Motivation and Goals

- High resolution radar requires high bandwidth signals
- Wideband signals need a complex analog front end receiver design which consumes high power
- Digital processing of wideband signals requires large memory and large computational power
- We present a sub-Nyquist sampling and recovery method implemented in hardware which reduces the rate by 30 fold
- This approach provides both simple recovery and robustness to noise by performing beamforming on the low rate samples
- Clutter rejection is also performed on the sub-Nyquist samples by adapting standard methods to our setting

Sub-Nyquist Radar Algorithm

\[x(t) \xrightarrow{\text{Xampling}} \text{Clutter Filtering} \xrightarrow{\text{Doppler Focusing}} \text{Parameter Estimation} \xrightarrow{\text{Time Delay Doppler Shift Amplitude}} \]

Xampling - A process of sampling a signal at a low rate in such a way that preserves the required information

Clutter Filtering - Adaptation of standard clutter algorithms to fit our low rate samples

Doppler Focusing - A method of digitally beamforming the low rate samples which is both numerically efficient and robust to noise

Estimation - A modified OMP, matched to our samples, produces target locations and Doppler frequencies

Input Signal Model

- \(L \) targets, each defined by 3 degrees of freedom: amplitude \(\alpha_x \), delay \(\tau_x \), and Doppler frequency \(\nu_x \)
- After transmitting \(P \) equispaced high-bandwidth pulses \(h(t) \), the received signal:
 \[
 x(t) = \sum_{i=0}^{P-1} \sum_{k=1}^{L} \alpha_h(t - \tau_{p} - \nu_{p} \tau) e^{-j\nu_{p} \tau} \]

- This is an FRI model as \(x(t) \) is completely defined by \(3L \) parameters

Xampling Scheme – Acquiring Fourier Coefficients

- The signal’s parameters are embodied in its Fourier coefficients
- Multichannel analog processing and low rate sampling scheme are used to extract spectral information for specific frequency bands:
 - Analog signal
 - BPF4
 - BPF3
 - BPF2
 - Band-pass Filter 1
 - Low rate ADC
 - Baseband down-converter

- Calculating Fourier coefficients is performed digitally after sampling

Clutter Filtering

- The target signal is contaminated with clutter + thermal noise:
 \[
 y(t) = x(t) + c(t) + n(t)
 \]
- Assume the clutter interference is modelled as “colored” noise - a WSS random process whose spectrum is Gaussian:
 \[
 S_c(f) = \frac{P_c}{2\pi\sigma_c^2} \exp \left[\frac{(f - f_c)^2}{2\sigma_c^2} \right]
 \]
- Clutter + Thermal Noise autocorrelation matrix:
 \[
 M(m,n) = \left(\frac{P_c}{P_s} e^{-2\pi\sigma_c^2} \delta_{m,n} \right) + \delta_{mn}
 \]
- Filtering is performed by using the whitening matrix \(M^{-1} \) to whiten the interference and proceeding with Doppler focusing.

Simulation Results

- Measure performance by “hits” and RMS error
- A “hit” is a Delay-Doppler estimate in the interior of an ellipse around the true target one tenth the Nyquist Rate and at -25dB SNR, Doppler focusing achieves performance equivalent to matched filter processing sampling at the Nyquist rate
- When we concentrate the signal’s energy contents in the sampled frequencies, Doppler focusing outperforms matched filtering at Nyquist rate
- Under SNR of -16dB and 100 pulses used:
 - Without clutter filtering, only 3 out of 5 targets are detected
 - Using clutter filtering algorithm, all 5 targets are detected
- The performance of sub-Nyquist algorithm is equivalent to classic Nyquist rate processing.