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a b s t r a c t

In this paper, we propose an efficient acquisition scheme for GPS receivers. It is shown
that GPS signals can be effectively sampled and detected using a bank of randomized
correlators with much fewer chip-matched filters than those used in existing GPS signal
acquisition algorithms. The latter use correlations with all possible shifted replicas of the
satellite-specific C/A code and an exhaustive search for peaking signals over the delay-
Doppler space. Our scheme is based on the recently proposed analog compressed sensing
framework, and consists of a multichannel sampling structure with far fewer correlators.

The compressive multichannel sampler outputs are linear combinations of a vector
whose support tends to be sparse; by detecting its support one can identify the strongest
satellite signals in the field of view and pinpoint the correct code-phase and Doppler shifts
for finer resolutionduring tracking. The analysis in this paper demonstrates thatGPS signals
can be detected and acquired via the proposed structure at a lower cost in terms of number
of correlations that need to be computed in the coarse acquisition phase, which in current
GPS technology scales like the product of the number of all possible delays and Doppler
shifts. In contrast, the required number of correlators in our compressive multichannel
scheme scales as the number of satellites in the field of view of the device times the
logarithm of number of delay-Doppler bins explored, as is typical for compressed sensing
methods.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, Global Positioning System (GPS) chips are
ubiquitous, and continue to be embedded in a variety of
devices. A GPS device allows to determine its location with
about 3meters accuracy, bymeasuring the propagationde-
lay of signals transmitted by the set of GPS satellites in the
field of view (FOV) of any receiver located on the surface of
the earth, which typically requires measurements from at
least four satellites [1].

Conventionally, the signal that arrives at the receiver
is downconverted, match-filtered and oversampled at a
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fast rate. Subsequently, the receiver acquires enough (at
least four) strong signals by exploiting the orthogonality
of the distinct coarse/acquisition (C/A) codes used in
GPS signaling at each satellite [2]. However, due to the
unknown propagation delays, the samples obtained are
misaligned in time and therefore, it is vital to pinpoint
the code-phase in order to decode the navigation data
correctly [2,3] and use the time-delay information for
pseudo-range computation. Furthermore, each of the
satellites contributes a component of the received GPS
signal that is characterized by a distinct Doppler offset [4],
due to the unequal relative velocities of the satellites and
the receiver, as well as the offsets of the different local
oscillators at the GPS receivers. In general, time–frequency
synchronization as well as signal detection is tackled in
GPS receivers during the acquisition/detection stage via a
parallel search over the binned delay-Doppler space across
all the satellite C/A codes [5,6].
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In many practical scenarios, signals might arrive at
the receiver with multipath components instead of the
line of sight (LOS) component [3,6,7]. Constructive and
destructive superpositions of randomly delayed and faded
replicas, leads to distorted correlation peaks. This is
usually tackled in the tracking stage [2] that follows the
acquisition/detection stage, by using an early–late receiver.
Such a receiver compares the energy of a symbol period
in the first half from the early gate to the energy in
the last half from the late gate so that the receiver can
synchronize the signals accordingly. Furthermore, many
approaches, in addition to the early–late structure, have
been proposed to better mitigate the effects brought
by multipath, including (but not limited to) the Narrow
Correlator [8], Multipath Eliminating Technique (MET) [9],
and Multipath Estimating Delay Lock Loop (MEDLL) [10].
These methods differ in their capabilities to remove
multipath errors, specifically at low signal-to-noise ratio
(SNR) and/or in the presence of interference. In this work,
we start from the general signal model that considers
multipath effects and propose an acquisition scheme
that coarsely captures significant paths for each active
satellite, with its corresponding code-phase and Doppler.
The tracking stage that further resolves the estimates of
delay-Doppler pairs as well as the multipath components
is beyond the scope of this paper.

As described above, the acquisition and detection of
GPS signals is usually performed sequentially. First, the
strongest signals coming from the satellites are detected
by searching a binned delay-Doppler space via exhaustive
correlations that pinpoint the correct coarse timing delays
and frequency offsets. After acquisition and detection,
the signal is locked and the device enters the tracking
stage that tackles fine synchronization andmultipath error
mitigation in order to despread, demodulate and decode
the navigation data correctly in real-time. However,
this acquisition/detection scheme can be computationally
intensive due to the large number of correlations, and
especially the exhaustive search for peaks over the binned
delay-Doppler space across all the satellite signals with
distinct C/A codes. For example, the maximum Doppler
shift in a GPS signal is typically within [−10 kHz, 10 kHz]
and the search step size is usually 500 Hz while the
maximum delay can run up to a C/A code length 1023. In
this case, the 2Ddelay-Doppler peak is found by comparing
the outputs of 1023 × 41 ≈ 4 × 104 correlators for each
satellite, which is a heavy computation burden.
Paper contributions: In order to scale down the operations
and hardware requirements, we propose a simple and effi-
cient acquisition scheme based on the recently developed
compressed sensing (CS) framework [11] and its extension
to analog signals [12]. The multichannel samplers in [12]
are constructed as a linear combination of the duals of all
the generators, where the generators in this case corre-
spond to the satellite-specific C/A code waveforms. In our
context, we show that the duals of the generators are well
approximated by the generators themselves. This allevi-
ates one of the most difficult aspects in the practical ap-
plication of [12], namely, the physical implementation of
the dual filters, by exploiting properties of the spread spec-
trum sequences that are used in GPS systems. Thanks to
this interpretation, the proposed multichannel samplers
can be viewed as performing independent random projec-
tions of all correlators outputs. The resulting set of com-
pressive measurements are then used together to recover
the peaks located sparsely over the delay-Doppler space,
which is a jointly sparse recovery problemwith infinite in-
put vectors and infinite measurement vectors (IMVs). The
continuous-to-finite (CTF) method introduced in [13] ef-
fectively reduces the IMVproblem to a finitemultiplemea-
surement vector (MMV) systemwith jointly sparse inputs,
which can be solved efficiently using the ReduceMMV and
Boost (ReMBo) technique proposed in [13], or other MMV
approaches [14,15].

The paper is organized as follows. Section 2 describes
the general model for GPS signals. Section 3 re-interprets
existing GPS acquisition schemes from a sampling point
of view. In order to scale down the computations and
hardware requirements, Section 4 introduces the analog
CS framework. In Section 5 we further reduce the general
solution to a set of simple compressive samplers by
utilizing the structure of GPS signals. Numerical results are
shown in Section 6 to demonstrate the effectiveness of our
proposed acquisition scheme, followed by a complexity
analysis given in Section 7. Finally the paper is concluded
in Section 8.

2. GPS signal model

The signal transmitted by the satellites is a direct
sequence spread spectrum (DS-SS) signal modulated onto
L1 and L2 frequencies at 1575.42 MHz and 1227.60 MHz
respectively. In commercial GPS systems publicly available
to civilian users, the DS-SS signal received at the user end
is carried on L1 frequency from all the available launched
satellites. Equivalently, the baseband signal from the ith
satellite is transmitted as

si(t) =


n∈Z

di[n]φi(t − nT ), i = 1, . . . , I (1)

where φi(t) is a spreading waveform determined by
a satellite-specific spreading code and {di[n]}n∈Z is the
navigation data sent by the ith satellite with a symbol
period of T , containing its time stamp, orbit location and
relevant information entailed for positioning the receiver.

More specifically, the waveform φi(t) is determined by
the ith satellite’s C/A code {si[m]} as

φi(t) =

M−1
m=0

si[m]g(t − mTc), i = 1, . . . , I (2)

where g(t) is a wideband short pulse. For simplicity, we
assume that g(t) has a flat spectrum of bandwidth Ωg =

2πL/Tc (typically L = 1) approximated with error ϵg(ω)

G(ω) = [1 + ϵg(ω)]rect2πL/Tc (ω), (3)

where ϵg(ω) specifies the deviation from the flat spectrum
with1

∥ϵg(ω)∥ ≪ 1. Due to the periodicity of the C/A

1 The notation ∥ · ∥ refers to the L2 norm of a function ∥ϵg (ω)∥ ,
∞

−∞
|ϵg (ω)|2dω.
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code, T = MTc . The C/A code {si[m]} is a pseudo-random
binary sequence of length M that contains N maximum
length sequences (MLSs) or Gold sequences of lengthM0 =

1023 transmitted with a chip period Tc = 977.5 ns,
which implies M = NM0. In fact, by the GPS transmission
standards we have N = 20 for the GPS L1-C/A signal,
i.e. T = 20 ms.

The correlation properties of the spreading code are
vital in the recovery of spread spectrum signals. Denote the
cross-correlation between different C/A codes as

Ri′ i[u] ,
1
M

M−1
m=0

si′ [m − u]s∗i [m]. (4)

WhenM is large, the Gold sequences or MLS sequences are
orthogonal between different satellites and approximately
orthogonal between different shifts [7,16] such that
Ri′ i[u] = 1 when u = 0, i = i′ while O(1/M) otherwise.
This is indicated by the flat 2π/Tc-periodic cross spectral
density

Si′ i(eiωTc ) ,

M−1
u=−M+1

Ri′i[u]e−iuωTc = δ[i′ − i] + ϵi′ i(ω), (5)

where the error function ϵi′i(ω) is also 2π/Tc-periodic
with2

∥ϵi′ i(ω)∥ ≪ 1. This flat property plays an essential
role in simplifying the design presented later in this paper.

After downconversion, the signal at the receiver can be
modeled as

x(t) =

I
i=1

R
r=1

hi,r si(t − τi,r)eiωi,r t + v(t), (6)

where {hi,r}r=1,...,R are the multipath channel taps with
delays {τi,r}r=1,...,R and Doppler shifts {ωi,r}r=1,...,R from
the ith satellite to the receiver, and v(t) is Additive White
Gaussian Noise (AWGN) with variance σ 2. Combined with
the signal model (1), the signal x(t) is represented as

x(t) =


n∈Z

I
i=1

R
r=1

ai,r [n]φi(t − nT − τi,r)eiωi,r t + v(t),

where ai,r [n] , hi,rdi[n]. In the coarse acquisition phase, it
is typically assumed that the delays are integer multiples
of the chip duration τi,r = qi,rTc with qi,r ∈ Q and the
Doppler shifts are integermultiples of the frequency search
step ωi,r = ki,r1ω with ki,r ∈ K , where the sets Q and K
define the delay-Doppler space. This leads to the following
discretized signal model

x(t) =


n∈Z

I
i=1

R
r=1

ai,r [n]φi(t − nT − qi,rTc)

× eiki,r1ωt + v(t). (7)

3. Standard GPS acquisition scheme

The main task of the acquisition stage is to detect the
correct code-phase q , {qi,r}

r=1,...,R
i=1,...,I and Doppler shift

2 The norm here is defined as ∥ϵi′ i(ω)∥ ,
 π/Tc
−π/Tc

|ϵi′ i(ω)|
2dω due to the

periodicity.
k , {ki,r}
r=1,...,R
i=1,...,I across the delay-Doppler space and

recover the sequence {ai,r [n]}i=1,...,I , among which the
strongest set I of satellites (|I| ≥ 4) are picked for the
purpose of triangulation [1–4]. Note that the sequence
{ai,r [n]}n∈Z includes the attenuation of the channels be-
tween the satellites and the receiver. Therefore, its magni-
tude indicates the strength of the signal received and only
the strong ones are acquired by the receiver. In general,
the magnitudes of those acquired i ∈ I are significantly
greater than those i ∉ I, making the coefficients ai,r [n]
sparse over i due to the wide difference in signal strength.

3.1. Exhaustive search via matched filtering (MF)

Conventionally, the acquisition and detection of strong
satellite signals is achieved by correlating the incoming
signal x(t) with a bank of match-filters φi(t)’s that are
separatelymodulated by carriers {eik1ωt}k∈K and shifted in
time {φi(t −qTc)}q∈Q . In this way, the paths corresponding
to peaks in the magnitude of ai,r [n] can be found in the
delay-Doppler binned-space Q × K for each satellite
corresponding to its C/A code.

This approach can be viewed as sampling with a set of
filters, followed by uniform sampling at times t = nT , as
depicted in Fig. 1. The sampling kernels of this equivalent
structure are given by φi,k,q(t) = φi(t − qTc)eik1ωt , for all
i = 1, . . . , I , k ∈ K and q ∈ Q. The sampled output in
each channel is equal to

zi,k,q[n] , ⟨x(t), φi,k,q(t − nT )⟩. (8)

In the Fourier domain, we have

Zi,k,q(eiωT ) =
1
T


ℓ∈Z

Φ∗

i,k,q


ω −

2πℓ
T


X


ω −

2πℓ
T


,

(9)

where Φ∗

i,k,q(ω) and X(ω) are the Fourier transforms of
φi,k,q(−t) and x(t) respectively. Note that the summation
over ℓ ∈ Z in (9) depends on the bandwidth of the filter
φi,k,q(−t), where as mentioned in Section 2 the bandwidth
of g(t) is Ωg = 2πLM/T . Therefore, the summation
becomes finite from ℓ = 0 to ℓ = LM − 1 over ω ∈

[−π/T , π/T ]. From (7), we can express X(ω) as

X(ω) =

I
i=1

R
r=1

Ai,r(eiωT )Φi(ω − ki,r1ω)

× e−i(ω−ki,r1ω)qi,r Tc + V (eiωT ), (10)

where we defined Ai,r(eiωT ) ,


n∈Z ai,r [n]e−in(ω−ki,r1ω)T .
Substituting (10) into (9), and denoting by z(eiωT ) the
length-I|K||Q| column vector whose (i, k, q)th element is
Zi,k,q(eiωT ), and by ai(eiωT ) the length-R column vector of
{Ai,r(eiωT )}r=1,...,R for the ith data stream, we can write

z(eiωT ) = Mφφ(ω, k, q)a(eiωT )+ v(eiωT ) (11)

over the domainω ∈ [−π/T , π/T ]. The derivation is iden-
tical to the development in [17] and is therefore omitted.
Here a(eiωT ) , [aH1 (e

iωT ), . . . , aHI (e
iωT )]H is a length-

IR vector containing the DTFT of all the data sequences
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Fig. 1. Exhaustive matched filtering (MF) approach.

{ai,r [n]}n∈Z, and Mφφ(ω, k, q) is an I|K||Q| × IR sub-
matrix with the (i, r)th column being the (i, ki,r , qi,r)th
column from the I|K||Q| × I|K||Q| full Gram matrix
Mφφ(ω,K,Q) of all the generators

[Mφφ(ω,K,Q)](i′,k′,q′),(i,k,q)

=
1
T

LM−1
ℓ=0

Φ∗

i′,k′,q′


ω −

2πℓ
T


Φi,k,q


ω −

2πℓ
T


. (12)

The component v(eiωT ) = [. . . , vi,k,q(eiωT ), . . .]T is the
filtered noise by MFs (generators) {φi,k,q(t)}

k∈K,q∈Q
i=1,...,I and

therefore has a cross-spectral density matrix Rvv(eiωT ) =

σ 2Mφφ(ω,K,Q).
Exploiting the specific choice of sampling kernels and

the structure of Mφφ(ω, k, q) and Mφφ(ω,K,Q), we can
further analyze the output samples z(eiωT ) as stated below.

Theorem 1. Suppose that the following conditions hold:

(C1) the pulse shaping filter has a spectrum G(ω) = [1 +

ϵg(ω)]rect2πL/Tc (ω) with error ϵg(ω);
(C2) the C/A code cross spectral density is Si′i(eiωTc ) = δ[i′ −

i] + ϵi′i(ω) with error ϵi′ i(ω);
(C3) the frequency search step size is chosen as1ω = 2π j/T

and j ∈ Z+.

If the error functions satisfy ∥ϵg(ω)∥ ≪ 1 and ∥ϵi′ i(ω)∥ ≪ 1
for any i′, i = 1, . . . , I , then the Gram matrix of all the
generators {φi(t − qTc)eik1ωt}

k∈K,q∈Q
i=1,...,I satisfies

Mφφ(ω,K,Q) = LMI + E(ω), (13)

where E(ω) is a bounded perturbation matrix satisfying
∥[E(ω)](i′,k′,q′),(i,k,q)∥ = O(1) ≪ LM. The output samples
z[n] = [. . . , zi,k,q[n], . . .]T at each of the kernels φi,k,q(t)
can be written as

zi,k,q[n] =
LMai,r [n] + O(1)+ vi,k,q[n], q = qi,r and k = ki,r
O(1)+ vi,k,q[n], otherwise,

where vi,k,q[n] is the filtered noise sample with covariance
E{v∗

i,k,q[n]vi′,k′,q′ [n]} = LMσ 2δ[i − i′]δ[k − k′
]δ[q − q′

] +

O(1) and O(1) ≪ LM is some bounded perturbation error
with LM being the processing gain on the signal-to-noise
ratio.

Proof. See the Appendix. �
Note that the frequency step size 1ω = 2π j/T cor-
roborates the fact that for standard commercial GPS sys-
tems, the step size is usually 2π × 500 rads/s which
fits the analysis here by choosing j = 10. Also, we can
see that the output zi,k,q[n] at each sampler represents
the correlation between the MFs and the incoming signal,
which is proportional to the magnitude of ai,r [n] and cor-
rupted by noise. Assuming large enough processing gain
LM and small enough noise, the delay-Doppler pairs {τi,r =

qi,rTc}
r=1,...,R
i=1,...,I and {ωi,r = ki,r1ω}

r=1,...,R
i=1,...,I can be found by

the locations of the peak/dominant entries in zi,k,q[n]. The
strongest set of satellite signals can then be detected by
comparing the values in zi,k,q[n] so that a subset I of the
satellite signals are locked and passed onto the tracking
stage for finer extraction. If we ignore the noise for a mo-
ment, then zi,k,q[n] is sparse in the sense that for each value
n it contains only a small number of non-zero entries.

3.2. Compressive multichannel acquisition

Although effective, this conventional approach taken by
standard GPS receivers performs exhaustive correlations
(MF approach) that requires abundant samples from
a large number of correlators I|Q||K|. This task can
be computationally expensive and demanding on the
hardware and memory resources. Assuming a maximum
channel delay spread of τmax = QTc and Doppler shift of
|ωmax| = K1ω, the total number of correlators is 2IQK . For
example, themaximumDoppler shift is typically±10 kHz.
Assuming a delay spread up to code length τmax = MTc ,
then with a frequency grid of 500 Hz, the total number of
correlators needed becomes 24 × 1023 × 41 ≈ 106.

Therefore, it is highly desirable to scale down the com-
putational complexity and power consumption of a user
GPS device by performing less correlations while sustain-
ing its capability to pinpoint the signal timing and Doppler
information during acquisition. By observing the correla-
tion outputs in the vector z[n] = [. . . , zi,k,q[n], . . .]T , it can
be seen that only few of the dominant entries are useful.
Our goal is to exploit the underlying sparsity in the sig-
nal model to design an acquisition scheme that requires
far fewer correlators. Instead of tackling the problem from
a MF viewpoint as in standard GPS, we look at the prob-
lem from an analog CS perspective [12], which is one of the
main contributions of this paper.

The analog CS design outlined in [12] requires a small
number of samplers (only twice the sparsity 2|I|R in
a noiseless setting), and hence gives rise to substantial
practical savings as analyzed later in Section 7. However,
the solution [12] is given in the frequency domain and in
general does not admit a tractable form in time domain,
which makes it hard to implement in practice. Another
contribution of this work lies in further exploiting the
structure of GPS signals so that the sampling kernels are
easy to implement. The outputs from the compressive
samplers can then be used to solve the sparse recovery
problem of locating the dominant/peak values reflected in
the vector z[n], for example, using the method in [13].

Before we go into the details of our design, we start by
describing the analog CS framework [12]. In Section 5 we
further develop and simplify the general solution to fit our
problem.
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Fig. 2. Compressive multichannel sampling (CS) approach.
4. Compressed sensing of analog signals

The exhaustive MF approach in standard GPS receivers
acquires delays and Dopplers by directly exposing the
sparse structure in the output samples z[n]obtained froma
large number of correlators. In order to reduce the number
of correlators while retaining the ability to correctly
identify the peaks of z[n], it is possible to directly measure
a compressed version of z[n] at the sampler outputs and
recover that sparse structure instead, by employing analog
CS techniques.

4.1. General model for analog compressed sensing (CS)

The signal model in (7) does not reflect any sparse
structure, since it is expressed by a set of deterministic
generators φi(t)’s defined by unknown parameters qi,r and
ki,r . The sparsitywe exploit is the sparsity of delay-Doppler
pairs pinpointed by the peak/dominant entries in z[n] over
the entire delay-Doppler space Q × K for each user i =

1, . . . , I that is informative in acquiring the signal. Using
a dictionary {φi(t − qTc)eik1ωt}k∈K,q∈Q , the signal can be
equivalently expressed by

x(t) =


n∈Z

I
i=1


k∈K


q∈Q

yi,k,q[n]φi(t − nT − qTc)

× eik1ωt + v(t),

where

yi,k,q[n] =


ai,r [n], q = qi,r and k = ki,r
0, otherwise. (14)

Note that the sparsity of y[n] , [. . . , yi,k,q[n], . . .]T
is identical to that of z[n] in the noiseless setting.
Indeed, for each i = 1, . . . , I there are altogether R
dominant coefficients {yi,k,q[n]}k∈K,q∈Q that correspond
to the original coefficients {ai,r [n]}r=1,...,R and select the
correct code-phase qi,r and Doppler shifts ki,r . Let the
support of y[n] be S, so that the support S contains the
code-phase and Doppler information for acquisition, with
a sparsity of |S| = |I|R. The aim of analog CS is to exploit
this sparsity in acquiring x(t) using fewer correlators.

4.2. General solution of compressive samplers

The scheme of [12] uses a set of compressive samplers
ψp(−t), p = 1, . . . , P ≪ I|K||Q| to obtain minimal
measurements, from which the sparse vector y[n] can be
recovered. As depicted in Fig. 2, the samples at the output
of ψp(−t) at t = nT are given by

cp[n] , ⟨x(t), ψp(t − nT )⟩. (15)

Similar to themathematicalmanipulations in Section3, the
system equation can be re-written as

c(eiωT ) = Mψφ(ω,K,Q)y(eiωT )+ w(eiωT ), (16)

where Mψφ(ω,K,Q) is a P × I|K||Q| matrix with
similar structure to (12) and the notation w(eiωT ) is used
to distinguish the noise component from the previous
method in standard GPS. It has been proven in [12] that in
a noiseless setting, simply twice the sparsity P = 2|I|R
is needed for successful recovery of the sparse vector
y[n], if ψp(−t)’s are chosen properly. For noisy scenarios,
the necessary number of channels P is larger than the
minimum, and evaluated numerically; in any case, it is
much smaller than that required by the MF scheme, as we
will demonstrate in Section 6.

This reduction is obtained by appropriately choosing
a set of randomized correlators 9(ω) , [Ψ1(ω), . . . ,
ΨP(ω)]

T . A general expression of the compressive samplers
is given in [12] as

9(ω) = BM−1
φφ(ω,K,Q)8(ω,K,Q), (17)

where B is a sensing matrix satisfying certain coher-
ence properties [11] (e.g., Gaussian random matrix or
partial DFT matrix [11], or an appropriate deterministic
binary matrix [18]), and 8(ω,K,Q) , [. . . ,Φi(ω −

k1ω)e−i(ω−k1ω)qTc , . . .]T is a length-I|K||Q| vector con-
taining the Fourier transforms of the generators {φi(t −

qTc)eik1ωt}
k∈K,q∈Q
i=1,...,I . With this choice of 9(ω), it can be

shown that Mψφ(ω,K,Q) = B. Since B is independent of
frequency ω, transforming (16) into the time domain, the
samples can be written as

c[n] = By[n] + w[n], n ∈ Z. (18)

The vectors {y[n]} are jointly sparse since they all share the
same sparsity pattern. To find y[n], we can convert (18)
to a finite MMV problem using the continuous-to-finite
(CTF) technique developed in [13]. Specifically, we first
find a basis for the range space of {c[n]} by computing the
covariance matrix Rcc and decomposing it as Rcc = CCH .
Here C can be chosen as the eigenvectors of Rcc multiplied
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Fig. 3. Satellite identification rate P(I = I) using a single measurement
c[1] for a CS receiver vs. the MF receiver for P = {120, 240, 360, 480}
(above), and for P = {10, 20, . . . , 400} (below).

by the square-root of the corresponding eigenvalues. Then,
the support of y[n], n ∈ Z can be obtained by solving
C = BY, where Y is the sparsest matrix satisfying
the measurement equation. This problem can be treated
using various MMV sparse recovery techniques [14,15]. In
our simulations, we use the ReMBo algorithm developed
in [13]. Finally the support of y[n] is obtained by taking the
union of the supports of the columns in the matrix Y. Once
the support of y[n] is recovered, the acquisition of correct
delay-Doppler pair is automatically achieved by locating
the dominants/peaks in the vector y[n] of (14).

Remark. As verified in Section 6, as the number of cor-
relators P increases, the acquisition performance im-
proves significantly. Solving the MMV problem requires
collecting multiple measurement vectors {c[n]}, while the
standard GPS scheme can either employ information for a
singlemeasurement z[n] in (8) or further leverage the pro-
cessing gain over multiple measurements {z[n]}. For the
proposed compressive acquisition scheme, if a single vec-
tor measurement is used to recover the sparse vector y[n]
using greedymethods or ℓ1-norm basedmethods, the per-
formance will degrade as shown in Fig. 3 but not signifi-
cantly. Therefore, there is a trade-off between the number
of observations c[n], the number of acquisition channels
P as well as the accuracy of the acquisition in comparison
with the standard GPS scheme.

5. Simplified compressive samplers

The method proposed in [12] depends on the ability
of physically implementing the sampling kernels in
(17). Therefore, we explore the structure of the matrix
Mφφ(ω,K,Q) to provide practical insights on the design
of such filters.

Corollary 1. Suppose that (C1)–(C3) and the requirement
on the error functions in Theorem 1 hold. Then the sampling
kernels can then be chosen as a linear combination of {φi(t −
qTc)eik1ωt}

k∈K,q∈Q
i=1,...,I

ψp(t) =

I
i=1


k∈K


q∈Q

bp,(i,k,q)φi(t − qTc)eik1ωt ,

p = 1, . . . , P. (19)

Proof. From (17) we have the general solution of the
compressive samplers

9(ω) = BM−1
φφ(ω,K,Q)8(ω,K,Q). (20)

According to the result in Theorem 1, using Taylor expan-
sion on the matrix inverse M−1

φφ(ω,K,Q) and ignoring
high order terms scaled by 1/LM ≪ 1, we can approxi-
mate the inverse by
I +

1
LM

E(ω)
−1

= I −
1
LM

E(ω)+
1

(LM)2
E2(ω)

−
1

(LM)3
E3(ω) · · · ≈ I, (21)

where the last approximation comes from the fact that
E(ω) contains negligible elements. Therefore, the com-
pressive samplers can be chosen directly as 9(ω) =

B8(ω,K,Q), which leads to the time-domain expression
in the corollary. �

The filter responses of (19) can be pre-computed, and
these P channel outputs are sampled every T = MTc to
produce the test statistics that are going to be used in lieu
of the coefficients z[n] in Theorem 1.

Remark. Note that although the samples are taken at
1/T , the physical implementation of the compressive
multichannel filtering operation is likely to require digital
processing at the chip rate 1/Tc . Nevertheless, it is possible
that a wise choice of the coefficients of the matrix B can
further help reduce computations while maintaining the
identifiability of the parameters. Analysis of this approach
goes beyond our current scope. What we can certainly
claim is that the number of computations is now controlled
by the parameter P , rather than by the number of possible
generators that span all possible delays Q and Dopplers
K . In fact, the sampling kernels are pre-computed and
used online. This is likely to reduce cost of computation,
access to memory and storage. The performance of
the compressive multichannel sensing structure degrades
gracefully as P decreases, giving designers degrees of
freedom to choose a desirable operating point.

6. Numerical results

In this section, we run numerical simulations to
demonstrate the proposed CS acquisition scheme in GPS
receivers. In the simulation, |I| = 4 out of I = 24 satellites
asynchronously transmit C/A signals that are received by
the GPS devices, where length-M Gold sequences are used
with M = NM0, N = 20 and M0 = 1023. A total of n = 50
navigation data bits are sent at the rate of 1/T = 50 Hz
(i.e., T = 20 ms). The transmit filter is modeled by a
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Fig. 4. Satellite identification rateP(I = I) using a singlemeasurements
{c[1], c[2], . . . , c[50]} for a CS receiver vs. the MF receiver for P =

{80, 120, 240, 360} (above), and for P = {10, 20, . . . , 400} (below).

finite length pulse shaping filter g(t) =
√
Tcsinc(t/Tc)

when |t| ≤ Tg , and g(t) = 0 otherwise. The length Tg is
sufficiently large so that the response of the pulse in the
frequency domain remains approximately flat, i.e. G(ω) ≈

rect2π/Tc (ω).
To reduce the simulation overhead without incurring

a loss of generality, we assume that our statistical model
for the channel consists of uniformly distributed delays,
τi,r ∼ U(0, τmax) that are bounded by a maximum delay
spread of τmax = 20Tc ; and of Doppler shifts, |ωi,r | ≤ ωmax
that are uniformly distributed, ωi,r ∼ U(−ωmax, ωmax)
over a frequency range delimited by ωmax/2π = 2.5 kHz.
The channel gains are hi,r ∼ CN (0, 1), with a multi-path
propagation having R = 2 paths per satellite. In order
to identify fractional delays with a half-chip accuracy,
the functions φi,k,q(t) = φi(t − qTc)eik1ωt are chosen
with a half-chip spacing q = 0, 1/2, 1, . . . such that the
resolution of1τ = Tc/2 is achieved, and with a frequency
resolution of 1ω = 10 × 2π/T that corresponds to steps
around 500 Hz when T = 20 ms. It follows that |Q| =

⌈τmax/1τ⌉ + 1 = 41 and |K| = 2⌈ωmax/1ω⌉ + 1 = 11.
For simulation purpose, the sensing matrix B is generated
as a random binary matrix (while in practice it can be
chosen as a deterministic binary matrix to simplify the
implementation of correlators [18]).

In all simulations, the attenuated components with
distinct delays from each of the satellites are acquired by
a number of P = {80, 120, 240, 360, 480} channels, in
contrast to the traditional 24 × 41 × 11 ≈ 1 × 104.
The performance is illustrated in terms of success rate
and average Root Mean Square Error (RMSE), respectively,
in Figs. 3 and 4. The success rate of acquisition is the
probability P(I = I) of the proposed scheme to determine
the strongest |I| = 4 signals, which is shown in the
figure against the number of channels P and the SNR. The
conditional RMSE is an average error between the true
delay-frequency parameters and those associated to the
strongest paths of the correctly identified satellites

RMSEaverage(q) ,

 1
|{I ∩ I}|


i∈{I∩I}

(qi1τ − τi)2,
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Fig. 5. Delay estimation (above) and Doppler estimation (below)
performance of the CS scheme, with n = 1 and P = {120, 240, 360, 480}
compared against the MF receiver.

where (τi, ωi) , (τi,r∗ , ωi,r∗) with r∗
= argmaxr∈{1,...,R}

|hi,r |
2 and

(qi,ki) = argmax
q∈Q, k∈K

|zi,k,q[n]|2 = argmax
q∈Q, k∈K

|yi,k,q[n]|2 (22)

are the delay-frequency index pairs of strongest path
associated to the ith satellite. Similarly, the average RMSE
for the Doppler is

RMSEaverage(k) ,

 1
|{I ∩ I}|


i∈{I∩I}

(ki1ω − ωi)2.

Although the compressive acquisition scheme suffers from
a compression loss, both Figs. 3 and 4 highlight its ability
to perform closely as the traditional MF. When P ≥ 80
and SNR ≥ −25 dB the active satellites I can be identified
satisfactorily which leads to great savings (less than 1% of
the original 1 × 104).

The figures above illustrate acquisition performances
using a single set of measurements c[0] against that using
multiple sets of measurements {c[n]}50n=1. Using a single
measurement suffers from a performance loss (−10 dB
for P = 120 at the rate of approximately 0.8). In fact,
by reducing n, the accuracy of z[n] and consequently the
sensitivity, degrade. Furthermore, it can be seen from Fig. 3
that the required number of channels P has to be raised
to 480 (less than 5% of the original 1 × 104) to achieve a
reliable rate that approaches the MF result.

A similar trend is also visible on the conditional RMSE
curves for both single (Fig. 5) and multiple (Fig. 6) modes
(−12 dB for P = 120 when RMSE(q) ≈ 2 and RMSE(k) ≈

2 · 10−3). At high SNR the performance is limited by
the presence of a systematic error due to the modeling
mismatch from the quantized parameters. At low SNR,
instead, the error is bounded by the length of the search
interval QTc . Once again the CS method closely approaches
the MF performance, especially when n = 1.
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Fig. 6. Delay estimation (above) and Doppler (estimation) performance
of the CS scheme, with multiple measures (n = 50) and P = {80, 120,
240, 360}, compared against the MF receiver also processing n = 50
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7. Complexity analysis

The complexity of the acquisition algorithm is due to
two aspects: (1) storage requirement and (2) computational
complexity. We provide here a brief analysis of the
complexity of the proposed CS scheme against the
traditional MF scheme. To make a fair and practical
comparison, we assume that the implementation is done
in the digital domain and we use the Lkernel-tap digitized
version of the sampling kernels {ψp(t)}Pp=1 (and also
{φi,k,q(t)}

k∈K,q∈Q
i=1,...,I for the traditional case).

7.1. Storage and processing requirement

The difference in storage results from two sources, one
is the storage for the digital kernel taps and the other is
the outputs of the sampling kernels used for peak recovery,
both of which are proportional to the number of sampling
kernels. Furthermore, the processing overhead per unit of
time for these stored values scales proportionally with the
storage requirement as well.

Sampling kernels Output samples
CS receiver P × Lkernel O(P)
MF receiver I|K||Q| × Lkernel O(I|K||Q|)

It is clear that the proposed compressive acquisition
scheme handles less data, which facilitates the pipelining
of the algorithm and also relieves the burden of storage.

7.2. Computational complexity

The difference in computations stems from the correla-
tions and the search for the peak. The number of operations
in performing correlations is proportional to the number
of sampling kernels, while the peak recovery is different
for the two approaches, depending on how the sparse re-
covery (proposed CS structure) and the exhaustive search
(MF structure) are implemented. Here we further compare
the two architectures by their number of operations that
are necessary to identify the delay-Doppler pairs (22). In
this practical analysis, the compressed samples c[n] are ob-
tained by post-processing of the digitally sampled versions
of x(t) at the chip rate and processed using a greedy algo-
rithm Orthogonal Matching Pursuit (OMP) [19]. Note that
using analog implementation in the acquisition can further
bring down the complexity in terms of processing.

We introduce a vector x[n] ofM dimensions,whosemth
entry is (x[n])m , x(nT + mTc), to digitally capture and
compress one instance of the signal according to

cp[n] , ⟨x[m], ψp[m − nM]⟩. (23)

For the MF receiver, instead, we assume an oversampling
ratio of 2 to achieve half chip accuracy, i.e., 1τ = Tc/2,
and downsize the filterbank array. The sequence x[n]
is partitioned into 2 sub-sequences {x1[n], x2[n]}, of M
samples each, whose mth element is {xi[n]}m , x(nT +

mTc + (i − 1)Tc/2), i = 1, 2. A typical filter model would
process the streamof 2M samples sequentially, however to
emulate the block processing nature of the CS receiver and
avoid CPU cycles that would further delay the execution
of the algorithm, we let the 2 sub-sequences be processed
concurrently.

All the arithmetic operations, starting from x[n], nec-
essary to detect the |I|R vector elements are recorded and
listed in Table 1. The table outlines the computational com-
plexity breakdown for both the MF and the CS schemes
using single andmultiplemeasurements (MMV). This pop-
ular algorithm seeks the S (with |S| = |I|R) non-zero
elements of the sparse vector y[n] by sequentially choos-
ing dictionary elements that better correlate with the ob-
servations c[n]. At every iteration the current estimate is
subtracted from the observation vector (OMP.1) and the
residual projected onto the dictionary elements (OMP.2).
Then, the dictionary element linked to the largest coef-
ficient (OMP.3) is retained and removed from the dic-
tionary. The updated set of coefficients is obtained by
projecting c[n] onto the subspace formed by the set of
atoms thatwere removed from thedictionary (OMP.4). The
algorithm stops when either a maximum number of itera-
tions is reached or when the norm of the residual falls be-
low a predefined threshold (OMP.5).

Path selection refers to identifying the support of
a certain vector for pinpointing the active components
(delay-Doppler pairs). For both CS and MF, it is tightly
coupled to the sorting algorithm being implemented
and therefore, we only list its average computational
complexity rather than the number of comparators.

When the representation of y[n] is sufficiently sparse,
i.e. for GPS applications |S| ≪ I|K||Q|, the number of
operations needed to digitally compress x[n] into c[n] and
to project the residual of each OMP iteration onto the
dictionary (OMP.2) dominate the overall complexity of the
CS receiver, leading to an order of O(nP(M + I|K||Q||S|)).
On the other hand, the number of operations for theMF are
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Table 1
Complexity breakdown for the proposed CS and traditional MF acquisition using n sets
of measurements.

CS receiver Complexity Remarks

Digital compression cp[n] O(nMP) Eq. (23)
Covariance Rcc (optional3) O(nP2) MMVmode
SVD of Rcc (optional3) O(n2P) n ≤ P [20], MMV mode
Residual update O(n|S|

2) (OMP.1)
Inner products O(nPI|K||Q||S|) (OMP.2)
Maximum projection O(|S| log(I|K||Q|)) (OMP.3)
Least-squares projection O(|S|

3) (OMP.4)
Stopping criterion O(nP|S|) (OMP.5)

MF receiver Complexity Remarks

Correlations zi,k,q[n] O(nMI|K||Q|) Eq. (8)
Path selection O(nIR log(|K||Q|))

Accumulation O(nI|K||Q|) MMVmode
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Fig. 7. Average runtime to evaluate {Î, q̂, k̂} from a received observation
vector y[n] for the compressive scheme, with n = 1 (above) and n = 50
(below) as a function of P = {20, 40, . . . , 480}, and compared against the
MF receiver. Each curvewas run separately on a 64-bit i7 920 CPU running
at 2.67 GHz.

mainly determined by the number of additions to compute
the correlations, leading to O(nMI|K||Q|). For hardware
implementation this is attractive since the filterbank
processing does not require complex multiplications.
However, a similar saving can be added to the CS receiver
by appropriately designingB such that {ψp[m]} also has±1
elements.

The comparison between the dominant terms results
in a CS to MF complexity ratio (P/I|K||Q| + P|S|/M)
that favors the former and emphasizes the complexity
savings. In fact, one should expect P|S| ≪ M and P ≪

I|K||Q|, which shows that the CS gains by removing its
dependency on the length of the C/A sequence. This trend
is also highlighted in Fig. 7 by the average CPU time spent
while executing the steps described in Table 1.

When n > 1 the ratio remains unchanged since all
the additional steps (Table 1) for the ReMBo technique
require marginal increase of operations. When compared
to n = 1, the MF spends more CPU time to accumulate the
correlation outputs whereas the CS receiver experiences a
reverse trend. The additional effort3 spent to evaluateRcc is
compensated by less operationswithin theOMPalgorithm,
and results in a gain in efficiency as highlighted in Table 1.

In general, knowing a priori the order |S| the CS receiver
has an advantage over the MF, which is true and practical
in GPS systems because the order of number of active
satellites in the field of view is actually known. However,
the MF approach always explores and ranks all the |K||Q|

dimensions for every satellite before selecting |I|R.

8. Conclusions

We proposed a compressive multichannel acquisition
scheme for GPS receivers that lowers greatly the complex-
ity. The reduction is achieved by choosing linear combina-
tions of all theMFs,which leads to great savings in practice.
As shown in the analysis and numerical results, our scheme
can efficiently recover the unknown delay-Doppler pairs
using significantly fewer correlators than those needed in a
standardGPS receiver. Regardless of the sparse recovery al-
gorithm, the acquisition performance improves gracefully
with the increase of acquisition channels and the number
of observations. Therefore, although the proposed scheme
has a performance loss in terms of RMSE and success rate
compared to the standard GPS scheme, it provides a design
tool to trade-off complexity and performance that can be
useful to scale down the cost and energy consumption of
GPS chips.

Appendix. Proof of Theorem 1

In this proof, we prove the structure of the matrices
Mφφ(ω, k, q) and Mφφ(ω,K,Q), which will lead to the
results of the proposed theorem. Let φi,k,q(−t) =

φi(t − qTc)eik1ωt . Denote by Φi,k,q(ω) = Φi(ω −

k1ω)e−i(ω−k1ω)qTc the Fourier transform of φi,k,q(−t).
Using Φi(ω) = G(ω)

M−1
m=0 si[m]e−imωTc together with

G(ω) = [1 + ϵg(ω)]rect2πL/Tc (ω) and ignoring higher

3 Note that in practice, the covariance and SVD computation can be
optional by directly choosing a set of measurements {c[n]} and solve the
MMV system formed using that set of measurements instead.
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order perturbations O(|ϵg(ω)|
2), we can write the [(i′,

k, q), (i, r)]th entry of the matrix Mφφ(ω, k, q) over ω ∈

[−π/T , π/T ] according to (12) as

[Mφφ(ω, k, q)](i′,k,q),(i,r)

=
1
T
eiω(q−qi,r )Tc e−i(kq−ki,r qi,r )1ωTc

LM−1
ℓ=0

e−i 2πℓT (q−qi,r )Tc

×

M−1
m′=0

M−1
m=0

s∗i′ [m
′
]si[m]eiω(m

′
−m)Tc e−i 2πℓT (m′

−m)Tc

× e−i1ωTc (m′k−mki,r ) + O(ϵg(ω)). (A.1)

With a change of variable u = m−m′, we can re-write the
double summations overm and m′ as
M−1
m′=0

M−1
m=0

s∗i′ [m
′
]si[m]eiω(m

′
−m)Tc e−i 2πℓT (m′

−m)Tc

× e−i1ωTc (m′k−mki,r )

=

M−1
u=−M+1

M ·
1
M

M−1
m=0

s∗i′ [m − u]si[m]e−i1ωTc (k−ki,r )m

  
,Ri′ i[u,k−ki,r ]

× e−iu

ω−k1ω−

2πℓ
T


Tc
, (A.2)

where Ri′i[u, k − ki,r ] is the ambiguity function between
the sequences {si′ [m]} and {si[m]} perturbed by phase-
shifts determined by the mismatch of the Doppler shift
e−i1ωTc (k−ki,r )m.

To evaluate the ambiguity function, we first note that in
the absence of Dopplermismatch, namely k = ki,r we have

Ri′ i[u, k − ki,r ]

=
1
M

M−1
m=0

s∗i′ [m − u]si[m] = Ri′ i[u], k = ki,r (A.3)

where Ri′ i[u] is the C/A code cross-correlation in (4). The
MLS code [7] and Gold code [16] has been demonstrated
to have low correlation Ri′ i[u] = O(1/M) over time shifts
u ≠ 0 and/or i ≠ i′ as indicated by the cross spectral
density (5). It is further desirable for Ri′ i[u, k−ki,r ] to decay
rapidly over k such that dominant values only appearwhen
k = ki,r . By choosing 1ω = 2π j/T , j ∈ Z+, we have at
u = 0 and i = i′ that

1
M

M−1
m=0

e−i1ωTc (k−ki,r )m =
1
M

M−1
m=0

e−i 2π jmM (k−ki,r )

= δ[k − ki,r ]. (A.4)

Next, we examine the ambiguity function for any pair
of codes i and i′ in the presence of Doppler mismatch
k ≠ ki,r . As shown in Fig. A.8, the ambiguity function
remains well concentrated at i = i′, u = 0 and k =

ki,r . Since the ambiguity functions of all the codes used
by different satellites exhibit similar decay behaviors, we
here show the ambiguity functions of four arbitrary pairs
of Gold codes with i = 13 against i′ = 13, 16, 19, 22
over u = −M + 1, . . . ,M − 1 with M = 1023 and
k − ki,r = −K , . . . , K with K = 20 (i.e., ±10 kHz
Doppler shifts). By evaluating numerically the values of
the ambiguity functions over different time shifts u and
Doppler shifts k, it is found that except for i = i′, u = 0
and k = ki,r , few large magnitudes Ri′ i[u, k − ki,r ] ≈

70/M appear while typical values range from 1/M to 5/M .
Therefore together with (A.3) and (A.4), we express the
ambiguity function as follows

Ri′ i[u, k − ki,r ] =


1, u = 0, k = ki,r , i = i′

O


1
M


, otherwise, (A.5)

where O(1/M) is some small perturbation. This fact is
well known [21], which is why here we only provide the
intuition and not a rigorous proof.

Since the matrix entry contains significant values only
if k = ki,r (i.e., Ri′i[u, k − ki,r ] = Ri′i[u]),

[Mφφ(ω, k, q)](i,ki,r ,q),(i,r)

=
M
T
eiω(q−qi,r )Tc e−iki,r (q−qi,r )1ωTc

LM−1
ℓ=0

e−i 2πℓT (q−qi,r )Tc

×

M−1
u=−M+1

Ri′i[u]e−iu(ω−k1ω−
2πℓ
T )Tc

  
,Si′ i(e

i(ω−k1ω−
2πℓ
T )Tc )

+O(ϵg(ω))+ O(1).

Using the spectrum Si′i(eiωTc ) = δ[i′ − i] + ϵi′,i(ω)

and ignoring higher order perturbations O(|ϵi′,i(ω)|
2), the

non-zero entries of the matrix Mφφ(ω, k, q) are explicitly
written as

[Mφφ(ω, k, q)](i′,ki,r ,q),(i,r)

=
M
T
eiω(q−qi,r )Tc e−iki,r (q−qi,r )1ωTc

LM−1
ℓ=0

e−i 2πℓT (q−qi,r )Tc

+ O(ϵg(ω))+ O(ϵi′ i(ω))+ O(1).

With T = MTc , we use the property

1
T

LM−1
ℓ=0

e−i 2πℓT (q−qi,r )Tc = Lδ[q − qi,r ] (A.6)

to further express the non-zero entries of Mφφ(ω, k, q) at
i′ = i, k = ki,r and q = qi,r

[Mφφ(ω, k, q)](i,ki,r ,qi,r ),(i,r)
= LM + O(ϵg(ω))+ O(ϵii(ω))+ O(1),

ω ∈ [−π/T , π/T ]. (A.7)

Similarly, the matrixMφφ(ω,K,Q) has significant entries
only when i = i′, k = k′ and q = q′

[Mφφ(ω,K,Q)](i′,k,q),(i,k,q)

= LM + O(ϵg(ω))+ O(ϵi′ i(ω))+ O(1). (A.8)

Since the error functions satisfy ∥ϵg(ω)∥ ≪ 1 and
∥ϵi′i(ω)∥ ≪ 1, the results in Theorem 1 follow.
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Fig. A.8. Ri′ i[u, k] with i = 13 against i′ = 13, 16, 19, 22.
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