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Abstract—We introduce a new class of finite-dimensional
frames with strong symmetry properties, called geometrically
uniform (GU) frames, that are defined over a finite Abelian group
of unitary matrices and are generated by a single generating
vector. The notion of GU frames is then extended tocompound
GU (CGU) frames which are generated by a finite Abelian group
of unitary matrices using multiple generating vectors. The dual
frame vectors and canonical tight frame vectors associated with
GU frames are shown to be GU and, therefore, also generated by
a single generating vector, which can be computed very efficiently
using a Fourier transform (FT) defined over the generating group
of the frame. Similarly, the dual frame vectors and canonical tight
frame vectors associated with CGU frames are shown to be CGU.
The impact of removing single or multiple elements from a GU
frame is considered. A systematic method for constructing optimal
GU frames from a given set of frame vectors that are not GU is
also developed. Finally, the Euclidean distance properties of GU
frames are discussed and conditions are derived on the Abelian
group of unitary matrices to yield GU frames with strictly positive
distance spectrum irrespective of the generating vector.

Index Terms—Compound geometrically uniform (CGU) frames,
generalized Fourier transform (FT), geometrically uniform (GU)
frames, least squares.

I. INTRODUCTION

FRAMES are generalizations of bases which lead to redun-
dant signal expansions [1], [2]. A finite frame for a Hilbert

space is a set of vectors that are not necessarily linearly in-
dependent and span. Since the frame vectors can be linearly
dependent, the conditions on frame vectors are usually not as
stringent as the conditions on bases, allowing for increased flex-
ibility in their design [3], [4].

Frames were first introduced by Duffin and Schaeffer [1] in
the context of nonharmonic Fourier series, and play an impor-
tant role in the theory of nonuniform sampling [1], [2], [5] and
wavelet theory [3], [6]. Recently, frames have been used to ana-
lyze and design oversampled filter banks [7]–[9] and error-cor-
rection codes [10]. Frames have also been applied to the de-
velopment of modern uniform and nonuniform sampling tech-
niques [11], to various detection problems [12], [13], and to
multiple description source coding [14].

Two important classes of highly structured frames are Gabor
(Weyl–Heisenberg (WH)) frames [15], [16] and wavelet frames
[3], [6], [17]. Both classes of frames are generated by a single
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generating function. WH frames are obtained by translations
and modulations of the generating function (referred to as the
window function), and wavelet frames are obtained by shifts and
dilations of the generating function (referred to as the mother
wavelet). In Section III of this paper, we introduce a new class of
frames which we refer to asgeometrically uniform (GU) frames,
that like WH and wavelet frames are generated from a single
generating vector. These frames are defined by a finite Abelian
group of unitary matrices, referred to as the generating group
of the frame. We note that WH frames and wavelet frames are,
in general, not GU since the underlying group of matrices is, in
general, not Abelian. GU frames are based on the notion of GU
vector sets first introduced by Slepian [18] and later extended by
Forney [19], which are known to have strong symmetry proper-
ties that may be desirable in various applications such as channel
coding [19], [20], [21].

The notion of GU frames is then extended to frames that are
generated by a finite Abelian groupof unitary matrices using
multiple generating vectors. Such frames are not necessarily
GU, but consist of subsets of GU vector sets that are each gen-
erated by . We refer to this class of frames ascompound GU
(CGU) frames,and develop their properties in Section VI. CGU
frames are a generalization of filter-bank frames introduced for

in [7]–[9]. An interesting class of frames results when
the set of generating vectors is itself GU, generated by a finite
Abelian group . (Note that this class of frames will in general
not be GU.) As we show, these frames are a generalization of
WH frames in which is the group of translations andis the
group of modulations.

Given a frame for , any signal in can be represented as a
linear combination of the frame vectors. However, if the frame
vectors are linearly dependent, then the coefficients in this ex-
pansion are not unique. A popular choice of coefficients are the
inner products of the signal with a set of analysis frame vectors
called the dual frame vectors [17]. This choice of coefficients
has the property that among all possible coefficients it has the
minimal -norm [17], [22].

In Section IV, we show that the dual frame vectors associ-
ated with a GU frame are also GU, and therefore generated by
a single generating vector. Furthermore, we demonstrate that
the generating vector can be computed very efficiently using a
Fourier transform (FT) defined over the generating groupof
the frame. Similarly, in Section VI, we show that the dual-frame
vectors associated with a CGU frame are also CGU. When the
generating vectors of the CGU frame are GU and generated by
a group that commutes up to a phase factor with the group

, the dual frame is generated by asinglegenerating vector, a
result well known for WH frames.

An important topic in frame theory is the behavior of a frame
when elements of the frame are removed. In Section VII, we
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show that the frame bounds of the frame resulting from re-
moving a single vector of a GU frame are the same regardless of
the particular vector removed. In this sense, GU frames exhibit
an interesting robustness property which is of particular impor-
tance in applications such as multiple description source coding
[23], [14]. We also consider the behavior of a GU frame when
groups of frame elements are removed.

In the special case of a tight frame, the dual frame vectors
are proportional to the original frame vectors so that the recon-
struction formula is particularly simple. In many applications it
is therefore desirable to construct a tight frame from an arbi-
trary set of frame vectors. A popular tight-frame construction is
the so-called canonical tight frame [17], [7], [24]–[27], first pro-
posed in the context of wavelets [28]. The canonical tight frame
is relatively simple to construct, it is optimal in a least-squares
sense [29], [27], [30], it can be determined directly from the
given vectors, and plays an important role in wavelet theory
[31]–[33]. Like the dual-frame vectors, we show that the canon-
ical tight-frame vectors associated with a GU frame are GU, and
the canonical tight-frame vectors associated with a CGU frame
are CGU. When the generating vectors of the CGU frame are
GU and generated by a groupthat commutes up to a phase
factor with , the canonical tight-frame vectors can be obtained
by a single generating vector, generalizing a result well-known
in WH frame theory.

Since GU frames have nice symmetry properties, it may be
desirable to construct such a frame from a given set of frame
vectors. The problem of frame design has received relatively
little attention in the literature. Systematic methods for con-
structing optimal tight frames have been considered [29], [27],
[30]. Methods for generating frames starting from a given frame
are described in [4].

In Section VIII, we systematically construct optimal GU
frames from a given set of vectors, that are closest in a
least-squares sense to the original frame vectors. The results in
this section rely on ideas developed in [34] in the context of
general least-squares inner product shaping. In our develop-
ment, we consider three different constraints on the GU frame
vectors. First, we treat the case in which the inner products
of the frame vectors are known. The optimizing frame is
referred to as the scaled-constrained least-squares GU frame
(SC-LSGUF). Next, we consider the case where the inner
products are known up to a scale factor. The optimizing frame
in this case is referred to as the constrained least-squares GU
frame (C-LSGUF). Finally, we consider the case in which both
the inner products and the scaling are chosen to minimize the
least-squares error between the original frame and the resulting
tight frame. The optimizing frame is the least-squares GU
frame (LSGUF).

In Section IX, we consider distance properties of GU frames,
which may be of interest when using GU frames for code design
(group codes) [18], [19]. In particular, we introduce a class of
GU frames with strictly positive distance spectra for all choices
of generating vectors. Such GU frames are shown to be gener-
ated by fixed-point-free groups [35].

Before proceeding to the detailed development, in Section II,
we provide a brief introduction to frame expansions.

Fig. 1. Example of a frame. The vectors� , � , and � span IR and,
therefore, form a frame forIR .

II. FRAMES

Frames, which are generalizations of bases, were introduced
in the context of nonharmonic Fourier series by Duffin and
Schaeffer [1] (see also [2]). Recently, the theory of frames has
been expanded [3], [6], [17], [4], in part due to the utility of
frames in analyzing wavelet decompositions.

Let denote a set of complex vectors in an
-dimensional Hilbert space . The vectors form a frame

for if there exist constants and such that1

(1)

for all [17]. In this paper, we restrict our attention to the
case where and are finite. The lower bound in (1) ensures
that the vectors span ; thus, we must have . Since

, the right-hand inequality of (1) is always satisfied with
, so that any finite set of vectors that spans

is a frame for . In particular, any basis for is a frame
for . However, in contrast to basis vectors which are linearly
independent, frame vectors with are linearly dependent.
If the bounds in (1), then the frame is called atight
frame. If, in addition, , then the frame is called a
normalized tight frame. The redundancy of the frame is defined
as , i.e., vectors in an -dimensional space.

A classical example of a frame is the frame depicted in Fig. 1.
Since the vectors clearly span , they form a frame
for . Note that the vectors are linearly dependent and there-
fore do not constitute a basis for . The frame of Fig. 1 has
an interesting symmetry property: the frame vectors can be ob-
tained by rotating any one of the vectorsby multiples of 120.
As we will see in Section III, this frame is a cyclic frame which
is a special case of a GU frame.

The frame operatorcorresponding to the frame vectors
is defined as [17]

(2)

1We use the notationhx; yi to denote the scalar productx y, where vectorsx
andy are represented as column vectors and� denotes the Hermitian transpose.
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where is the matrix of columns , and denotes the Her-
mitian transpose. Using the frame operator, (1) can be rewritten
as

(3)

for all .
From (3), it follows that the tightest possible frame bounds
and are given by and ,

where are the eigenvalues of the frame
operator . Throughout the paper, when referring to “the frame
bounds” we implicitly assume the tightest possible frame
bounds unless otherwise stated. Note that since the vectors
span , is invertible so that .

If the vectors form a frame for , then
any can be expressed as a linear combination of these
vectors: . If , then the coefficients in this
expansion are not unique. A possible choice is
where are thedual frame vectors[17] of the frame vectors

, and are given by

(4)

The choice of coefficients has the property that
among all possible coefficients it has the minimal-norm [17],
[22].

There are other choices of dual frame vectorssuch that for
any , . Specifically, with denoting
the matrix of columns , any other choice corresponds toof
the form [36]

(5)

where is an arbitrary matrix. Indeed, for any choice
of . However, the particular choice has some desir-
able properties. Besides resulting in the minimal-norm coef-
ficients, in many cases the choice yields frame vectors
that share the same symmetries as the original frame vectors.
Specifically, in Section IV we show that the dual frame vectors
associated with a GU frame are also GU, and in Section VI we
show that the dual frame vectors associated with a CGU frame
are also CGU. Finally, in the case of a tight frame, the dual frame
vectors lead to a particularly simple expansion. Specifically, in
this case so that , and the dual frame
vectors are . Since a tight frame
expansion of a signal is very simple, it is popular in many ap-
plications [17].

Suppose we are given a set of vectors
that form a frame for , with frame bounds . It may
then be desirable to construct a tight frame from these vectors.
A popular tight-frame construction is the canonical tight frame
[17], [7], [24], [25], [27], [29], first proposed in the context of
wavelets in [28]. Thecanonical tight-frame vectors

associated with the vectors are given
by

(6)

where is the symmetric positive–definite square root of
. Note, that with an arbitrary unitary matrix

yields a tight frame as well. The canonical tight frame, however,
has the property that it is the closest normalized tight frame to
the vectors in a least-squares sense [26], [29], [27].

From (4) and (6), we see that in order to compute the dual-
frame vectors and the canonical tight-frame vectors associated
with a frame , we need to compute the matrices and

and then apply them to each of the frame vectors.
In the next section, we introduce a class of frames that have
strong symmetry properties calledGU frames. As we show in
Section IV, the dual frame vectors and the canonical tight frame
vectors associated with a GU frame are generated by a single
generating function, and can therefore be computed very effi-
ciently.

III. GU FRAMES

A. Definition

A set of vectors is GU [19], [18], [26]
if every vector in the set has the form , where is an
arbitrarygenerating vectorand the matrices
are unitary and form an Abelian group2 . For concreteness,
we assume that so that . The group will be
called thegenerating groupof .

Alternatively, a vector set is GU if given any two vectors
and in the set, there is an isometry (a norm-preserving linear
transformation) that transforms into while leaving the
set invariant [19]. Thus, for every, . Intuitively, a
vector set is GU if it “looks the same” geometrically from any
of the points in the set.

The vector set of Fig. 1 is GU, since the set is symmetric with
respect to a rotation by 120. Further examples of GU vector
sets are considered in [19].

A set of vectors forms a GU frame for
if the vectors are GU and span .

B. Properties of GU Frames

As we show in the following proposition, the frame bounds
of a GU frame can be bounded by the norm of the generating
vector.

Proposition 1: Let be a GU frame
with frame bounds and , where is an arbitrary generating
vector. Then, . If, in addition, the frame is
tight, then .

Proof: We can express the frame operator corresponding
to the frame vectors as

(7)

Then

(8)

2That is,Q contains the identity matrixI ; if Q containsU , then it also con-
tains its inverseU ; the productU U of any two elements ofQ is again in
Q; andU U = U U for any two elements inQ [37].
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so that

(9)

Therefore,

(10)

and

(11)

Since , the inner product of two vectors in is

(12)

where is the function on defined by

(13)

For fixed , the set is just a
permutation of since for all [37]. There-
fore, the numbers are a permu-
tation of the numbers . The same is true
for fixed . Consequently, every row and column of the
Gram matrix is a permutation of the numbers

.
A matrix whose rows (columns) are a permutation of the

first row (column) will be called apermuted matrix.3 Thus, we
have shown that the Gram matrix of a GU vector set is a per-
muted matrix. Furthermore, if the Gram matrix
is a permuted matrix and in addition , then the vectors

are GU [34]. We, therefore, have the following proposi-
tion.

Proposition 2: The Gram matrix corre-
sponding to a GU vector set is a per-
muted matrix. Conversely, if the Gram matrix
is a permuted matrix, and for all , then
the vectors are GU. If, in addition, the vectors span

, then they form a GU frame for .

As we will see in the sequel, the FT matrix plays an important
role in defining GU frames. To define the FT it will be conve-
nient to replace the multiplicative groupby an additive group

to which is isomorphic.4 Specifically, it is well known
(see, e.g., [37]) that every finite Abelian group is isomor-
phic to a direct product of a finite number of cyclic groups:

, where is the cyclic additive
group of integers modulo , and . Thus, every ele-

3An example of a permuted matrix is

a a a a

a a a a

a a a a

a a a a

: (14)

4Two groupsQ andQ are isomorphic,denoted byQ �
= Q , if there is a

bijection (one-to-one and onto map)': Q ! Q which satisfies'(xy) =
'(x)'(y) for all x, y 2 Q [37].

ment can be associated with an element of the
form , where ; this correspon-
dence is denoted by .

Each vector is then denoted as , where
. The zero element corresponds to

the identity matrix , and an additive inverse
corresponds to a multiplicative inverse . The
Gram matrix is then the matrix

(15)

with row and column indexes , where is now the
function on defined by

(16)

The FT of a complex-valued function: defined on
is the complex-valued function:

defined by

(17)

where the Fourier kernel is

(18)

Here, and are the th components of and , respectively,
and the product is taken as an ordinary integer modulo.

The FT matrix over is defined as the matrix

The FT of a column vector is then the
column vector given by . Since
is unitary, we obtain the inverse FT formula

(19)

As we show in the following theorem, the FT matrix can be
used to define GU frames.

Theorem 1: A set of vectors in an -di-
mensional Hilbert space is GU if and only if the Gram matrix

is diagonalized by an FT matrix over a finite
product of cyclic groups . The vectors form a GU frame
for if in addition has rank .

Proof: The vectors form a frame for if and only
if they span , which implies that the rank of , must be equal
to .

For a GU vector set with generating group , the FT
over diagonalizes the Gram matrix [26]. Thus, to complete
the proof of the theorem, we need to prove that ifis diago-
nalized by an FT matrix over the group , then the vector set

is GU.
Let be the matrix of columns , so that . Since
diagonalizes , has an eigendecomposition of the form
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for a diagonal matrix with diagonal elements
, where the first diagonal elements may be nonzero and

the remaining diagonal elements are all zero. Then,has a sin-
gular value decomposition (SVD) [38] of the form ,
where is an arbitrary unitary matrix and is an diag-
onal matrix with diagonal elements .

Let denote the columns of . From the defi-
nition of , the components of are all equal to , and

where is a diagonal unitary matrix with
diagonal elements , where is given by
(18). Then

(20)

where , and where we used the fact that diagonal
matrices commute. If we now define , then
we have that , where the matrices
are unitary.

We now show that the group is an
Abelian group. First, we have that

so that . Next

so that since . Finally,

since diagonal matrices commute, and since
for some .

We, therefore, conclude that where the ma-
trices are unitary and form an Abelian group, so that the
vectors are GU.

As a consequence of Theorem 1 we have the following corol-
lary.

Corollary 1: A set of vectors is GU
if and only if the matrix of columns has an SVD of the
form , where is an arbitrary unitary matrix, is
an arbitrary diagonal matrix with diagonal elements

, and is an FT matrix over a direct product of cyclic
groups. In addition, the vectors form a GU frame for if
they span or, equivalently, if for .

IV. DUAL AND CANONICAL TIGHT FRAMES ASSOCIATED

WITH GU FRAMES

In Section IV-A, we show that the dual-frame vectors and the
canonical tight-frame vectors associated with a GU frame are
also GU. This property can then be used to compute the dual and
canonical tight frames very efficiently. Further properties of the
canonical tight-frame vectors are discussed in Section IV-B.

A. Constructing the Dual and Canonical Tight Frames

Let be a GU frame generated
by a finite (not necessarily Abelian) group of unitary ma-
trices, where is an arbitrary generating vector. Then the frame

operator defined by (2) commutes with each of the unitary
matrices in the generating group . Indeed, expressing the
frame operator as

(21)

we have that for all

(22)

since is just a permutation of .
If commutes with , then and also commute

with for all . Thus,

(23)

where , which shows that the dual frame vectors
are GU with generating group equal to.

Similarly

(24)

where , which shows that the canonical tight frame
vectors are also GU with generating group.

Therefore, to compute the dual frame vectors or the canonical
tight frame vectors all we need is to compute the generating
vectors and , respectively. The remaining frame vectors are
then obtained by applying the group to the corresponding
generating vectors.

We now show that when the group is Abelian, the gen-
erating vectors can be computed very efficiently using the FT.
From Corollary 1, we have that has an SVD of the form

(25)

Here, is a diagonal matrix with diagonal elements

where is the FT of , is the
matrix of columns , where

if
otherwise

(26)

with

(27)

denoting the th element of the FT of regarded as a row vector
of column vectors, , and

has rows .
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It then follows that

(28)

where if . Similarly

(29)

We summarize our results in the following theorem.

Theorem 2 (GU Frames):Let be
a GU frame generated by a finite Abelian groupof unitary
matrices, where is an arbitrary generating vector, and letbe
the matrix of columns . Let be an additive Abelian group
isomorphic to , let be the elements of under
this isomorphism, and let be the FT matrix over . Then

1) the dual frame vectors are GU with
generating group and generating vector

where

a) are the singular
values of ;

b) is the FT of the inner-product se-
quence ;

c) is the set of indexes for which ;
d) for ;
e) is the FT of ;

2) the canonical tight frame vectors are
GU with generating group and generating vector

;

3) the frame bounds of the frame are given
by and .

An important special case of Theorem 2 is the case in which
the generating group is cyclic so that
where is a unitary matrix with . A cyclic group gen-
erates a cyclic vector set ,
where is arbitrary. For example, the frame in Fig. 1 is cyclic
with denoting a rotation by 120. If is cyclic, then is a
circulant matrix,5 and is the cyclic group . The FT kernel
is then for , and the FT matrix

reduces to the discrete FT (DFT) matrix. The singular
values of are then times the square roots of the DFT
values of the inner products .

B. Properties of the Canonical Tight Frame

The canonical tight-frame vectors corresponding to the
frame-vectors have the property that they are the closest nor-
malized tight-frame vectors to the vectors, in a least-squares

5A circulant matrix is a matrix where every row (or column) is obtained by
a right circular shift (by one position) of the previous row (or column). An ex-
ample is

a a a

a a a

a a a

:

sense [29], [27], [30]. Thus, the vectors are the normalized
tight-frame vectors that minimize the least-squares error

(30)

We now show that when the original frame vectorsare GU
with generating group , the canonical tight-frame vectors have
the additional property that among all normalized tight-frame
vectors they maximize

(31)

Maximizing may be of interest in various applications.
For example, in a matched-filter detection problem considered
in [12], represents the total output signal-to-noise ratio. As
another example, in a multiuser detection problem considered in
[13], maximizing has the effect of minimizing the multiple-
access interference at the input of the proposed detector.

To obtain a more convenient expression for , let and
denote the matrices of columnsand , respectively. Since the
vectors form a normalized tight frame for , satisfies

(32)

From Corollary 1, has an SVD of the form , where
is unitary, is the FT matrix over the additive group to

which is isomorphic, and is an diagonal matrix with
diagonal elements . From (32), it follows that can be
written as where is an arbitrary unitary matrix
and is an diagonal matrix with diagonal elements all
equal to .

Let and denote the columns of and , respectively.
Then we can express as

(33)

where is an diagonal matrix with the first diagonal
elements equal to , and the remaining diagonal elements are
all equal to .

Our problem then reduces to finding a set of orthonormal
vectors that maximize , where the vectors
are also orthonormal. Using the Cauchy–Schwarz inequality, we
have that

(34)
with equality if and only if for some . In
particular, we have equality for . Since the components
of the vectors all have equal magnitude ,

for all
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Fig. 2. Example of a GU frame.

and (34) reduces to

(35)
with equality if .

The normalized tight-frame vectors that maximize are
then the columns of where ,
and are equal to the canonical tight frame vectors.

V. EXAMPLE OF A GU FRAME

We now consider an example demonstrating the ideas of the
previous section.

Consider the frame vectors ,
, , ,

depicted in Fig. 2.
The corresponding Gram matrix is given by

(36)

which is a permuted matrix with . From Proposition 2
it follows that the vectors are GU. Since the vectors also
span , these vectors form a GU frame for .

The vectors can be expressed as ,
where and the matrices are unitary,
form an Abelian group , and are given by

(37)

The multiplication table of the group is

(38)

If we define the correspondence

(39)

then this table becomes the addition table of

(40)

Only the way in which the elements are labeled distinguishes
the table of (40) from the table of (38); thus,is isomorphic to

. Over , the FT matrix is the Hadamard matrix

(41)

From Theorem 2, the dual-frame vectors and the canonical
tight-frame vectors are also GU with generatorsand , re-
spectively, whose expressions are given in the theorem. Thus,
to compute the dual and canonical tight-frame vectors we com-
pute these generators and then apply the group.

We first determine the FT of the first row of denoted by

(42)

Using Theorem 2, it follows from (42) that the frame bounds are
given by and . Next, we compute the vectors
which are the columns of

(43)

Using the expressions of the theorem, we then have that
and . By applying the group to

these generators we obtain that the dual-frame vectors are the
columns of

(44)

and the canonical tight-frame vectors are the columns of

(45)

Comparing (44) and (45) with the original frame vectors,
it is evident that the dual and canonical tight-frame vectors have
the same symmetries as the original frame vectors, as illustrated
in Fig. 3.

VI. COMPOUND GU FRAMES

In Section IV, we showed that the dual and canonical tight-
frame vectors associated with a GU frame are themselves GU
and can, therefore, be computed using a single generator. In this
section, we consider a class of frames which consist of subsets
that are GU, and are, therefore, referred to ascompound GU
(CGU) frames. As we show, the dual and canonical tight-frame
vectors associated with a CGU frame share the same symme-
tries as the original frame and can be computed using asetof
generators.

A set of frame vectors is CGU
if for some generating vectors ,
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Fig. 3. Symmetry property of the frame vectors� , the dual-frame vectors
� , and the canonical tight-frame vectors� . � are the columns of� given
by (44), and� are the columns ofM given by (45). The frame vectors,
dual-frame vectors, and the canonical tight-frame vectors all have the same
symmetry properties.

and the matrices are unitary and form an
Abelian group .

A CGU frame is in general not GU. However, for every, the
vectors are a GU vector set with generating
group .

A special case of CGU frames are filter-bank frames studied
for in [7]–[9], in which is the group of translations by
integer multiples of the subsampling factor, and the generating
vectors are the filter-bank synthesis filters.

As we show in the following proposition, the frame bounds
of a CGU frame can be bounded by the sum of the norms of the
generating vectors.

Proposition 3: Let
be a compound GU frame with frame boundsand , where

is an arbitrary set of generating vectors. Then

If, in addition, the frame is tight, then

Proof: We can express the frame operator corresponding
to the frame vectors as

(46)

Then

(47)

so that

(48)

Fig. 4. A compound GU frame. The setsS = f� ; � g and S =

f� ; � g are both GU with the same generating group; both sets are
invariant under a reflection about the dashed line. However, the combined set
S = f� ; � ; � ; � g is no longer GU.

Therefore,

(49)

and

(50)

A. Example of a CGU Frame

An example of a CGU frame is illustrated in Fig. 4. In this
example, the frame vectors are where

, with

(51)

and the generating vectors are

(52)

The matrix represents a reflection about the dashed line in
Fig. 4. Thus, the vector is obtained by reflecting the gener-
ator about this line, and similarly, the vector is obtained
by reflecting the generator about this line.

As can be seen from the figure, the frame is not GU. In par-
ticular, there is no isometry that transforms into while
leaving the set invariant. However, the sets
and are both GU with generating group.

B. Dual and Canonical Tight Frames Associated With CGU
Frames

We now show that the dual and canonical tight frames asso-
ciated with a CGU frame are also CGU.

Expressing the frame operator as

(53)



ELDAR AND BÖLCSKEI: GEOMETRICALLY UNIFORM FRAMES 1001

for all we have that

(54)

since is just a permutation of . Thus,
commutes with , so that and also commute with

for all . Then, the dual-frame vectors of the vectors
are given by

(55)

where , which shows that the dual-frame vectors
are CGU with generating group equal to.

Similarly

(56)

where , which shows that the canonical tight-
frame vectors are also CGU with generating
group .

Therefore, to compute the dual-frame vectors or the canonical
tight-frame vectors all we need is to compute the generating
vectors and , respectively.
The remaining frame vectors are then obtained by applying the
group to the corresponding set of generating vectors.

For the CGU set of Fig. 4 we have that

(57)

Therefore, and
. Since in this example the generating vectors of

the dual frame and the canonical frame are proportional to the
generating vectors of the original frame, the dual-frame vectors
and the canonical frame vectors are proportional to the original
frame vectors.

C. CGU Frames With GU Generators

A special class of CGU frames isCGU frames with GU gen-
erators in which the generating vectors are
themselves GU. Specifically, for some generator

, where the matrices are unitary, and form
an Abelian group .

Now suppose that and commute up to a phase factor
for all and so that where is an
arbitrary phase function that may depend on the indexesand .
In this case, we say that and commute up to a phase factor.
Then for all ,

(58)

The dual frame vectors of the vectors are then given by

(59)

where . Similarly

(60)

where . Thus, even though the frame is not in gen-
eral GU, the dual and canonical tight-frame vectors can be com-
puted using a single generating vector.

Alternatively, we can express as where
. Similarly, where . It then follows

that the generators and are both GU with generating group
.

We conclude that for a CGU frame with commuting GU gen-
erators and generating group, the dual frame and the canon-
ical frame are also CGU with commuting GU generators and
generating group .

As we now show, in the special case in which so
that for all , the resulting frame is GU.
To this end, we need to show that the unitary matrices

form an Abelian group. First,

Since and , . Next,

since and . Also, since and
. Finally,

A special case of CGU frames with GU generators for which
and commute up to a phase factor are the WH frames [17],

[3], [16]. If the WH frame is critically sampled, then
and the WH frame reduces to a GU frame. In the more general
oversampled case, .

To summarize, we have the following theorem.

Theorem 3 (CGU Frames):Let

be a CGU frame with generating vectors
and generating group, and let be the frame operator corre-
sponding to the frame vectors . Then

1) the dual frame vectors
are CGU with generating group and generating vectors

;
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2) the canonical tight-frame vectors
are CGU with generating group and generating

vectors .

If in addition, the generating vectors
are GU with for all , then

1) where so that the dual-frame
vectors are CGU with GU generators;

2) where so that the canonical
frame vectors are CGU with GU generators;

3) if in addition for all , then the vectors
form a GU frame.

VII. PRUNING GU FRAMES

In applications, it is often desirable to know how a frame be-
haves when one or more frame elements are removed. In par-
ticular, it is important to know or to be able to estimate the
frame bounds of the reduced frame. In general, if no structural
constraints are imposed on a frame, this behavior will depend
critically on the particular frame elements removed. For ex-
ample, removal of a particular frame element may destroy the
frame property so that the remaining vectors do not constitute
a frame anymore, whereas if a different element is removed the
remaining vectors may still constitute a frame.

One of the prime applications of frames is signal analysis and
synthesis, where a signal is expanded by computing the inner
products of the signal with the frame elements. The resulting
coefficients are subsequently stored, transmitted, quantized, or
manipulated in some way. In particular, a coefficient may be
lost (e.g., due to a transmission error) which results in a recon-
structed signal that is equivalent to an expansion using a pruned
frame obtained by removing the corresponding frame vector.

Recently, there has been increased interest in using frames for
multiple-description source coding where a signal is expanded
into a redundant set of functions and the resulting coefficients
are transmitted over a lossy packet network, where one or more
of the coefficients can be lost because a packet is dropped [23],
[14]. The goal of multiple description source coding is to ensure
a gradually behaving reconstruction quality as a function of the
number of dropped packets. When using frames in this context,
the reconstruction quality is often governed by the frame bound
ratio of the pruned frame. If the packets are dropped with equal
probability, then it is desirable that the frame bound ratio should
deteriorate uniformly irrespectively of the particular frame ele-
ment that is removed. In the following, we show that GU frames
have this property. We, furthermore, demonstrate that if the orig-
inal frame is a tight GU frame, then the frame bound ratio of the
pruned frame obtained by removing one frame element can be
computed exactly. We also consider the case where sets of frame
elements are removed.

Theorem 4 (Pruned GU Frames):Let

be a GU frame generated by a finite Abelian groupof unitary
matrices, where is an arbitrary generating vector. Letbe the

matrix of columns , and let be the corresponding
frame operator. Let

be the pruned set obtained by removing the element. Then the
eigenvalues of the frame operator corresponding to the pruned
set do not depend on the particular elementremoved.

Proof: The frame operator corresponding to the pruned
frame is given by

(61)

Since is unitary, the eigenvalues of are equal to the
eigenvalues of . But

(62)

Since is independent of , the eigenvalues of
do not depend on.

In general, it is difficult to provide estimates on the frame
bounds of the pruned frame. However, in the special case where
the original GU frame is a tight frame, these bounds can be
determined exactly.

Corollary 2 (Pruned Tight GU Frames):Let

be a GU tight frame generated by a finite Abelian groupof
unitary matrices, where is a unit norm generating vector. Let

be the matrix of columns , and let be the corre-
sponding frame operator. Let

be the pruned set obtained by removing the element. Then,
the eigenvalues of the frame operator corresponding to the
pruned set are given by and ,
independent of .

A similar result was also shown by Goyalet al. [14, The-
orem 4.1].

Proof: Since is a tight frame with , from Propo-
sition 1, the frame bound and . Then

(63)

and

(64)

Since , has one eigenvalue equal to, and the
remaining eigenvalues equal to. The eigenvalues of are
therefore given by and .

An immediate consequence of Corollary 2 is that the frame
bound ratio of the pruned frame is given by

, which is close to for large redundancy .
We next consider the case where multiple frame elements are

removed.
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Corollary 3: Let be a GU frame
generated by a finite Abelian group of unitary matrices, let

be the matrix of columns , and let be the cor-
responding frame operator. Let be a set of indexes, and let

denote the set of indexessuch that for fixed
and . Let be a

pruned set obtained by removing the elementswith .
Then, the eigenvalues of the frame operator corresponding to the
pruned set are independent of.

Proof: The frame operator corresponding to the pruned
frame is given by

(65)

Then

is independent of , and, consequently, the eigenvalues of
do not depend on.

To conclude this section, GU frames have strong symmetry
properties in the sense that removing any one of the elements
leads to a vector set with bounds independent of the particular
element removed. Moreover, if the original frame is tight, then
we can compute the bounds of the pruned frame exactly.

VIII. C ONSTRUCTINGGU FRAMES

Suppose we are given a set of vectors that
form a frame for an -dimensional space . We would like to
construct a GU frame from the vectors .

From Theorem 1, it follows that the vectors form a GU
frame if and only if the Gram matrix has rank , and is di-
agonalized by an FT matrix over a finite product of cyclic
groups. There are many ways to construct a frame from a given
set of frame vectors that satisfy these properties. For ex-
ample, let be the matrix of columns , and let have an
SVD , where is a diagonal matrix with diagonal
elements . Then, the columns of
form a GU frame, where is any FT matrix over a product
of cyclic groups, and is an arbitrary diagonal matrix with
diagonal elements . The frame bounds of the resulting
GU frame are given by and ,
so that we can choose the diagonal matrixto control these
bounds. In particular, choosing we have that the columns
of form a GU frame. This choice has the
property that the frame bounds of the GU frame are equal to the
frame bounds of the original frame.

We now consider the problem of constructing anoptimalGU
frame. Specifically, let denote a frame for ,
and suppose we wish to construct a GU frame from the
vectors . A reasonable approach is to find a set of vectors

that span , and are “closest” to the vectors in the least-

squares sense. Thus, we seek vectorsthat minimize the least-
squares error , defined by

(66)

where denotes theth error vector

(67)

subject to the constraint that the vectorsform a GU frame.
If the vectors are GU, then their Gram matrix is

a permuted matrix with rank , diagonalized by an FT matrix
. Thus, the inner products must satisfy

(68)

where is a permutation of the numbers
, is a scaling factor, and the numbers
are chosen such that the matrix, whose th

row is equal to , is Hermitian, nonnegative
definite, and diagonalized by an FT matrix.

In our development of the optimal GU frame vectors we as-
sume that the permutations in (68) are specified. Since these
permutations determine the additive groupover which the FT
matrix is defined, we assume that is specified. We then
consider three different constraints on the vectors. First, we
consider the case in which both the numbers
and the scaling in (68) are known. The GU frame minimizing
the least-squares error of (66) and (67) subject to this con-
straint is derived in Section VIII-A, and is referred to as the
SC-LSGUF. Next, we consider the case in which the numbers

in (68) are known, and the scalingis chosen
to minimize . The resulting GU frame is referred to as the
C-LSGUF, and is derived in Section VIII-B. Finally, in Sec-
tion VIII-C, we consider the more general case in which both
the numbers and the scaling in (68) are
chosen to minimize . The resulting GU frame is referred to as
the least-squares GU frame (LSGUF).

A. Scaled-Constrained Least-Squares GU Frame (SC-LSGUF)

We first consider the case in which the numbers
and the scaling in (68) are known. Thus, we seek the set

of vectors that minimize the least-squares errorof (66)
and (67) subject to the constraint

(69)

where is the matrix of columns , is a known scaling
factor, and is the matrix whoseth row is equal to

, where the numbers are given such that
is diagonalized by and is a diagonal matrix with diagonal

elements where
is the FT of the sequence . From (69), the
frame bounds of the vectors are given by
and .

The optimal SC-LSGUF vectors follow from [34], and are
the columns of where

(70)
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Here, and are the right-hand unitary matrix and left-hand
unitary matrix, respectively, in the SVD of , is the ma-
trix of columns , and is an diagonal matrix with
diagonal elements for values of for which .

If is invertible, then we may express
as

(71)

B. Constrained Least-Squares GU Frame (C-LSGUF)

We now consider the case in which the numbers
are known, but the scaling is not specified. Thus, we

seek a set of vectors that minimize the least-squares error
subject to

(72)

where .
The least-squares errorof (66) and (67) may be expressed

as

(73)

Let . Then minimizing is equivalent to mini-
mizing

(74)

subject to

(75)

To determine the optimal matrix we have to minimize
with respect to and . Fixing and minimizing with respect
to , the optimal value of is given by the SC-LSGUF of Sec-
tion VIII-A with scaling , so that

(76)

If is invertible, then

(77)

Substituting back into (74), and minimizing with respect to
, the optimal value of is

(78)

which in the case that is invertible reduces to

(79)

The C-LSGUF vectors are then the columns ofgiven by

(80)

where is given by (78). If is invertible, then

(81)

with given by (79).
We summarize our results regarding constrained optimal GU

frames in the following theorem.

Theorem 5 (C-LSGUF):Let be a set of vectors in
an -dimensional Hilbert space that span , and let be
the matrix of columns . Let denote the optimal GU
frame vectors that minimize the least-squares error defined by
(66) and (67), subject to the constraint (68), and letbe the
matrix of columns . Let be the matrix with th row equal
to , so that is the Gram matrix of inner
products , and let be the FT matrix that diagonal-
izes . Let be the diagonal matrix with diagonal elements

where is the
FT of the sequence , let be an di-
agonal matrix with diagonal elements for values of for
which , and let and be the right-hand unitary matrix
and left-hand unitary matrix, respectively, in the SVD of .
Then

1) if is given, then . If in addition
is invertible, then

2) if is chosen to minimize , then ,
where is given by (78). If, in addition, is invert-
ible, then

where is given by (79).

C. Least-Squares GU Frame (LSGUF)

We now consider the least-squares problem in which both the
scaling factor and the numbers in (68) are
chosen to minimize . Thus, we seek a set of vectors that
minimize the least-squares errorof (66) and (67) subject to

(82)

where is a known permutation of the un-
known numbers , chosen such that the matrix

whose th row is equal to is Hermitian,
nonnegative definite, and diagonalized by an FT matrix.

This problem has been considered in the context of general
least-squares inner product shaping [34], in which it was shown
that the solution involves solving a problem of the form

(83)

subject to

(84)

where the vectors are known and are a function of the given
vectors .

As we now show, this problem is equivalent to a detection
problem in quantum mechanics, for which there is no known an-
alytical solution in the general case. However, there exist very
efficient computational methods for obtaining a numerical so-
lution [39], [40].

1) Connection With Quantum Detection:In a quantum de-
tection problem, a system is prepared in one ofknown (pure)
states that are described by vectorsin a Hilbert space , and
the problem is to detect the state prepared by performing a mea-
surement on the system. The measurement is described in terms
of a set of orthogonal measurement vectors. Given a set of
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measurement vectors, and assuming equal prior probabilities
on the different states, the probability of detection is given by
[41]

(85)

Comparing (85) with (83), we see that finding a set of or-
thonormal measurement vectors to maximize the probability
of detection is equivalent to the maximization problem of (83)
and (84).

Necessary and sufficient conditions for an optimum measure-
ment maximizing (85) have been derived [42], [43], [41], [39].
However, except in some particular cases [41], [44], [45], [26],
[46], obtaining a closed-form analytical expression for the op-
timal measurement directly from these conditions is a difficult
and unsolved problem. Efficient iterative algorithms for max-
imizing (85) that are guaranteed to converge to the global op-
timum are given in [39], [40].

We conclude that in general there is no known analytical ex-
pression for the LSGUF. However, in practice the LSGUF can
be approximated to any desired accuracy very efficiently using
the iterative algorithms of [39], [40].

IX. DISTANCE PROPERTIES OFGU FRAMES

So far, we have mainly been concerned with structural prop-
erties of GU frames. In this section, we study the Euclidean dis-
tance properties of these frames.

Suppose we are given a GU frame
generated by the group with . We would like to
characterize the distance profile for all

.
Since the vectors are GU, is just a

permutation of . Furthermore

(86)

where are the elements of the first row of the
Gram matrix corresponding to the frame .

In applications, it may be desirable to construct a GU frame
such that for . Since ,
a sufficient condition is that

(87)

which is satisfied if and only if none of the matrices has
an eigenvalue equal to. Note that if (87) is satisfied, then

regardless of the generating vector .
Groups with unitary representations satisfying (87) are known
asfixed-point free groups, and have been studied extensively in
the literature (see, e.g., [47]). Thus, ifis a representation of a
fixed-point free group, then we have that .

Fixed-point free groups have recently been studied in the con-
text of unitary space–time codes [35]. In particular, it was shown
in [35] that an Abelian group of matrices satisfies (87) if
and only if it is cyclic, i.e., with , and where

can be parameterized as

(88)

where is relatively prime to for all . An optimization over
the can be performed to obtain distance profiles with certain
prescribed properties (there are positive integers less than

that are relatively prime to , where denotes the Euler
totient function of ).

X. CONCLUSION

In this paper, we introduced the concept of GU and CGU
frames and discussed some of their key properties. A funda-
mental characteristic of these frames is that they possess strong
symmetry properties that may be desirable in a variety of appli-
cations. In particular, similar to WH frames and wavelet frames,
GU frames are generated by a single generating vector. Further-
more, the canonical and dual-frame vectors associated with a
GU frame are themselves GU and are, therefore, also generated
by a single generating vector which can be computed very effi-
ciently using an FT matrix defined over an appropriate group.

We also showed that GU frame vectors exhibit interesting
symmetry properties when one or more frame elements are re-
moved. This property of GU frames may be of importance in
multiple description source coding where it is often desirable
that the quality of the reconstruction should not depend on the
particular elements lost (removed).

Although in this paper we have focused on the case in which
the underlying group is a finite Abelian group, many of the re-
sults can be extended to the more general case of infinite-di-
mensional and non-Abelian groups. An interesting direction for
further research is to characterize these more general cases of
GU frames using possibly continuous-time FTs defined over
non-Abelian groups (see, e.g., [48]).
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