig. 3). An illustrative example involves

SER1 and SER2 (3-phosphoserine aminotransferase and

phosphoserine phosphatase, respectively). These genes have

known, annotated interactions with serine and glycine, but the

analysis reveals that they also have strong negative inter-

actions with alanine and proline (Fig. 3). An inspection of

Fig. 2 An illustrative example of GNI predictions in an example

network. (a) Nodes represent metabolites and edges represent bio-

chemical reactions. The smaller nodes represent abundant (currency)

metabolites that are duplicated several times. (b) Predicted GNIs, with

rows representing genes and columns representing nutrients. Dark

green and red table entries represent strong positive and strong

negative GNIs, respectively. Light green and red entries represent

weak positive and weak negative GNIs. Gene G3 is marked with gray,

denoting the fact that there is no growth medium under which it is

predicted to be essential.
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the underlying network topology provides further insight into

these predictions. The existence of strong negative interactions

with both glycine and serine (which requires both of them to

be missing from the growth media in order for SER1 and

SER2 to be essential) is due to the possible conversion of

glycine to serine, or vice versa, via glycine hydroxymethyl-

transferase, which provides an inter-conversion backup

between these two metabolites. The negative interactions

between the SER1 and SER2 genes and alanine are due to

an analogous possible backup inter-conversion between

alanine and glycine via glyoxylate transaminase. This relationship

requires alanine to be absent from the growth medium in order

for SER1 and SER2 to be essential. However, the negative

interaction between SER1 and SER2 and proline is not readily

explained via a potential inter-conversion backup mechanism

that can be identified by inspecting the network topology.

Rather, it is the outcome of more complex stoichiometric

relations. Another interesting example is the case of CYS1
and CGS1 genes (O-acetylserine (thiol) lyase and cystathionine-g
synthase, respectively), which are involved in homo-cysteine

synthesis. In this case we identify several strong positive and

negative interactions (Fig. 3). The negative interaction with

aspartate is due to a pathway that synthesizes homo-cysteine

through homo-serine that is produced from aspartate. The

positive interaction with threonine is due to the essentiality of

threonine in producing cystathionine (a substrate for homo-

cysteine synthesis via CYS1 and CGS1). The former must be

provided in the growth medium, as it can not be produced

from aspartate or glycine, which are absent from it.

An inspection of weak GNIs reveals further high level

relations between gene essentiality and nutrient availability

in the growth media. For example, ILV2, ILV3, ILV5 and

ILV6, which were originally annotated in the model to valine,

leucine and isoleucine metabolism, are predicted to have weak

interactions with valine and isoleucine but not with leucine

(Fig. 3). Inspecting the set of sampled growth media shows

that these genes are essential when either valine or isoleucine

are absent from the growth media. This is explained by the fact

that both valine and isoleucine require 3-methyl-2-oxobutanoate

(synthesized by ILV genes) as a precursor, while leucine does

not. This prediction is supported by previous substrate

auxotrophy experiments, which showed that both valine and

leucine must be present in the medium to enable growth of

strains with mutations in each of the above genes (SGD).

Supporting the predicted gene–nutrient interactions via

gene–gene interactions

Similarity in patterns of GNIs between genes is one indication

of functional similarity.4 To provide a second form of

large-scale validation of the predicted GNIs, we computed a

GNI-based similarity measure between genes and compared it

with a common measure of functional similarity, which is

based on similarity between patterns of genetic interactions

(GI; Methods).25,26 In the latter measure, two genes are

considered similar if they tend to have synergistic (i.e.
synthetic sick and lethal) genetic interactions with the same

set of genes. To identify genetic interactions between genes we

followed previous studies, which successfully used flux balance

analysis to this aim.8,10,27 Comparing the GNI- and GI-based

functional similarity scores among all pairs of metabolic genes

having GNIs resulted in a highly marked Spearman correlation

of 0.71 (p-value o 10�300; Fig. 4a). The high correlation

between the GNI- and GI-based functional similarity

measures provides additional testimony to the veracity of the

GNI predictions. To demonstrate that the GNI-based

functional similarity is not directly reflected in the joint

membership of genes in metabolic pathways, we computed

an additional functional similarity measure between genes,

based solely on pathway annotation data (Methods). The

correlation between this pathway-based similarity measure

and the GI-based measure was found to be markedly lower

(Spearman correlation of 0.57), testifying to our method’s

ability to correctly capture functional similarity characteristics

that are not directly reflected in the pathway annotation data.

The high correlation between GNI- and GI-based gene

functional similarity further strengthens previous claims

regarding the evolution of genetic robustness (as reflected in

the GIs) as a congruent effect of the organism’s need to grow

in different conditions (i.e., environmental robustness; as

reflected in the GNIs).12,28 Notably, relying on experimentally

determined genetic interactions could have further strengthened

Fig. 3 Predicted gene–nutrient interactions between yeast genes and

amino-acid nutrients. Rows represent genes (grouped by their known

annotation, left axis) and columns represent amino-acids. Dark green

and red table entries represent strong positive and strong negative

GNIs, respectively. Light green and red table entries represent

weak positive and weak negative interactions, respectively. For

example, the top row describing gene TRP1 shows that the gene is

essential only when tryptophan is absent from the media (a strong

negative GNI). The following row describing ARO1 shows that the

gene is essential when tyrosine, tryptophan, and phenylalanine

are mostly absent from the media (weak GNIs). Table entries marked

with a plus sign represent validated predictions based on substrate

auxotrophy experiments (obtained from the SGD database).

Genes that appear above the black horizontal line at the bottom of

the figure are annotated (in the model of Duarte et al.15) as involved
in amino-acid metabolism. Those below this line have predicted

GNI interactions even though they do not have such annotations

in the original model. The black block rectangles across the

matrix’s diagonal represent GNIs between genes and the amino-acid

they are known to synthesize according to their annotation in the

model.
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this analysis, but no large-scale data on genetic interactions

involving yeast metabolic genes is currently publicly available.

Reverse-prediction of growth medium composition based on

gene–nutrient interactions

A highly interesting potential application of this new method

for predicting GNIs, is to infer the composition of a specific

growth medium of interest based on phenotypic data on gene

essentiality under this medium. Two previous studies with this

aim made initial strides towards finding some characteristics

of the natural growth environment of a pathogen within a

host organism, based on gene essentiality data obtained via
in vivo cultivation in the host.29,30 Specifically, both studies

investigated the natural growth environment of Escherichia coli
within the mouse intestine by performing knockouts of

metabolic genes in the bacteria and testing for resulting effects

on its fitness, i.e., its ability to grow in the intestine. Using our

method and sufficiently ample knockout experimental data, a

large-scale prediction of the growth medium composition can

be done by summing up the constraints on nutrient availability

from all GNIs identified in the environment under study

(Methods).

To test this potential application of our method, we applied

it to predict the composition of 215 randomly sampled growth

media that contain various subsets of amino-acids. In each

medium, we obtained gene essentiality data (predicted via
FBA; Methods) and used it together with predicted GNIs to

reverse-predict the presence of metabolites in the medium.

Relying solely on strong GNIs provided predictions regarding

the presence of 27% of the metabolites on average across the

growth media. As strong GNIs reflect definite and exact

information about the presence of nutrients in the medium,

these predictions yielded a recall of 0.27 with a precision of 1.0.

When weak GNIs were added to infer the presence of

metabolites in the media, the recall increased to 0.7, with a

slightly lower precision of 0.92. For comparison, we computed

the maximal possible recall that can be achieved (along

with precision of 1.0) by calculating the average number of

nutrients (across growth media) whose presence is uniquely

correlated with the essentiality pattern of all genes (Methods).

We found that the optimal possible recall in the example we

studied was 0.77, only slightly higher than that obtained by

integrating both strong and weak GNIs (Fig. 4b). Interestingly,

the prediction accuracy varies significantly for different

nutrients, with some (e.g., tryptophan and phenylalanine) that

are uniquely predicted across all sampled growth media, and

others (e.g., methionine) uniquely predicted in only 37% of the

sampled media. The prediction accuracy may be further

improved in future studies by considering higher-order GNIs,

reflecting the relationship between the essentiality of a set of

genes (via double knockouts or high-order k-lethality sets10)

and the presence or absence of nutrients in the growth media.

This paper presents a new computational method for

predicting gene–nutrient interactions that affect an organism’s

viability. The method enables one to computationally study an

array of new questions regarding the interplay between gene

essentiality and nutrient composition. Specifically, it may be

used to study the constraints on the growth environments

under which various genes evolved. A classical study

demonstrating the effects of environmental constraints on gene

evolution was previously done by Alves and Savageau,31 and

showed that an enzyme participating in the biosynthesis of a

given amino-acid (i.e., its gene having a negative GNI with

that amino-acid, in our framework) has a lower than expected

frequency of that amino-acid in its proteomic sequence.

Another interesting application of our method may involve

the prediction of GNIs between human metabolic disease-

causing genes and various dietary nutrients, using the recent

reconstruction of the first large-scale human metabolic

network model.32 Finally, as we have shown, the new method

can be used to learn about the host environment in which a

microorganism is embedded, providing for studies of such

species in their natural habitat.

Methods

An optimization method for predicting strong gene–nutrient

interactions

To identify a medium under which a given gene is essential for

growth, we formulate the following bi-level optimization

problem:

max
w;v;e
ðwgrowth � vgrowthÞ

s:t:

S � w ¼ 0 ð1Þ

wmin � winner � wmax ð2Þ

wexchange � e ð3Þ

max
v
ðvgrowthÞ

s:t:

S � v ¼ 0; ð4Þ

vmin � vinner � vmax ð5Þ

vexchange � e ð6Þ

vg ¼ 0 ð7Þ

8>>>>>><
>>>>>>:

ðIÞ

Fig. 4 GNI-versus GI-based gene similarity and GNI-based media

prediction. (a) The correlation between the similarity in the genes’

GNI patterns and their similarity in the genetic interaction (GI)

patterns, supporting the biological plausibility of our method’s

predictions. (b) Mean accuracy of GNI-based predictions of metabolite

presence/absence across a set of growth media via gene essentiality

data. As is evident, the estimated prediction accuracy obtained with

weak GNIs is close to the optimal possible accuracy (computed as

described in the main text).
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where w denotes a feasible flux vector for the wild-type strain,

and v denotes a feasible flux vector following the knockout of

gene g. The vector e denotes the upper bounds on the rate of

exchange reactions that enable the uptake of nutrients from

the environment.

The growth rate of the wild-type and knockout strains are

denoted by wgrowth and vgrowth, respectively, representing the

maximal production rate of essential biomass precursors

(as in FBA16,17). A feasible flux vector satisfies mass-balance,

reaction directionality and flux capacity constraints. S is an

n � m stoichiometric matrix, in which n is the number of

metabolites and m is the number of reactions. The mass

balance constraint for the wild-type and knockout flux vectors

are enforced in eqn (1) and (4), respectively. Thermodynamic

constraints that restrict flow direction are imposed by setting

vmin and vmax as lower and upper bounds on the wild-type and

knockout flux vectors in eqn (2) and (5), respectively. The

constraints on the uptake of nutrients from the environment

within the wild-type and knockout flux vectors are enforced in

eqn (3) and (6), respectively. The knockout of gene g in the

knockout flux vector v is enforced in eqn (7). The optimization

is formulated as to find a growth medium e along with feasible

flux vectors w and v, such that the knockout of g under growth

medium e causes the maximal drop in growth rate. The growth

rate of the knockout strain is computed based on the

maximization of growth reaction in the inner optimization

problem. The growth rate of the wild-type strain is computed

based on an implicit maximization of the growth reaction in

the outer optimization.

To solve the above bi-level optimization (I), we replace the

inner linear programming (LP) maximization problem by its dual

LP problem,33 obtaining the following optimization problem:

max
w;z;e;x1;x2;x3

ðwgrowth � ðxT
1 vmax � xT

2 vmin þ xT
3 eÞÞ

s:t:

S � w ¼ 0

wmin � winner � wmax

wexchange � e

� cþ ST zþ x1 � x2 þ x3 ¼ 0

x1 � 0; x2 � 0; x3 � 0

ðIIÞ

The resulting optimization problem (II) contains a bilinear

term xT
3e. It is solved by enforcing e to be binary (representing

whether a certain nutrient is available or not in the growth

medium), and reformulating the problem via mixed integer

linear programming (MILP), yielding an optimal solution.

Enforcing e to binary values means that nutrients that are

absent from the medium would have zero uptake rates and

nutrients that are present in the medium will have uptake

rates that are lower or equal to one. Allowing for higher

uptake rates by multiplying e by a constant factor provided

qualitatively similar results. Specifically, the bilinear term is

substituted with a new variable h. If e equals one, then h
is constrained to x3 in eqn (9). If e equals zero, then h is

constrained to zero in eqn (8). Note that eqn (8) and (9)

require an estimation of an upper bound on the dual variable

x3, denoted x3
upper. In our formulation we set x3

upper = 100,

while in practice x3 was found to be smaller than 1 in all runs

of the MILP solver. The final formulation of the MILP

problem is as follows:

max
w;z;e;x1 ;x2;x3;h

ðwgrowth � ðxT
1 vmax � xT

2 vmin þ hÞÞ

s:t:

S � w ¼ 0;

wmin � winner � wmax

wexchange � e

0 � h � e � xupper
3 ð8Þ

x3 � xupper
3 � ð1� eÞ � h � x3 ð9Þ

� cþ ST zþ x1 � x2 þ x3 ¼ 0

x1 � 0; x2 � 0; x3 � 0

e 2 0; 1f g

ðIIIÞ

The running time of this optimization (III) is highly dependent

on the number of nutrients that may be present in the growth

media and on the complexity of the network model. In the

application of this method to predict strong GNIs between

yeast genes and amino-acids (as described in the Results), the

run time was about 12 h on a standard personal computer

(using the CPLEX solver), which is 20 times faster than that

required by a naı̈ve, brute-force method. Further simulations

show that the improvement factor in running time compared

to brute-force grows exponentially with the number of nutrients

analyzed (ESIz Fig. S1). The MILP relaxation of optimization

problem (II) may require too much time to solve, when a

higher number of media nutrients is considered. To overcome

that, we tested an alternative method for solving optimization

problem (II) via the coordinate descent (CD) method.23

Comparing the solutions obtained with MILP and the

CD-based method showed that the CD-based method

correctly identifies 47% of the GNIs between yeast genes

and amino-acids. The run time of the CD-based method

(which involves a series of linear programming problems) is

on the order of minutes regardless of the number of nutrients

considered. All results presented in this paper were obtained

with the MILP optimization.

To identify strong GNIs for gene x, the optimization

method is first used to check whether there exists at least a

single medium under which x is essential for growth. A gene is

considered essential in a certain growth medium if the drop in

the growth rate after its knockout is higher than 20% of the

wild-type strain, following previous studies.10,13 Different

thresholds on growth rate drop provided qualitatively

similar results (data not shown). Specifically, to identify a

strong interaction between gene x and nutrient y, the above

optimization method is used to check whether y is present or

absent in all growth media in which x is essential. This is done

by solving a constrained version of the optimization problem

where y is forced to be present or absent, by constraining the
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D
ow

nl
oa

de
d 

by
 T

ec
hn

io
n 

- 
Is

ra
el

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

on
 2

2 
O

ct
ob

er
 2

01
2

Pu
bl

is
he

d 
on

 1
8 

Ju
ne

 2
00

9 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/B

82
32

87
N

View Online

http://dx.doi.org/10.1039/b823287n


corresponding variable ei to either one or zero, respectively.

A failure of the optimization method to identify a growth

medium in which nutrient y is forced to be absent reflects a

strong positive GNI. Conversely, a failure to identify a growth

medium in which the nutrient is forced to be present reflects a

strong negative GNI.

A sampling-based method for predicting weak gene–nutrient

interactions

To predict weak GNIs for a gene of interest, we perform a

random sampling of the space of possible growth media. For

each growth medium, FBA is applied to predict the growth rate

of the wild-type strain and the growth rate following the

knockout of the gene. The set of growth media under which

the gene is found to be essential for growth is referred to as the
sampled essential media space. A weak positive (negative)

GNI is defined for nutrients that are significantly over-

(under-) represented in the sampled essential media space.

The significance is estimated based on a geometric distribution

with p-values corrected for multiple-testing via the false-discovery

rate (FDR) procedure. Notably, the number of sampled

growth media should be high to provide a sampled essential

media space that is large enough to obtain significant statistics.

This may be problematic for genes that are essential for

growth in a small fraction of the media space. For example,

the dependency between the sampling size required to identify

a strong GNI (via sampling) and the sizes of the media space

and the essential media space is shown in Fig. S2 in the ESI.z
To predict weak GNIs for the amino-acid containing growth

media, we performed a sampling of 215 random media, out of a

total space of 220 possible media. To reduce the running time,

this method was applied only for genes that are found to be

essential in at least a single growth medium (by the above

optimization method) for which weak GNIs may exist. The

total running time was 13 h on a standard personal computer

(instead of the 58 h that would have been required to apply the

method for all genes).

Computing functional-similarity measures between genes

The GNI-based functional similarity measure between two

genes is calculated based on the Jaccard similarity coefficient

between the corresponding two sets of nutrients that interact

with each gene. The GI-based similarity measure is analogously

based on the Jaccard coefficient between the two sets of genes

that interact with each gene in the gene pair examined. GI are

predicted using FBA under a rich medium, which consists of

all amino-acid nutrients. A GI is predicted in cases where the

knockout of a gene pair causes a significant reduction in

growth, yielding a growth rate that is at least 20% lower

than that obtained under the single knockout of each gene

separately.10,13 The annotation-based similarity measure is

computed based on the Jaccard similarity between the two

sets of pathway-annotations (as included in the model of

ref. 15) associated with each gene pair.

GNIs-based prediction of growth media composition

The prediction of the composition of a growth medium based

on strong GNIs and gene essentiality data is straightforward,

with strong positive and negative GNIs involving essential

genes representing the presence and absence of nutrients in the

growth medium, respectively. A similar method is applied for

weak GNIs, considering the GNI with the lowest p-value (see
sampling procedure above) for each nutrient. The optimal

possible prediction accuracy is computed based on nutrients

whose presence/absence is uniquely correlated with the essen-

tiality pattern of all genes. Specifically, for each medium, we

computed the number of nutrients whose presence/absence is

consistent in all media that give rise to the same pattern of

gene essentiality.
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