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Geometrically Uniform Frames

Yonina C. Elday Member, IEEEand Helmut BolcskeiSenior Member, IEEE

Abstract—We introduce a new class of finite-dimensional generating function. WH frames are obtained by translations
frames with strong symmetry properties, called geometrically and modulations of the generating function (referred to as the
uniform (GU) frames that are defined over a finite Abelian group \\ingow function), and wavelet frames are obtained by shifts and

of unitary matrices and are generated by a single generating ., .. . .
vector. The notion of GU frames is then extended tacompound dilations of the generating function (referred to as the mother

GU (CGU)frames which are generated by a finite Abelian group Wavelet). In Section Il of this paper, we introduce a new class of
of unitary matrices using multiple generating vectors. The dual frames which we refer to agometrically uniform (GU) frames
framfe vectors a“hd canonLcaI tight f(;arﬂe vfectors Iassociated V(‘j"tg‘ that like WH and wavelet frames are generated from a single
GU frames are shown to be GU and, therefore, also generate . . . .

a single generating vector, which can be computed vgry efﬁcientlyy generating veptor. The;e frames are defined by a fmlt_e Abelian
using a Fourier transform (FT) defined over the generating group  9roupQ of unitary matrices, referred to as the generating group
of the frame. Similarly, the dual frame vectors and canonical tight 0f the frame. We note that WH frames and wavelet frames are,
frame vectors associated with CGU frames are shown to be CGU. in general, not GU since the underlying group of matrices is, in
The impact of removing single or multiple elements from a GU  general, not Abelian. GU frames are based on the notion of GU

frame is considered. A systematic method for constructing optimal . .
GU frames from a giver): set of frame vectors that are ngot FC);U is vectorsets firstintroduced by Slepian [18] and later extended by

also developed. Finally, the Euclidean distance properties of GU Forney [19], which are known to have strong symmetry proper-
frames are discussed and conditions are derived on the Abelian ties that may be desirable in various applications such as channel
group of unitary matrices to yield GU frames with strictly positive coding [19], [20], [21].
distance spectrum irrespective of the generating vector. The notion of GU frames is then extended to frames that are
Index Terms—Compound geometrically uniform (CGU) frames,  generated by a finite Abelian grow of unitary matrices using
generalized Fourier transform (FT), geometrically uniform (GU) multiple generating vectors. Such frames are not necessarily
frames, least squares. ) i
GU, but consist of subsets of GU vector sets that are each gen-
erated byQ. We refer to this class of frames esmpound GU
I. INTRODUCTION (CGU) framesand develop their properties in Section VI. CGU

RAMES are generalizations of bases which lead to reduls@mes are a generalization of filter-bank frames introduced for
F dant signal expansions [1], [2]. A finite frame for a Hilbert-2(IR) in [7]-{9]. An interesting class of frames results when
spaceH is a set of vectors that are not necessarily linearly i€ St of generating vectors is itself GU, generated by a finite
dependent and spdi. Since the frame vectors can be Iinearl\f‘be“an groupg. (Note that this class of frames will in gengral
dependent, the conditions on frame vectors are usually not% P& GU.) As we show, these frames are a generalization of
stringent as the conditions on bases, allowing for increased fié¢H frames in whichQ is the group of translations atis the
ibility in their design [3], [4]. group of modulations.

Frames were first introduced by Duffin and Schaeffer [1] in Given a frame fof{, any signal inf{ can be represented as a
the context of nonharmonic Fourier series, and play an impdjpear combination of the frame vectors. However, if the frame
tant role in the theory of nonuniform sampling [1], [2], [5] and/e€ctors are linearly dependent, then the coefficients in this ex-
wavelet theory [3], [6]. Recently, frames have been used to arfpgnsion are not unique. A popular choice of coefficients are the
lyze and design oversampled filter banks [7]—[9] and error-cagfner products of the signal with a set of analysis frame vectors
rection codes [10] Frames have also been app“ed to the g@Ued the dual frame vectors [17] This choice of coefficients
velopment of modern uniform and nonuniform sampling tecfhias the property that among all possible coefficients it has the
niques [11], to various detection problems [12], [13], and tginimallz-norm [17], [22].
multiple description source coding [14]. In Section IV, we show that the dual frame vectors associ-

Two important classes of highly structured frames are Gab@ied with a GU frame are also GU, and therefore generated by
(Weyl-Heisenberg (WH)) frames [15], [16] and wavelet frame3 Single generating vector. Furthermore, we demonstrate that
[3], [6], [17]. Both classes of frames are generated by a singfée generating vector can be computed very efficiently using a

Fourier transform (FT) defined over the generating gr@upf
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show that the frame bounds of the frame resulting from re-
moving a single vector of a GU frame are the same regardless of ¢1
the particular vector removed. In this sense, GU frames exhibit
an interesting robustness property which is of particular impor-
tance in applications such as multiple description source coding 120° 120°
[23], [14]. We also consider the behavior of a GU frame when
groups of frame elements are removed.

In the special case of a tight frame, the dual frame vectors P2 ¢3
are proportional to the original frame vectors so that the recon-
struction formula is particularly simple. In many applications it
is therefore desirable to construct a tight frame from an arbi-
trary set of frame vectors. A popular tight-frame construction is )
the so-called canonical tight frame [17], [7], [24]-[27], firstprogg;eiéreéﬁoimp;eﬂgm ;&%{9?' The vectofs, ¢z, and ¢, spanRR* and,
posed in the context of wavelets [28]. The canonical tight frame
is relatively simple to construct, it is optimal in a least-squares
sense [29], [27], [30], it can be determined directly from the Il. FRAMES

given vectors, and plays an important role in wavelet theory Frames, which are generalizations of bases, were introduced
[31]-[33]. Like the dual-frame vectors, we show that the canof the context of nonharmonic Fourier series by Duffin and
ical tight-frame vectors associated with a GU frame are GU, agghaeffer [1] (see also [2]). Recently, the theory of frames has
the canonical tight-frame vectors associated with a CGU frargeen expanded [3], [6], [17], [4], in part due to the utility of
are CGU. When the generating vectors of the CGU frame &fames in analyzing wavelet decompositions.

GU and generated by a grogpthat commutes up to a phase Let{¢;, 1 <i < n} denote a set af complex vectors in an
factor with Q, the canonical tight-frame vectors can be obtaineg-dimensional Hilbert spac#. The vectorsp; form aframe

by a single generating vector, generalizing a result well-knowor # if there exist constantd > 0 andB < oo such that

in WH frame theory.

Since GU frames have nice symmetry properties, it may be
desirable to construct such a frame from a given set of frame
vectors. The problem of frame design has received relatively
little attention in the literature. Systematic methods for corer all z € ‘H [17]. In this paper, we restrict our attention to the
structing optimal tight frames have been considered [29], [2@ase wheren andn are finite. The lower bound in (1) ensures
[30]. Methods for generating frames starting from a given frammat the vectors); span’; thus, we must have > m. Since
are described in [4]. n < oo, the right-hand inequality of (1) is always satisfied with

In Section VIII, we systematically construct optimal GUB = """, ||¢;||?, so that any finite set of vectors that spans
frames from a given set of vectors, that are closest in7is a frame forH. In particular, any basis fok is a frame
least-squares sense to the original frame vectors. The resultfoir{. However, in contrast to basis vectors which are linearly
this section rely on ideas developed in [34] in the context @fidependent, frame vectors with> m are linearly dependent.
general least-squares inner product shaping. In our develtipthe boundsA = B in (1), then the frame is called tight
ment, we consider three different constraints on the GU frarframe If, in addition, A = B = 1, then the frame is called a
vectors. First, we treat the case in which the inner productsrmalized tight frameThe redundancy of the frame is defined
of the frame vectors are known. The optimizing frame iasr = n/m, i.e.,n vectors in anm-dimensional space.
referred to as the scaled-constrained least-squares GU frama classical example of a frame is the frame depicted in Fig. 1.
(SC-LSGUF). Next, we consider the case where the inn8mce the vector$:, ¢-, ¢3 clearly sparR?, they form a frame
products are known up to a scale factor. The optimizing franfier IR?. Note that the vectors are linearly dependent and there-
in this case is referred to as the constrained least-squares 8te do not constitute a basis flit*>. The frame of Fig. 1 has
frame (C-LSGUF). Finally, we consider the case in which botn interesting symmetry property: the frame vectors can be ob-
the inner products and the scaling are chosen to minimize tlaéned by rotating any one of the vectgrsy multiples of 120.
least-squares error between the original frame and the resultfgwe will see in Section Il this frame is a cyclic frame which
tight frame. The optimizing frame is the least-squares Gig a special case of a GU frame.
frame (LSGUF). The frame operatorcorresponding to the frame vectors

In Section IX, we consider distance properties of GU frame$¢i, 1 < @ < n} is defined as [17]
which may be of interest when using GU frames for code design
(group codes) [18], [19]. In particular, we introduce a class of g — zn: bidt = BD*
GU frames with strictly positive distance spectra for all choices o
of generating vectors. Such GU frames are shown to be gener-
ated by fixed-point-free groups [35].

Before proceeding to the detailed development, in Section II’1We use the notatiofr, y) to denote the scalar producty, where vectors
we provide a brief introduction to frame expansions. andy are represented as column vectors agénotes the Hermitian transpose.

Alll* <7 [, ) < Blla|? 1)
i=1

)

i=1
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where® is the matrix of columng;, and(-)* denotes the Her- yields a tight frame as well. The canonical tight frame, however,
mitian transpose. Using the frame operator, (1) can be rewritteas the property that it is the closest normalized tight frame to
as the vectorg¢;} in a least-squares sense [26], [29], [27].
From (4) and (6), we see that in order to compute the dual-
Allz|* < (S, x) < Bl|z|? (3)  frame vectors and the canonical tight-frame vectors associated
forall z € H Witr;/? fra(rjneéq&i}, Wef ne;]ed to comprl]Jtefthhe r?atric;és1 i\gd
N . : —+/% and then apply them to each of the frame vecipss
A Z:%'g (:r)é ';igfvg; ,;h:altégi42\9?26)5;[1)523'2';1?@? (l;(;unc% the next section, we ihtroduce a class of frames tha'F have
where{\i(S). 1 < i < m) ar:a tzhe cigenvalues othh:e fre{m strong symmetry properties call€l) frames As we show in
i)y L=t S M 9 ) o SSection IV, the dual frame vectors and the canonical tight frame
operatorS. Throughout the paper, when referring to “the frame

= . . Vectors associated with a GU frame are generated by a single
bounds” we implicitly assume the tightest possible frame g y 9

bounds unless otherwise stated. Note that since the ve@tor%i?ﬁl;atmg function, and can therefore be computed very effi-
spanH, ®&* is invertible so thatd > 0. ’
If the vectors{¢;, 1 < i < n} form a frame forH, then
anyz € H can be expressed as a linear combination of these
vectorsiz = -, a;$;. If n > m, then the coefficients in this A. Definition

expansion are not unique. A possible choiceiis= (¢;, z) A set of vectorsS = {¢;, 1 < i < n} is GU [19], [18], [26]

where¢, are fthedual frame vector$l7] of the frame vectors if every vector in the set has the forfy = U;¢, whereg is an

¢i, and are given by arbitrarygenerating vectoand the matrice$U;, 1 < i < n}
5. = S L (4) are unitary and form an Abelian grou®. For concreteness,

! v we assume thdl; = I so that$; = ¢. The groupQ will be

The choice of coefficients; = (¢,, =) has the property that called thegenerating groupf S.

among all possible coefficients it has the minirhahorm [17],  Alternatively, a vector set is GU if given any two vectafs

[22]. ande¢; in the set, there is an isometry (a norm-preserving linear
There are other choices of dual frame vectgrsuch that for transformationy;; that transforms; into ¢; while leaving the

anyz € M,z = 3. (yi, x)¢;. Specifically, withy denoting Set invariant [19]. Thus, for every Z;;¢; = ¢;. Intuitively, a

the matrix of columng;, any other choice correspondsifoof ~ Vvector set is GU if it “looks the same” geometrically from any

I1l. GU FRAMES

the form [36] of the points in the set.
The vector set of Fig. 1 is GU, since the setis symmetric with
Y=8"'0+T(I-25"'9) (5) respect to a rotation by 120Further examples of GU vector

, . ) . sets are considered in [19].
whereT is an arbitrary matrix. Indee@Y* = I forany choice  p get of vectors¢; € H, 1 < i < n} forms a GU frame for

of T. However, the particular choieg = ¢, has some desir- H if the vectors{¢; } are GU and spa.
able properties. Besides resulting in the minifaahorm coef-

ficients, in many cases the choige= ¢, yields frame vectors B. Properties of GU Frames

that share the same symmetries as the original frame vectors. ) ) N

Specifically, in Section IV we show that the dual frame vectors AS We show in the following proposition, the frame bounds
associated with a GU frame are also GU, and in Section VI & GU frame can be bounded by the norm of the generating
show that the dual frame vectors associated with a CGU fraffgftor:

are also CGU. Finally, inthe case of a tight frame, the dual frameproposition 1: LetS = {¢; = U, U; € Q} beaGU frame
vectors lead to a particularly simple expansion. Specifically, {§ith frame boundst and B, where is an arbitrary generating
this caseS = Al, sothats~" = (1/4)1,,, and the dual frame vector. ThenA < Z||¢[|> < B. If, in addition, the frame is
vectors are{¢; = (1/4)¢;, 1 < i < n}. Since a tight frame tight, thend = B = 2|42

expansion of a signal is very simple, it is popular in many ap- proof: We can express the frame operator corresponding

plications [17]. to the frame vectors; as
Suppose we are given a set of vectdrs, 1 < i < n}

that form a frame forH, with frame boundsd # B. It may n s
then be desirable to construct a tight frame from these vectors. S= Z Uigpgp™U;". (7)
A popular tight-frame construction is the canonical tight frame =1

[17], [7], [24], [25], [27], [29], first proposed in the context OfThen
wavelets in [28]. Thecanonical tight-frame vector§u,, 1 <
i < n} associated with the vectof®);, 1 < 7 < n} are given n

by Tr(S) = Tr(Uidg*U;) = nl|¢||” 8)

i=1
-1/2
pi =S~ (6)
_ . . .. .. 2That is,Q contains the identity matrik; if Q containsl/;, then it also con-
1/2 ; ; i
whereS~1/? is the Symmet“f? pos't've_d_ef'n'te Sguafe f°9t Ofins its inversd’;!; the product/,U; of any two elements of is again in
S—1. Note, that{ 7S ~'/2¢,} with U an arbitrary unitary matrix Q; andU,U; = U, U, for any two elements i [37].
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so that
D Ai(8) = Tu(S) = nllg]”. 9)
=1
Therefore,
1 — n
A = min )\;(S) < — Xi(S) = —||¢]|? 10
min\(8) < 03 M(S) = Tl a0)
and
1 «— n
B= N(S) > — ) N(S) = — 8>, (11
max X(8) 2 10 3 M(S) = Tl
d
SinceU; = U;*, the inner product of two vectors #is
(1, §3) = Ui U = s(U;Uj) (12)
wheres is the function onQ defined by
s(U;) = ¢*Usi¢. (13)

For fixed i, the setU;'Q = {U7'U;, U; € Q} is just a
permutation ofQ sinceU[lUj e Q for all i, j [37]. There-
fore, then numbers{s(U;'U;), 1 < j < n} are a permu-

tation of the number$s(U;), 1 < ¢ < n}. The same is true

for fixed j. Consequently, every row and column of thex n

Gram matrixG' = {(¢;, ¢;)} is a permutation of the numbers

{a; = s(U;), 1 < i < n}.
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mentU; € Q can be associated with an elemernt () of the
formgq = (q1, q2, ..., ¢), Whereg; € Z,,; this correspon-
dence is denoted hy; < q.

Each vectorp; = U, ¢ is then denoted ag(q), whereU; «—
q. The zero elemert = (0,0, ..., 0) € @ corresponds to
the identity matrix] € Q, and an additive inverseq € Q
corresponds to a multiplicative inveri;l?l‘1 =U; € Q.The
Gram matrix is then the x n matrix

G={od) #a),d,q€eQ}={s(¢—q). ¢, g€ Q}
(15)

with row and column indexeg’, ¢ € Q, wheres is now the
function on@ defined by

s(q) = (¢(0), ¢(q))-

The FT of a complex-valued functian: Q@ — C defined on
Q=172,, x---x1,,6 isthe complex-valued functiop: @ — C
defined by

(16)

. 1
ww%=7;§jm4mm) 17)
q€@
where the Fourier kernéh, ¢) is
p .
(h, q) = [ e72mtea/me. (18)
t=1

A matrix G whose rows (COIUmnS) are a permutation of thﬂere'ht andqt are thekth Components ot andq’ respective|y’

first row (column) will be called germuted matrix Thus, we

and the produck,g; is taken as an ordinary integer modulp

have shown that the Gram matrix of a GU vector set is a per-The FT matrix oveK) is defined as the x n matrix

muted matrix. Furthermore, if the Gram matéix= {(¢;, ¢;)}
is a permuted matrix and in additiégh = G, then the vectors

{#;} are GU [34]. We, therefore, have the following proposi-

tion.

Proposition 2: The Gram matrixG {{(¢s, ¢;)} corre-
sponding to a GU vector sét= {¢; € H, 1 <i < n}isaper-
muted matrix. Conversely, if the Gram matk= {{¢;, ¢;)}
is a permuted matrix, andb;, ¢;) = (¢;, ¢;) forall i, j, then
the vectors{¢; } are GU. If, in addition, the vectorgp, } span
'H, then they form a GU frame fok.

As we will see in the sequel, the FT matrix plays an important
role in defining GU frames. To define the FT it will be conve-

nient to replace the multiplicative grop by an additive group
Q@ to which Q is isomorphict Specifically, it is well known
(see, e.g., [37]) that every finite Abelian grogp is isomor-
phic to a direct produaof) of a finite number of cyclic groups:
Q=Q =1, x---x1,,, wherez,, is the cyclic additive
group of integers modula,, andn = [], n,. Thus, every ele-

3An example of a permuted matrix is

a1 ao as

ayp  dgq

(14

ay ay

az ao

4Two groupsQ andQ’ areisomorphic,denoted byQ = Q’, if there is a
bijection (one-to-one and onto map) Q — Q’ which satisfiesp(xy)
p(z)p(y) forallz, y € Q [37].

- {

The FT of a column vectop = {p(q), ¢ € Q} is then the
column vectorp = {¢(h), h € Q} given byp = Fp. SinceF
is unitary, we obtain the inverse FT formula

<hq%hq€Q}-

71§jm~wwqueQ}. (19)

As we show in the following theorem, the FT matrix can be
used to define GU frames.

Theorem 1: A set of vectors{¢;, 1 < ¢ < n} in anm-di-
mensional Hilbert spacK is GU if and only if the Gram matrix
G = {{¢:, ¢;)} is diagonalized by an FT matrik over a finite
product of cyclic groupg). The vectorq ¢, } form a GU frame
for H if in addition G has rankm.

Proof: The vectors{¢;} form a frame forH if and only
if they span, which implies that the rank af, must be equal
to m.

For a GU vector set with generating grogp= @, the FT
over( diagonalizes the Gram matrix [26]. Thus, to complete
the proof of the theorem, we need to prove thafifs diago-
nalized by an FT matri over the grouf, then the vector set
{¢(q). ¢ € Q} is GU.

Let @ be the matrix of columng(q), so that7 = ®*&. Since
F diagonalizes7, G has an eigendecomposition of the form
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G = FDZF* for a diagonal matrixD with diagonal elements operatorS defined by (2) commutes with each of the unitary
d;, where the firstm diagonal elements may be nonzero anthatricesU; in the generating groug. Indeed, expressing the
the remaining diagonal elements are all zero. Thehas a sin- frame operator as
gular value decomposition (SVD) [38] of the fon= UX F*, n
whereU is an arbitrary unitary matrix and is anm x n diag- S = Z U;pd*U? (21)
onal matrix with diagonal elemenfs; = /d;, 1 <i < m}. P

Let{f(q), ¢ € Q} denote the columns ¢f*. From the defi- .
nition gf .(7-",)the corr};ponents of(0) are all equal td /\/n, and we have that for alf

f(q) = B(q)f(0) whereB(q) is a diagonal unitary matrix with "
diagonal element$(h, q), h € Q}, where(h, q) is given by SUj = UipiiUiU;
(18). Then i=1
$(q) =USf(q) = USB(g) f(0) =U; Y UUig¢"U;U;
=UB(9)2/(0) = UB(q)U"¢ (20) o
where¢ = UXf(0), and where we used the fact that diagonal =Uj Z Ui Ui = U;S (22)

matrices commute. If we now defirié(q) = UB(q)U*, then =t

we have thab(q) = U(q)¢, where the matricefl(q), g € Q}  since{UU;, 1 <i < n} is just a permutation oD.
are unitary. If S commutes with/;, thenS—! andS~%/2 also commute
We now show that the groug = {U(q), ¢ € Q} is an with U; for all j. Thus,

Abelian group. First, we have that _ . 1 . _
¢; =5 "¢i=85"Uip=U;S"¢=U¢ (23)

where¢ = S~1¢, which shows that the dual frame vectors

so thatl € Q. Next {¢, = S™1¢;} are GU with generating group equal@®
Similarly

i = S7V2¢; = STV = UiS™ V2 = Ui (24)

U(0) = UBO)U* =UU* =1

U™'(q) =UB~'(9)U* = UB(-q)U*
1 . .
so that/=(q) € Q since—q € Q. Finally, wherep, = S~1/2¢, which shows that the canonical tight frame
U(q)U(h) = UB(q)B(h)U* = UB(h)B(q)U* = U(h)U(q) Vvectors{u; = S—1/2¢4,} are also GU with generating gro@.

) ) ) ) Therefore, to compute the dual frame vectors or the canonical
since diagonal matrices con)mute, aIpi@;?U(h) € @since tight frame vectors all we need is to compute the generating
B(h)B(q) = B(h + q) = B(¢') for someq’ € Q. vectorsg andy, respectively. The remaining frame vectors are

We, therefore, conclude thatq) = U(q)¢ where the ma- then obtained by applying the grou to the corresponding
tricesU(q) are unitary and form an Abelian group, so that thgenerating vectors.
vectorsg(q) are GU. O We now show that when the grou@ is Abelian, the gen-

As a consequence of Theorem 1 we have the following cordlating vectors can be computed very efficiently using the FT.
From Corollary 1, we have thdt has an SVD of the form

lary.
Corollary 1: A set of vectors{¢; € H, 1 < i < n} is GU ¢ =UXF" = Z a(h)u(h)F*(h). (25)
if and only if the matrix® of columns¢; has an SVD of the heqQ

form ® = UXF~, whereU is an arbitrary unitary matrixt> is  Here,. is a diagonal matrix with diagonal elements
an arbitrary diagonal matrix with diagonal elemefits, 1 <

i < m}, andF is an FT matrix over a direct product of cyclic {o(h) = n'/* Va(h), h € Q}
groups. In addition, the vectof®, } form a GU frame forH if where{s(h), h € Q} is the FT of{s(q), ¢ € Q}, U is the
they spar? or, equivalently, ifo; # 0 for 1 < i < m. matrix of columnsu(h), where
IV. DUAL AND CANONICAL TIGHT FRAMES ASSOCIATED u(h) = {‘I) (h)/o(h) = ¢(h)/o(h),  if o(h) #0 (0g)
WITH GU FRAMES 0, otherwise

In Section IV-A, we show that the dual-frame vectors and tH&th
canonical tight-frame vectors associated with a GU frame are . 1 L
also GU. This property can then be used to compute the dual and o Z (e 0)(9)
canonical tight frames very efficiently. Further properties of the
canonical tight-frame vectors are discussed in Section I1V-B. denoting theith element of the FT ob regarded as a row vector
of column vectorsp = {¢(q), ¢ € G}, and

(27)
€Q

A. Constructing the Dual and Canonical Tight Frames

5 1 *
LetS = {¢; = U;¢, U; € Q} be a GU frame generated Fr= {ﬁ(h, Q)" h,q€ Q}
by a finite (not necessarily Abelian) group of unitary ma-
trices, wherey is an arbitrary generating vector. Then the frameas rowsF*(h) = { = (h, q)*, ¢ € Q}.
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It then follows that sense [29], [27], [30]. Thus, the vectqus are the normalized
T_glg4_ 1 1 ; 28) tight-frame vectors that minimize the least-squares error
¢ = ¢ = ﬁ Z m u(h)

heT n

Z (i — pis di — pi)- (30)

whereh € Z if a(h) # 0. Similarly p

1
p=S"12¢ = 7= Z u(h). (29) We now show that when the original frame vectorsare GU
heZ with generating groug®, the canonical tight-frame vectors have

We summarize our results in the following theorem. the additional property that among all normalized tight-frame

vectors they maximize
Theorem 2 (GU Frames)LetS = {¢; = U;¢, U; € Q} be
a GU frame generated by a finite Abelian gro@pof unitary n )
matrices, where is an arbitrary generating vector, anddebe Ry =Y [ir i) (31)

the matrix of columngp;. Let Q be an additive Abelian group =1
isomorphic toQ, let{¢(q), ¢ € @} be the elements & under  Maximizing R, may be of interest in various applications.
this isomorphism, and let be the FT matrix ove&. Then For example, in a matched-filter detection problem considered
1) the dual frame vectorp,, 1 < i < n} are GU with in[12], R,, represents the total output signal-to-noise ratio. As
generating grou@® and generating vector another example, in a multiuser detection problem considered in
— [13], maximizingR 4, has the effect of minimizing the multiple-
¢=(1/vn) Z(l/a(h))”(h) access interferengg at the input of the proposed detector.
her To obtain a more convenient expressioniy;,, let® andA/
where denote the matrices of columasandy;, respectively. Since the
a) {o(h) = n'/*\/3(h), h € Q} are the singular vectorsy; form a normalized tight frame fdk, M satisfies
values of®;
b) {3(h), h € Q} is the FT of the inner-product se- MM* = I,. (32)

quence{(¢(0), ¢(q)). ¢ € Q}; .
c) T is the set of indexeb € @ for whicho(h) # 0; From Corollary 1® has an SVD of the forme = UXF*, where

d) u(h) = gz@(h)/a(h) forh e T: Uhi_s rl}JnQit_ar_y,]-' is thhe_ FT rg}qtrix over thg_ additi\fe gro_l@ t_oh
3 - . which Q is isomorphic, and is anm x n diagonal matrix wit
®) {(/)(h)_’ h e Q}is the FT 0H{(q). ¢ E,Q}’ diagonal elements; > 0. From (32), it follows that\/ can be
2) the canonical tight frame vectofg;, 1 < i < n} are \iven ashs = 1777 whereZ is an arbitrary unitary matrix
GU with generating grou and generating VeCtor = 547 is ansm x n diagonal matrix with diagonal elements all
(1/\/ﬁ) ZheI u(h)' equa| tol.
3) the frame bounds of the framj@,, 1 <7 < n}aregiven  Let f; andz; denote the columns of* andZ*, respectively.
by A = \/nminyez $(h) andB = /nmaxyez $(h).  Then we can expresk,, as

An important special case of Theorem 2 is the case in which n n
the generating groug is cyclicso thatl; = Vi=!, 1 <i<n, Ry, = Z i, i) = Z (U™ i, U* )|
whereV is a unitary matrix withi’™ = I. A cyclic group gen- i=1 i=1
erates a cyclic vector s& = {¢; = Vi7lgp, 1 < i < n}, n _
where¢ is arbitrary. For example, the frame in Fig. 1 is cyclic = Z (fi» Zzi) (33)
with V' denoting a rotation by 1201f Q is cyclic, thenG is a =1
circulant matrix¢ andq is the cyclic grougZ,,. The FT kernel

; _ ,—2mihg/n i . :
is then(h, g) = e g forh, g € Zn, and.the FT matnx elements equal te;, and the remaining diagonal elements are
F reduces to the x n discrete FT (DFT) matrix. The smgularalII equal to0

values of® are thenn'/* times the square roots of the DFT Our problem then reduces to finding a set of orthonormal
values of the inner products¢s, ¢;), 1 < j < n}. vectorsz; that maximizey_, |(f;, £z;)|?, where the vectorg;

are also orthonormal. Using the Cauchy—Schwarz inequality, we
have that

whereY. is ann x n diagonal matrix with the firstn diagonal

B. Properties of the Canonical Tight Frame

The canonical tight-frame vectoys;, corresponding to the
frame-vectorsgp; have the property that they are the closest nor- = = - = =
y propery ¢ Rop =S IEY2 1, 52202 < 3 (fi i)z, B2)
1=1

i=1
5A circulant matrix is a matrix where every row (or column) is obtained by o =1/2 S1/2 (34)
a right circular shift (by one position) of the previous row (or column). An exWith equality if and only if¥ "/ f; = ¢; X /?z; for someg;. In

malized tight-frame vectors to the vectars in a least-squares

ample is particular, we have equality for, = f;. Since the components
a0 as a of the vectorsf; all have equal magnitudg/\/n,
a, Qg Q2 m
|:112 ay ao] <f“if7> = lZokéa, for all 4
"=
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¢3 b2

®4 &1

Fig. 2. Example of a GU frame.

and (34) reduces to

Ry <« Z (zi, X2z;) = aTe(Z2*YZ) = aTr(X) = n
i=1

with equality if f; = z;.

The normalized tight-frame vectors that maximizg,, are

062

(39)

then the columns o = UIF* = S—/2& whereS = &&*,

and are equal to the canonical tight frame vectors.

V. EXAMPLE OF A GU FRAME

999

then this table becomes the addition tablé€)of 7, x Z,

(0,0) (0,1) (1,0) (1,1)
(0,0) | (0,0) (0,1) (1,0) (1,1)
(0,1) | (0,1) (0,0) (1,1) (1,0) (40)
(1,0) | (1,0) (1,1) (0,0) (0,1)
(1,1) | (1,1) (1,0) (0,1) (0,0).

Only the way in which the elements are labeled distinguishes
the table of (40) from the table of (38); thug,is isomorphic to
Q.OverQ = Z5 x 75, the FT matrixF is the Hadamard matrix

1 1 1 1
1 -1 1 -1
=501 1 41
1 -1 -1 1
From Theorem 2, the dual-frame vectors and the canonical
tight-frame vectors are also GU with generatgrand p, re-
spectively, whose expressions are given in the theorem. Thus,
to compute the dual and canonical tight-frame vectors we com-
pute these generators and then apply the g@up
We first determine the FT of the first row ¢ denoted by

1
s = —
2

(41)

=F

V33

(003 1], (42)

We now consider an example demonstrating the ideas of {)§ing Theorem 2, it follows from (42) that the frame bounds are

previous section.

Consider the frame vectors; = 1/2[v3 —1]*, ¢o =
12[V3 1%, ¢3 = 1/2[=V3 1", by = 1/2[-V3 1],

depicted in Fig. 2.
The corresponding Gram matrix is given by

1 0.5 -1 =05
0.5 1 =05 -1
-1 =05 1 0.5
-05 -1 0.5 1

which is a permuted matrix wittf = G”. From Proposition 2
it follows that the vectorg); are GU. Since the vectors also

spanR?, these vectors form a GU frame fix>.

(36)

The vectorsp; can be expressed &8; = U;¢, 1 < i < 4},

where¢ = ¢, and the matricegU,, 1 < i < 4} are unitary,

form an Abelian grou®, and are given by

1 0
Ul :I27 U2: |:0 _1:|
-1 0 -1 0
wenoal w=[]

The multiplication table of the grou@ is
‘ Ui Uy Us Uy

U1 U1 U2 U3 U4

U2 U2 Ul U4 U3

U3 U3 U4 Ul U2
Uy | Uy Us Uy U

If we define the correspondence

(37)

(38)

Uy < (070)7 Uy & (07 1)7 Us < (170)7 Uy & (171>

(39)

given byA = 1 andB = 3. Next, we compute the vecto&éh)
which are the columns of

0 0 1.7 0}

0 0 0 -1 (43)

o7 |
Using the expressions of the theorem, we then havedhat

[0.3 —0.5]* andp = [0.5 —0.5]*. By applying the grouf® to
these generators we obtain that the dual-frame vectors are the
columns of

(44)

—-0.5 0.5 0.5 —0.5

5:[ 0.3 03 -0.3 —0.3]

and the canonical tight-frame vectors are the columns of

0.5 05 —-05 -0.5
.

—-0.5 0.5 0 -0.5 (45)

M= [
Comparing (44) and (45) with the original frame vectgrs
itis evident that the dual and canonical tight-frame vectors have
the same symmetries as the original frame vectors, as illustrated
in Fig. 3.

VI. CoMPOUND GU FRAMES

In Section IV, we showed that the dual and canonical tight-
frame vectors associated with a GU frame are themselves GU
and can, therefore, be computed using a single generator. In this
section, we consider a class of frames which consist of subsets
that are GU, and are, therefore, referred tacasipound GU
(CGU) framesAs we show, the dual and canonical tight-frame
vectors associated with a CGU frame share the same symme-
tries as the original frame and can be computed usisgtaf
generators.

A set of frame vector§g;,, 1 <i <[, 1 <k <r}isCGU
if ¢;, = U,y for some generating vectofgy, 1 < k < r},
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_ _ P22
#3 b2
Hs3 K2 o1
&3 b2 .
I i P21
4 i L7
P4 M b12
9‘54 051 ! ) o
Fig. 4. A compound GU frame. The sef&s = {¢i1, 21} andS. =

{12, ¢22} are both GU with the same generating group; both sets are
Fig. 3. Symmetry property of the frame vectass, the dual-frame vectors invariant under a reflection about the dashed line. However, the combined set
¢;, and the canonical tight-frame vectqrs. ¢, are the columns o® given S = {¢11, ¢21. d12, 22} is no longer GU.
by (44), andu; are the columns of\/ given by (45). The frame vectors,

dual-frame vectors, and the canonical tight-frame vectors all have the same
symmetry properties. %ereforey
and the matrice§U;, 1 < ¢ < [} are unitary and form an A = min ;(S) < e > Ai(8) = L > llell® (49)
Abelian groupQ. ‘ m = ™=
A CGU frame is in general not GU. However, for evérgthe and
k1 <i< i i 1 & [
\é(ragltjzrsg{.qﬁzk, 1 < i < [} are a GU vector set with generating B_ m?X/\i(S) > L Z M(S) = L Z loell. (50)
A special case of CGU frames are filter-bank frames studied =t k=1
for L2 (R) in [7]-[9], in which Q is the group of translations by O
integer multiples of the subsampling factor, and the generating
vectors are the filter-bank synthesis filters. A. Example of a CGU Frame

As we show in the following proposition, the frame bounds an example of a CGU frame is illustrated in Fig. 4. In this
of a CGU frame can be bounded by the sum of the norms of tigample, the frame vectors afé;,, 1 < i, k < 2} where

generating vectors. {pir = Uid, Ui € Q}, Q = {1z, U} with
Proposition 3: Let S = {¢i, = Ui, 1 <i <1, 1<k <r} T1 V3
be a compound GU frame with frame boundland B, where U=-:= [ ] (51)
{ér, 1 < k < r}isan arbitrary set of generating vectors. Then 2lv3 -1
& and the generating vectors are
A<= "|lgil* < B.
= n=li] =] e
If, in addition, the frame is tight, then va Ll va Ll
T The matrixU represents a reflection about the dashed line in
A= z Z w2 Fig. 4. Thus, the vectap,; is obtained by reflecting the gener-
Lt ator¢,, about this line, and similarly, the vectgs, is obtained

Proof: We can express the frame operator correspondil% Ar\gf:;cnt'gge tsheeegi?:r:]aiﬁg?iaS?eUtt:]h(;Sfrlglrﬁé < ot GU. In par-
to the frame vectorg; as gure, -Inp

ticular, there is no isometry that transforgg into ¢ while

Lo leaving the set invariant. However, the s&ts = {¢11, ¢21}
S =

Then B. Dual and Canonical Tight Frames Associated With CGU
L Frames

Tr(S) = Z Te(U;prprUS) =1 Z el (47) We now show that the dual and canonical tight frames asso-
i=1 k=1 k=1 ciated with a CGU frame are also CGU.
so that Expressing the frame operator as

UidrdrU; . (46)  andS, = {¢12, o2} are both GU with generating grou®.
1 k=1

ks

m r ) r
S MG =1 el @8 S=3 3 dusi=3 U (z ¢k¢z> v s3)
k=1

i=1 i=1 k=1 i=1 k=1
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for all j we have that ! r
l ) =U,V, > V;U; <Z Vk¢¢>*vg> UV
1=1 k=1
SU;j=> U <Z ¢k¢z) Ui Uj z
i=1 z k=1 ) =U,V; ; U;? (
=U; Y U;U; (Z ms:) U;U; l ,
i=1 k=1 =U,V; > U; Vipd™ Vi |UF = UV, S.  (58)
. , p k ) P
i=1 k=1
=U; > Ui (Z qbkqbz) Ur=0;8  (54)
=1

k=1 The dual frame vectorg,,, of the vectorsp;;, are then given by

v Vk¢<z>*v,:vt> U;

k=1

since{U; U;, 1<i< I} is just a permutation 0. Thus,S B = S i = STUUVid = UiViS~1 = UiVid  (59)
commutes with;, so thats—* and.S~'/2 also commute with _ .
U; for all j. Then, the dual-frame vectofs,, of the vectorsp;, Whereg = S~'¢. Similarly

a1 gven > B pir, = STy, = STVPUVg = UiViS™2 ¢ = UiVi
b, =S ' pix = S Uiy = UiS ™'y, = Ui, (55) (60)

whereg, = S~ L, which shows that the dual-frame vectorgyherey = S—1/24. Thus, even though the frame is not in gen-
{bi, = S~'ir} are CGU with generating group equal®  era| GU, the dual and canonical tight-frame vectors can be com-
Similarly puted using a single generating vector.
ik = S~V = STV2U b = U:S~ 2y = Ui (56)  Alternatively, we can express,, asg,; = g@k whereg, =
Vid. Similarly, ;. = U, Wherepy, = Viz. It then follows
wherep, = S~/2¢;, which shows that the canonical tight-that the generators, andy, are both GU with generating group
frame vectorg i, = S~'/2¢;;} are also CGU with generatingG = {V;, 1 < k < r}.
group Q. We conclude that for a CGU frame with commuting GU gen-
Therefore, to compute the dual-frame vectors or the canonieahtors and generating grogh the dual frame and the canon-
tight-frame vectors all we need is to compute the generatiigal frame are also CGU with commuting GU generators and
vectors{¢,, 1 < k < r}and{ux, 1 < k < r}, respectively. generating groug.
The remaining frame vectors are then obtained by applying theAs we now show, in the special case in whigh= 0 so

group @ to the corresponding set of generating vectors. that U;Vi. = Vi U; for all 4, k, the resulting frame is GU.
For the CGU set of Fig. 4 we have that To this end, we need to show that the unitary matriggs=
1o {Qir = U;V}} form an Abelian group. First,
@@*:2[0 1]. (57)
QirQj ¢ = UiV, U;Vy = U;U; Vi Vs

Therefore{¢,, = (1/2)¢x, 1 < k < r}and{u = (1/V2)dr, Sincel/;U; € Q andVi,V; € G, QirQ;: € Q'. Next,
1 < k < r}. Since in this example the generating vectors of
the dual frame and the canonical frame are proportional to the QL =VU =U Ve
generating vectors of the original frame, the dual-frame vectors . . L
and the canonical frame vectors are proportional to the origiriéﬁlceUiF_E ”Q andVy € . Also, I € Q'sincel € Q and
frame vectors. € G. Finally,
C. CGU Frames With GU Generators QunQje = UiViUVe = UiUViVie = U ViliVie = Qe Qi
A special class of CGU frames @GU frames with GU gen- A special case of CGU frames with GU generators for which
eratorsin which the generating vectofg,, 1 < k < r} are < andg commute up to a phase factor are the WH frames [17],
themselves GU. Specificallyg, = Vi¢} for some generator [3], [16]. Ifthe WH frame is critically sampled, thetip, ¢) = 0
¢, where the matrice§V;,, 1 < k < r} are unitary, and form and the WH frame reduces to a GU frame. In the more general
an Abelian groupy. oversampled casé(p, ¢) # 0. _
Now suppose that/,, andV; commute up to a phase factor To summarize, we have the following theorem.
for all ¢ andp so thatl/,,V; = ViU, ed?®: 1) WhereH(p, tyisan  Theorem 3 (CGU Frames)Let
arbitrary phase function that may depend on the indgxeslt.
In this case, we say th&@ andG commute up to a phase factor. S={¢ir =U;p, 1 <i <, 1<k <r}

Then for allp, t . .
be a CGU frame with generating vectofgé,, 1 < k < r}

l r .
N and generating grou@, and letS be the frame operator corre-
SUVe = Z Ui (Z Vigd™Vy ) Ui UpVe sponding to the frame vectofg;;, }. Then

1=1 k=1

1) the dual frame vector§p,;,, 1 < i < I, 1 < k < r}

l r
=U,V, vV UrU; Viepd* Vi |UFULV, are CGU with generating group and generating vectors
ptf;t ' <; ‘ T {¢p =S, L <k <)
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2) the canonical tight-frame vectofs,;x, 1 < ¢ <[, 1 < matrix of columnsg;, and letS = $®* be the corresponding
k < r} are CGU with generating group and generating frame operator. Let
vectors{py = S™Y2¢p, 1 < k < r}. . .
| vectorsiu = 577 gk, Lk <) S() = {6 = Ui, Ui € Q, i # j}
If in addition, the generating vectof®, = Vi¢, 1 < k < r}
are GU withU; V;, = V,.U;e390F) for all 4, k, then be the pruned set obtained by removing the elemgrthen the
1) §.. = U;Vid whered = S—1¢ so that the dual-frame elgiznvalutej of thg fra:Ee ope:[ratcl)r colrrespotndmg tg the pruned
vectors are CGU with GU generators; s€ 8 nof. _T_E]enf onthe partlcu are enx&pdgmo;/e tr.1 d
2) pix = U;Vip wherep = S—1/24 so that the canonical roof: The frame operator corresponding to the prune

frame vectors are CGU with GU generators; frame is given by
3) if in addition 6(i, k) = 0 for all 4, k, then the vectors ‘ - A A
{¢ir, 1 <i <1, 1<k <r}formaGU frame. S(J):Z Uip¢™U; — Ujp¢™Uj . (61)
i=1

SinceU; is unitary, the eigenvalues &f(j) are equal to the

VIl. PRUNING GU FRAMES eigenvalues ot/* S(j)U;. But

In applications, it is often desirable to know how a frame be-

haves when one or more frame elements are removed. In par- Uis()U; =U; Z Uip¢"UiUj — ¢

ticular, it is important to know or to be able to estimate the " =t
frame bounds of the reduced frame. In general, if no structural — Z Uipd*UF — pp* = S — dg*.  (62)
constraints are imposed on a frame, this behavior will depend Pl
critically on the partlculqr frame elements removed. For e SinceU*S(j)U; is independent of, the eigenvalues of(j)
ample, removal of a particular frame element may destroy the I .

- .. d0 not depend ofj. O
frame property so that the remaining vectors do not constitute

a frame anymore, whereas if a different element is removed thdn general, it is difficult to provide estimates on the frame

remaining vectors may still constitute a frame. bounds of the pruned frame. However, in the special case where
One of the prime applications of frames is signal analysis atftg original GU frame is a tight frame, these bounds can be

synthesis, where a signal is expanded by computing the inggtermined exactly.

prodl_Jc_ts of the signal with the frame elements. The re,suanCoroIIary 2 (Pruned Tight GU Frames)Let

coefficients are subsequently stored, transmitted, quantized, or

manipulated in some way. In particular, a coefficient may be S={¢i=U;¢, U; € Q}

lost (e.g., due to a transmission error) which results in a recqlls 5 Gu tight frame generated by a finite Abelian gradiof

structed S|gna| Sl equ_lvalent toan expansion using a prunu%qtary matrices, wherg is a unit norm generating vector. Let

frame obtained by removing the corresponding frame vector. be the matrix of columns;, and letS = ®®* be the corre-
Recently, there has beenincreased interestin using framesq% Dndi v

; - . . . 58 nding frame operator. Let

multiple-description source coding where a signal is expanded

into a redundant set of functions and the resulting coefficients SG)={¢i=U;p,U; € Q, 1 # j}

are transmitted over a lossy packet network, where one or m

of the coefficients can be lost because a packet is dropped [ eigenvalues of the frame operator corresponding to the

[14]. The goal of multiple description source coding is to ensure

. . ) . i =1 _ =2, 2<1<
a gradually behaving reconstruction quality as a function of ﬂ%uned setare givenbyy = o — L andA; = 77, 2 < i <m,
independent of;.

number of drop_ped pac_ke_ts. When using frames in this contextA similar result was also shown by Goyel al. [14, The-
the reconstruction quality is often governed by the frame bound m 4.1]

i . or
ratio of the pruned frame. If the packets are dropped with equaF Proof: Sinces is atight frame witt¢|| = 1, from Propo-

probability, then itis desirable that the frame bound ratio should. - -
deteriorate uniformly irrespectively of the particular frame eleon 1, the frame bound = n/m and$ = (n/m)I,. Then

& the pruned set obtained by removing the elengeniThen,

ment that is removed. In the following, we show that GU frames S(j) = n L, — U;pg* U]’?‘ (63)

have this property. We, furthermore, demonstrate that if the orig- m

inal frame is a tight GU frame, then the frame bound ratio of th o n i}

pruned frame obtained by removing one frame element can be UFS(U;j = — I = ¢ (64)

computed exactly. We also consider the case where sets offraé?ﬁce||¢|| _ 1, ¢¢* has one eigenvalue equal toand the

elements are removed. S . . .
remaining eigenvalues equal @0 The eigenvalues of (j) are

Theorem 4 (Pruned GU Frames):et therefore givenby\; = >~ —land\; = -, 2<i<n. 0O

An immediate consequence of Corollary 2 is that the frame
S={¢:i=Ui¢, U; € Q} bound ratio of the pruned frame is given B/A = 1/(1 —
m/n), which is close td for large redundancy = n/m.
be a GU frame generated by a finite Abelian gr@ipf unitary We next consider the case where multiple frame elements are
matrices, wheré is an arbitrary generating vector. L&tbe the removed.
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Corollary 3: LetS = {¢; = U;¢, U; € Q} be a GU frame squares sense. Thus, we seek vectothat minimize the least-
generated by a finite Abelian group of unitary matrices, let squares erroF, defined by
® be the matrix of columnsg;, and letS = ®®* be the cor-
responding frame operator. Lgt be a set of indexes, and let E =
J (k) denote the set of indexésuch that; = U, U, for fixed :
kandj € J.LetS(k)={¢; =U;¢,U; € Q, 1 # J(k)} bea ]
pruned set obtained by removing the elementsithi € 7(k). Wheree; denotes théth error vector
Then, the eigenvalues of the frame operator corresponding to the

(ei, €i) (66)
1

n

pruned set are independentiof ¢ =i i (67)
Proof: The frame operator corresponding to the prunegibject to the constraint that the vectggsorm a GU frame.
frame is given by If the vectorsp; are GU, then their Gram matri¥ = ®*® is
. a permuted matrix with rank., diagonalized by an FT matrix
S(k) = Z U™ UF — Uy Z Ujpd* Ut | Ur. (85) F. Thus, the inner productg¢;, ¢;)} must satisfy
=t €7 {{bi, &), 1< j<n} =p°Pfa;, 1<j<n}  (68)
Then whereP;{a;, 1 < j < n} is a permutation of the numbers
" {aj, 1 < j < n}, B > 0is ascaling factor, and the numbers
UrS(k)Ur =Ug Y Ui Ui U = > U™ Uy {aj, 1 < j < n} are chosen such that the matfix whoseith
=1 e row is equal taP;{a;, 1 < j < n}, is Hermitian, nonnegative

- N s definite, and diagonalized by an FT matrkx
- Z Uigd™Uy — Z Uj¢d"Uj In our development of the optimal GU frame vectors we as-
=t ies sume that the permutatio#3 in (68) are specified. Since these
is independent of, and, consequently, the eigenvaluess¢f) permutations determine the additive grappver which the FT
do not depend oh. O matrix F is defined, we assume tha#t is specified. We then
consider three different constraints on the vectgrgrirst, we
t(%nsider the case in which both the numbfrs, 1 < j < n}

element removed. Moreover, if the original frame is tight, the&raint is derived in Section VIII-A, and is referred to as the

we can compute the bounds of the pruned frame exactly. SC-LSGUF. Next, we consider the case in which the numbers
{aj, 1 < j < n}in(68)are known, and the scalifiis chosen

VIIl. CONSTRUCTINGGU FRAMES to minimize E. The resulting GU frame is referred to as the
C-LSGUF, and is derived in Section VIII-B. Finally, in Sec-
tion VIII-C, we consider the more general case in which both
the numberga;, 1 < j < n} and the scaling? in (68) are
chosen to minimizés. The resulting GU frame is referred to as
the least-squares GU frame (LSGUF).

Suppose we are given a set of vectfys, 1 < ¢ < n} that
form a frame for ann-dimensional spacg/. We would like to
construct a GU framé¢;, 1 < i < n} from the vectorqy; }.

From Theorem 1, it follows that the vectofs;} form a GU
frame if and only if the Gram matri% has rankmn, and is di-
agonalized by an FT matri over a finite product of cyclic_ A. Scaled-Constrained Least-Squares GU Frame (SC-LSGUF)
groups. There are many ways to construct a frame from a given ~ ) _ _
set of frame vectors; that satisfy these properties. For ex- Wefirstconsider the case in which the numbgrs, 1 < j <
ample, letF’ be the matrix of columnsy;, and letF have an ™} @nd the scaling in (68) are known. Thus, we seek the set
SVD F = QAV*, whereA is a diagonal matrix with diagonal of vectors{</>7;_} that minimize th(_e least-squares erromnf (66)
elements);. Then, the columns ob = FVXF* = QAx.F* @and (67) subject to the constraint
form a GU frame, whereF is any FT matrix over a product x a2 a2 "
of cyclic groups, and is an arbitrary diagonal matrix with 0 = [l = foFDF (69)

diagonal elements; > 0. The frar;e2 bounds of the ref“g'“”@where@ is the matrix of columnsp;, §, is a known scaling

GU frame are given byl = min; \jo; and B = max; Ajo7,  factor, andR is the matrix whoséth row is equal taP; {a;, 1 <

so that we can choose the diagonal makfixo control these ; < ;) wherethe numbers:;, 1 < j < n} are given such that

bounds. In particular, choosifig = I we have that the columns , is diagonalized by andD is a diagonal matrix with diagonal

of ® = FVF* = QAF* form a GU frame. This choice has theelements{aj =n'/24;,1 < j < n}where{a;, 1 <j < n}

property that the frame bounds of the GU frame are equal to ta&he ET of the sequenc{a‘a;. 1 < j < n}. From (69), the

frame bounds of the original frame. . _ frame bounds of the vectofg; } are given byAd = 33 min, a;
We now consider the problem of constructingagutimalGU  gndB = B2 max; a;.

frame. Specifically, lef;, 1 < < n} denote a frame foH, The optimal SC-LSGUF vectors follow from [34], and are

and suppose we wish to construct a GU frafag} from the he columns ofd where

vectors{y; }. A reasonable approach is to find a set of vectors R

¢; that sparf{, and are “closest” to the vectogs in the least- D = [UV*NF*. (70)
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Here,U andV are the right-hand unitary matrix and left-hand Theorem 5 (C-LSGUF)Let {¢;} be a set ofn vectors in
unitary matrix, respectively, in the SVD ét7Y*, F'is the ma- anm-dimensional Hilbert spacé that spari, and letF' be
trix of columnsy;, andX is anm x n diagonal matrix with the matrix of columnsp;. Let {¢;} denote the optimab GU

diagonal elementg/c; for values ofi for which o; # 0. frame vectors that minimize the least-squares error defined by
I FRF* = BRFFDF*F isinvertible, then we may express(66) and (67), subject to the constraint (68), anddiebe the
d as matrix of columnsp;. Let R be the matrix with;ith row equal

& = /SO(FJ:D]-“*F*)—l/2F]-'DJ-'* _ /HO(FRF*)—I/ZFR' to P;{a;, 1 < j < n}, sothat3’Ris the Gram matrix pf inner
(71) products{(¢, ¢;)}, and letF be the FT matrix that diagonal-
izes R. Let D be the diagonal matrix with diagonal elements
, {aj = n'%a;,1 < j < n} where{a;, 1 < j < n}is the
B. Constrained Least-Squares GU Frame (C-LSGUF) FT of the sequencéa;, 1 < j < n}, letS be anm x n di-
We now consider the case in which the numbfrs, 1 < agonal matrix with diagonal elementgx; for values of: for
j < n} are known, but the scaling is not specified. Thus, we whichc; # 0, and letU andV be the right-hand unitary matrix
seek a set of vectorsp; } that minimize the least-squares erroand left-hand unitary matrix, respectively, in the SVIFGFX*.
E subject to Then

1) if 8 = f, is given, thend = B UV*SF*. If in addition

*& — A2 _ 22 *
e =FR=FFDF (72) FRF* is invertible, then
where > 0. $ = B(FFDF*F*) \2FFDF* = Bo(FRF*)"Y/?FR;
aSThe least-squares errat of (66) and (67) may be expressed 2) if # > 0is chosen to minimize®, thend = AUV*SF*,
i whereg is given by (78). If, in additionf’ RF™* is invert-
E=Tr((® - F)"(®-F)) ible, then
=B°Tr(R) + Tr(F*F) = 2R{Tr(F*®)}.  (73) whereg is given by (79).
Let ® = (1/4)®. Then minimizingE is equivalent to mini-
mizing C. Least-Squares GU Frame (LSGUF)
, ) s We now consider the least-squares problem in which both the
E' = 7Tr(R) = 26R{Te(F* )} (74)  scaling factor3 and the numberéa,, 1 < j < n} in (68) are
subject to chosen to minimizeéZ. Thus, we seek a set of vectdrg; } that

minimize the least-squares ertbrof (66) and (67) subject to
¢*d = R. (75) {(¢i, ¢5), 1 <j <n}=Pla;, 1<j<n} (82)

To determine the optimal matrie we have to minimizeg? WherePifa;. 1 < j < n} is a known permutation of the un-

with respect tg3 and®. Fixing 3 and minimizing with respect known numberga;, 1 < j < n}, chosen such that the matrix
to , the optimal value ofb is given by the SC-LSGUF of Sec- [t Whoseith row is equal ta;{a;, 1 < j < n} is Hermitian,
nonnegative definite, and diagonalized by an FT maffix

tion VIII-A with scaling 5y = 1, so that . ) .
gfo This problem has been considered in the context of general

o =UV*SF*. (76)  least-squares inner product shaping [34], in which it was shown
If FRF* is invertible, then that the solution involves solving a problem of the form
b = (FFDF*F*)"'2FFDF* = (FRF*)~'2FR. (77) max S [z, 4i)? (83)
. . 2 . e e e . . i=1
Substituting® back into (74), and minimizing with respect toSubject to

3, the optimal value ofj is

§R{TT(F*‘I’)} T (UVERFY) (i, yj) = Oij (84)

p= Tr(R) N Tr(R) (78) where the vectorge; } are known and are a function of the given
which in the case thal RF* is invertible reduces to vectors{y;}.
- Tr((FRF*)Y/?) As we now show, this problem is equivalent to a detection
B = W (79) problem in quantum mechanics, for which there is no known an-

. alytical solution in the general case. However, there exist very
The C-LSGUF vectors are then the columnsbogiven by ficient computational methods for obtaining a numerical so-
= BUV*SF* (80) lution [39], [40].
whereﬁ is given by (78). IfF RF* is invertible, then 1) Connection With ngntum Dete_ctiorln a quantum de-
L o—1/2 tection problem, a system is prepared in onexdénown (pure)
R ® = B(FRF") FR (81)  states that are described by vectors a Hilbert spacé+, and
with 5 given by (79). the problem is to detect the state prepared by performing a mea-
We summarize our results regarding constrained optimal Gurement on the system. The measurement is described in terms
frames in the following theorem. of a set of orthogonal measurement vectgrsGiven a set of
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measurement vectogs, and assuming equal prior probabilitiesvhereuy, is relatively prime tan for all k. An optimization over

on the different states, the probability of detection is given lihew; can be performed to obtain distance profiles with certain

[41] prescribed properties (there afgn) positive integers less than
n that are relatively prime te, where¢(n) denotes the Euler

(85) totient function ofn).

Comparing (85) with (83), we see that finding a set of or- CONCLUSION

thonormal measurement vectors to maximize the probability!n this paper, we introduced the concept of GU and CGU
of detection is equivalent to the maximization problem of (83yames and discussed some of their key properties. A funda-
and (84). mental characteristic of these frames is that they possess strong
Necessary and sufficient conditions for an optimum measugmmetry properties that may be desirable in a variety of appli-
ment maximizing (85) have been derived [42], [43], [41], [39]cations. In particular, similar to WH frames and wavelet frames,
However, except in some particular cases [41], [44], [45], [26FU frames are generated by a single generating vector. Further-
[46], obtaining a closed-form analytical expression for the oprore, the canonical and dual-frame vectors associated with a
timal measurement directly from these conditions is a difficufeU frame are themselves GU and are, therefore, also generated

and unsolved problem. Efficient iterative algorithms for maxPy a single generating vector which can be computed very effi-
imizing (85) that are guaranteed to converge to the global ogiently using an FT matrix defined over an appropriate group.

timum are given in [39], [40].

We also showed that GU frame vectors exhibit interesting

We conclude that in general there is no known analytical exymmetry properties when one or more frame e_Iements are re-
pression for the LSGUF. However, in practice the LSGUF canoved. This property of GU frames may be of importance in
be approximated to any desired accuracy very efficiently usifgultiple description source coding where it is often desirable

the iterative algorithms of [39], [40].

that the quality of the reconstruction should not depend on the

particular elements lost (removed).

IX. DISTANCE PROPERTIES OFGU FRAMES

Although in this paper we have focused on the case in which

; h iniv b 4 with | the underlying group is a finite Abelian group, many of the re-
So far, we have mainly been concerned with structural progyyq can pe extended to the more general case of infinite-di-

erties of GU frames. In this section, we study the Euclidean dignsional and non-Abelian groups. An interesting direction for

tance properties of these frames.
Suppose we are given a GU frari;
generated by the grou@ with ||¢||> = 1. We would like to
characterize the distance profiléi, j) = ||¢; — ¢;||* for all
2, ].
Since the vectors; are GU,{a(i, j), 1 < j < n}isjusta
permutation of{ d(i) = ||¢ — ¢;]|%, 1 < i < n}. Furthermore

d(i) = ($,¢) + (Ui, Uig) — 2R((Ui¢, $)) = 2(1 — R(a))
(86)

where{a;, 1 < i < n} are the elements of the first row of the [1]
Gram matrix corresponding to the frarfig; }.

In applications, it may be desirable to construct a GU frame [2]
such thatd(i) > 0 for 2 < i < n. Sinced(i) = ||(I — U;)¢||%, (3]
a sufficient condition is that “

det(I — U;) #0, (87)
[5]

which is satisfied if and only if none of the matricés has
an eigenvalue equal tb. Note that if (87) is satisfied, then
d(i) > 0, 2 < i < n regardless of the generating vecgo 0.
Groups with unitary representations satisfying (87) are known
asfixed-point free groupsand have been studied extensively in [7]
the literature (see, e.g., [47]). Thusdfis a representation of a (8]
fixed-point free group, then we have thit) > 0, 2 < i < n.
Fixed-point free groups have recently been studied in the con-
text of unitary space—time codes [35]. In particular, it was shown

2<i1<n

in [35] that an Abelian group of matriced/; } satisfies (87) if  [10]
and only if it is cyclic, i.e.U; = U’ with U™ = I, and where
U can be parameterized as [11]

U = diag (eﬂ’r“l/"7 . eﬂ’f“n/n> (88)

B i< further research is to characterize these more general cases of
= Ui, 1 < i <nj GU frames using possibly continuous-time FTs defined over
non-Abelian groups (see, e.g., [48]).
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