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Abstract—In this paper, we describe a new method for studying
the invertibility of Gabor frame operators. Our approach can
be applied to both the continuous (on ) and the finite discrete
setting. In the latter case, we obtain algorithms for directly com-
puting the inverse of Gabor frame-type matrices equivalent to
those known in the literature. The framework we propose can also
be used to derive other (known) results in Gabor theory in a uni-
fied way such as the Zibulski–Zeevi representation. The approach
we suggest is based on an adequate splitting of the twisted convo-
lution, which, in turn, provides another twisted convolution on a
finite cyclic group. By analogy with the twisted convolution of finite
discrete signals, we derive a mapping between the sequence space
and a matrix algebra which preserves the algebraic structure. In
this way, the invertibility problem reduces to the analysis of finite
matrices whose entries are sequences supported on corresponding
cosets. Using Cramer’s rule and proving Wiener’s lemma for this
special class of matrices, we obtain an invertibility criterion that
can be applied to a variety of different settings. This alternative
approach provides further insight into Gabor frames, as well as a
unified framework for Gabor analysis.

Index Terms—Gabor frame operator, Janssen coefficients, Zak
transform, Zibulski–Zeevi representation.

I. INTRODUCTION

GABOR analysis is a widely used signal processing
method for decomposing and reconstructing signals from

their time–frequency projections, that is, their sampled version
of the short-time Fourier transform. Gabor representation is
used in many applications ranging from speech processing and
texture segmentation to pattern and object recognition, among
others [1], [8], [11], [15].

One of the advantages of Gabor expansions is the highly
structured system inherited from the uniform time–frequency
lattice which allows for efficient time–frequency algorithms. A
major part of Gabor analysis relies on frame theory, which deals
with overcomplete representations [2], [3], [10]. When using an
overcomplete Gabor system to decompose a signal, the recon-
struction is no longer unique. The most popular choice is based
on the canonical (minimal norm) dual Gabor frame [12], [13].
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Computing the canonical dual involves inverting the frame op-
erator associated with the given Gabor frame. The frame oper-
ator has a lot of structure emerging from the commutativity with
corresponding time–frequency shifts which is the consequence
of the uniformity of the underlying time–frequency lattice. This
structure gives rise to many important and well-known results on
representing a frame operator. The representation we are con-
cerned with is the so-called Janssen representation. Many re-
sults are known for Gabor systems to constitute a frame which
implies invertibility [2], [7]. Standard algorithms make use of
the highly structured Gabor frames in order to efficiently com-
pute the canonical dual frame. Recently, in [14], the authors de-
scribed an alternative way to compute other dual Gabor frames
where they based their approach on the twisted convolution of
the Janssen coefficients of the corresponding operators.

Here, we extend the idea of [14] by using a different strategy
which allows far better insights into the problem. Specifically,
we only deal with sequences and show explicitly how efficient
inversion schemes can be derived by rather simple (though so-
phisticated) manipulations of the twisted convolution. The es-
sential idea is to split up the twisted convolution into a finite
number of sums that can be incorporated into a special matrix
algebra.

Our framework yields further insights into the concept of
inverting Gabor frame-type operators [defined in (5)]. Dealing
only with the coefficient sequence of the Janssen representation
without using other constructs of Gabor analysis allows for a
simple and straightforward extension to higher dimensions. The
approach works also for the finite-dimensional setting whereas
this has not been the case in [14]. The rather elementary tech-
niques in our method provide a better understanding of Gabor
frame-type operators than the widely known Zibulski–Zeevi
representation from a conceptual point of view. Moreover, the
method we present is equivalent to the two mentioned above, in
the sense that they are connected by a unitary transformation.

The paper is organized as follows. Section II is devoted to no-
tation that will be used throughout the paper. In Section III, we
state the main concepts of Gabor frame theory and show how
the twisted convolution comes into play when dealing with in-
version problems. Section IV is a short introduction to twisted
convolution in the most simplest setting which serves the pur-
pose of motivating our approach. In Section V, we describe the
main theoretical results which leads to constructive methods for
inverting Gabor frame-type operators. In Section VI, we outline
the equivalence of our method to two other ideas that are de-
scribed in the literature. Section VII is devoted to an analysis of
our method in the finite 1-D signal space.

II. NOTATION

Central objects in time–frequency analysis are modulation
and translation operators. For , , , we define the transla-
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tion operator and the modulation operator on by

respectively. Many technical details in time–frequency analysis
are linked to the commutation law of the translation and modu-
lation operator, namely

(1)

In Section III, we study twisted convolution of two finite
length sequences , indexed by ,
where , for any natural number , will always denote a finite
cyclic group, that is a set of elements with ad-
dition modulo . We think of and as vectors of length ,
where the entries are in lexicograpic order, that is, for example
for , . When studying such con-
volutions, the concept of block circulant matrices arises. A block
circulant matrix of size is a matrix of the form

...
...

...
(2)

where, in our setting, each block , , is a
matrix.

In our derivations, we use two kinds of delta functions. The
first, denoted by , means a Dirac sequence in , that is a
sequence with value 1 at (0,0) and zeros elsewhere. The second,
denoted by for , , takes value 1 when and
zeros elsewhere. Sometimes we write for some ,
which means that it is 1 when and zeros elsewhere.

In Section VI and Appendix B and C, we use the symbol
to denote the Fourier transform operator, that is, for ,

is the Fourier transform of .

III. UNIFIED APPROACH TO ALTERNATIVE

DUAL GABOR FRAMES

The fundamental idea of Gabor analysis is to build up a basic
system out of time–frequency shifts of a single window func-
tion, where the shifts are usually taken according to a regular
lattice in the time–frequency domain. For practical purposes,
it is important to obtain a complete stable basis system which
depends on the window function and the time–frequency lat-
tice. In the case of Gabor expansions, this means that the Gabor
system provides a frame. An excellent treatise on Gabor anal-
ysis is given in [7].

We now introduce the basic notation and concepts of Gabor
frame theory. Let be in and a separable lattice in
of the form

where and are two positive numbers, called lattice con-
stants, such that with , relatively prime. This
corresponds to the rational case of Gabor frames [7]. The case

is referred to as integer oversmpaling. A Gabor system
is defined by

We call a frame if there exists two positive con-
stants , such that the inequality

(3)

holds for all . In this case, the frame operator ,
mapping into , given by

is positive and invertible. If constitutes a frame, then
there exists a so-called dual element

which induces the dual Gabor frame enjoying the
property that every has the following time–frequency
representation:

(4)

The dual frame element is not unique. In general, there exist
other window functions that give rise to (4). In [14], the authors
present a method that allows us to efficiently compute alterna-
tive dual Gabor elements. Their approach is based on the con-
cept of choosing two different Gabor frames, say and

, such that the frame-type operator

(5)

is invertible. Then, the function induces a dual frame for
. As shown in [14], this strategy may improve stability

and gives rise to an alternative method for designing dual Gabor
elements.

The central object in the approach described in [14] is the
frame-type operator . In particular, the authors derive con-
ditions under which, for given Gabor frames and

, is invertible. There basically exist two (equiv-
alent) methods to study the invertibility of .

The first constructive approach goes back to [16] in which the
authors use a piecewise Zak transform to reduce the problem of
invertibility to a finite matrix problem. We will describe this idea
in Section VI.

The second method is essentially described in [14]. It is based
on the Janssen representation of [9], that is

(6)

We consider only those functions and such that
, , , is an sequence. A class
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of functions with this property is the Feichtinger algebra
[6] defined by

where denotes the
short-time Fourier transform with respect to the Gaussian
window . Examples of functions in are the
Gaussian and continuous B-splines of any order [6]. The Fe-
ichtinger algebra is an extremely useful space of test functions
and of “good” window functions in the sense of time–frequency
localization. Rigorous descriptions of can be found in [6]
and references therein. This will guarantee that the sequence

, that is a sampled short-time
Fourier transform, is in , which implies absolute conver-
gence of the Janssen representation.

Due to the Janssen representation, we can transfer the study of
invertibility of frame-type operators to the study of the twisted
convolution of -sequences which is defined by

(7)

with and , . The above operation, as
opposed to a standard convolution, is not commutative; that is,

, since

The transition from the invertibility of frame operators to the
invertibility of twisted convolution follows from the observation
that if and are two operators having Janssen representations
of the form (6) corresponding to sequences and , respectively,
then

The sequence of the Janssen representation for the identity op-
erator is the Dirac sequence ; hence, here it becomes evident
how the twisted convolution comes into the game.

In [14], the authors give a necessary and sufficient condition
on the Janssen coefficients of to be invertible, based on a
matrix valued function. The approach uses some sophisticated
techniques of Gabor analysis mostly described in [7]. In the
following, we present a more transparent (though equivalent)
strategy that only deals with simple manipulations of the se-
quences. This method reveals further insights into Gabor frame
theory and can be easily extended to the finite-dimensional set-
ting leading to efficient concepts of algorithms for computing
alternative dual Gabor elements.

IV. TWISTED CONVOLUTION ON

The method that we discuss in the next section is heavily
based on the properties of the twisted convolution on . In
this simplified setting, we reveal the most important structures
of the twisted convolution operation and emphasize those parts
that are useful to understand our approach.

In this section, we describe twisted convolution on the finite
group . The standard (commutative) convolution
of two length sequences and , with ,

, is defined by

where operations on indices are performed modulo .
By analogy with the infinite case, we define the twisted con-

volution of two elements and as above, by

(8)

with . For a fixed , the twisted convolution can
be interpreted as a linear mapping whose matrix

is block circulant [see (2)] with blocks, i.e.,

where each block is a matrix with entries

(9)

For example, when , the blocks have the form

In the case of the standard convolution, that is, when , the
blocks of the matrix are circulant themselves, with entries

When , we obtain
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For inverting block circulant matrices, we use the Fourier
transform.

Lemma 4.1: The matrix
is invertible if and only if for every ,

is invertible. In this case, the inverse
of is

with

In principle, we need to study invertibility of each , for
. However, due to the structure of the blocks in

a twisted convolution matrix, it suffices to look only at .
Lemma 4.2: Let be a twisted

convolution matrix defined by (9). For , (as
defined in Lemma 4.1) is invertible if and only if is invertible.

Proof: For ,

(10)

That is, all blocks are unitarily equivalent, in the sense that

(11)

where denotes the unitary matrix with entries

if
otherwise.

Since and are relatively prime, we obtain all blocks by such
unitary transformations. This implies that if is invertible,
then all are invertible for .

In other words, the matrix contains all the informa-
tion about the invertibility of [defined under (8)]. From (10),
the entries of are given by

(12)

As an example, for , we have

We will see in Section V that this observation leads to the matrix
algebra that we introduce to study the invertibility of the twisted
convolution for both the continuous and the discrete setting.

V. MAIN THEORETICAL RESULTS

As seen in Section III, we can transfer the invertibility
problem of a Gabor frame-type operator to the invertibility
of its Janssen coefficient sequence with respect to the twisted
convolution. In this section, we describe a constructive ap-
proach that shows how one can verify the invertibility of such a
sequence and build its inverse.

Let be a sequence in and an
operator with Janssen coefficient sequence , that is,

. Our aim is to describe a method
for verifying if is invertible. However, as we saw in Sec-
tion III, this boils down to checking if there exists an inverse
sequence of in . However, since is not a com-
mutative operation we cannot use standard Fourier transform
techniques. Instead, we define a map that takes a sequence

to a special matrix algebra consisting of
matrices whose entries are sequences in . We denote
this algebra by . Thanks to this mapping the problem of
inverting in reduces to inverting a matrix in

. Now we outline the main components of the theory in
order to be able to apply the constructive methods to concrete
examples.

The goal is to reduce twisted convolution on to twisted
convolution on . To do so, for , we define

if
else

(13)

where , and the symbol denotes equivalence modulo
. We see that is supported on the coset

and . In the case when , out of a
sequence we obtain four subsequences which is supported
on , which is supported on ,
supported on and supported on

. With definition (13), we obtain for ,

In a more compact notation, we have

(14)

We observe that (14) resembles (8) with the only difference that
the components in the sum are sequences in (14) and numbers
in (8). Hence, the twisted convolution can be transformed into
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a twisted convolution over with sequences as elements
and standard convolution instead of multiplication. We saw in
Section III that invertibility of an element with respect to twisted
convolution is equivalent to checking invertibility of the matrix
(12). In the following, motivated by the circulant structure of
the twisted convolution matrix in , we introduce a new
matrix algebra whose entries are sequences which is isomorphic
to .

Let be an algebra of -matrices whose entries
are -sequences and multiplication of two elements ,
is given by

Note that and are sequences. The identity element Id
is a matrix with sequences on the diagonal. In analogy to (12),
we define a mapping by

(15)

where we map a sequence to a matrix whose elements are se-
quences. For example, when , that is , and
relatively prime to , the above matrix takes the form

(16)

where we used the fact that . Note that
summing up the elements of the first column gives us back the
sequence .

The mapping is linear, and
implying that . We observe that the matrix defined
in (15) resembles in structure the matrix defined in (12).
The important property of , shown in [5], is that is an anti-
homomorphism, i.e.,

For the problem of invertibility of a sequence , this means
that if is invertible in , then is invertible in

. Indeed, suppose that is invertible in . Then

which means that is invertible in , with inverse
equal to . What we need for our problem is the reverse
implication, that is to show that if is invertible, then
so is . Since the matrix has a special form, namely the entries
are coming from a sequence , we need to make sure that the en-
tries of are also coming from some sequence , that
is that . Then, since ,
will be the desired inverse of , because . The problem
of the inverse matrix to have the same structure as the original
one, is usually referred to as Wiener’s Lemma. In the simplest
way, it says that if some mathematical object of special type is
invertible, then its inverse is also of the same special type.
With this observation and the following theorem, we have all

components in order to verify the invertibility of a twisted con-
volution operator.

Theorem 5.1 [Wiener’s Lemma] [5] : Let for some
. If is invertible in , then there exists a unique

such that .
The proof is constructive and the sketch can be found in Ap-

pendix A.
Theorem 5.1 provides the key result to study invertibility of

twisted convolution. Indeed, for a given sequence in , we
look at the corresponding matrix as defined in (15).
First, to check if is invertible, we compute the determinant of

. We do it just like in the case when the entries of the matrix
are numbers. Here, we have to keep in mind that the entries
are sequences and the “multiplication” of two sequences is just
convolution. For example, when , is given by (16), and

If is invertible in ; that is, is an invertible se-
quence in , then the inverse of can be computed
using Cramer’s rule

where is a matrix obtained from by substituting
the th row of with a vector of zeros having on the th
position, and the th column with a column of zeros having
on the th position. When , we get

(17)

where , , , and
. Hence

The approach is constructive in the sense that algebraic
methods such as Cramer’s Rule can be applied to find the
inverse of . To matrix , according to Theorem 5.1, corre-
sponds another element in , that is . This element,
in turn, provides the inverse of in . The sequence can
simply be read from the entries of according to the map-
ping , that is we obtain by summing up the elements from the
first column of . Therefore, it is enough to compute only the
first column of the inverse matrix . In our example, ,
the sequence is equal to .
For small , this method leads to fast inversion schemes for the
twisted convolution operator. In the last section, we will show
how this approach is used in the setting of finite 1-D signals.

In the case of integer oversampling, that is, when
, implying , the matrix reduces to a sequence
itself, since . Then the invertibility of the operator

is equivalent to the invertibility of the sequence in .

VI. EQUIVALENCE TO OTHER KNOWN METHODS

In this section, we describe two known methods dealing
with the characterization of invertibility of frame-type opera-
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tors , where , , and their equivalence to our
approach. We consider only those functions and such that

, , , is an sequence. A class of func-
tions with this property is the Feichtinger algebra defined in
Section V. Furthermore, since we assume that and

form Gabor frames, .
The first approach uses sophisticated methods from Gabor

analysis, and the second makes use of the vector-valued Zak
transform and its properties [7].

A. Approach Using Gabor Analysis Tools

This approach was developed by the authors in [14], and is
based on time–frequency methods. We assume that and
that , . Define the bi-infinite matrix valued function

by the correlation functions

Because , , is in , since is closed
under translation and under pointwise multiplication [7]. More-
over, the periodization of period is continuous. As
shown in [7, Ch. 6] by virtue of Schur’s test, the bi-infinite ma-
trix is a bounded operator on for all . We can also
define by the Fourier series

(18)

where , and use the fact that
to extend it to .

The correlation functions provide an important rep-
resentation of the frame-type operator , the so-called Walnut
representation

(19)

that follows directly from the Janssen representation (6) of .
Since , , the series of the Walnut representation con-
verges unconditionally in [7]. Next, we define the entries of
the -matrix valued function by

(20)
As shown in [14], the frame operator is invertible if and
only if for all .

In the case of integer oversampling, the matrix simply be-
comes

That is, is the inverse Fourier transform of the sequence .
This implies that is invertible if and only if the sequence
is invertible in , and this approach coincides with
our method. Theorem 6.1 below shows that not only in integer
oversampling, but also in the general rational case, the matrix

is equivalent to the matrix , described in the previous
section, via the Fourier transform.

Theorem 6.1: Let , , and
. Then

for

where is a matrix with entries given by .
Moreover, .

For the proof, we refer the reader to Appendix B.
Theorem 6.1 provides an equivalence between two invert-

ibility characterizations in the sense that if
and only if is invertible in . However, whereas our
approach applies also to the finite-dimensional discrete setting,
this is not the case in [14]. There the authors considered this
problem not from the point of view of Janssen representation
but taking advantage of the structure of the Gabor matrix.

B. Zibulski–Zeevi Representation

Another characterization of invertibility of the frame operator
is due to Zibulski and Zeevi and relies on the notion of the

Zak transform. Given , , the Zak transform of is
defined as

The Zak transform is a unitary mapping from into
, that is

(21)

and satisfies the following relation with respect to time–fre-
quency shifts, for ,

(22)

For , and , we
consider the vector-valued Zak transform

and introduce the matrix-valued function over the index
set defined by the entries

Then Zibulski–Zeevi representation states that

and, hence, is invertible if and only if the matrix-valued
function is invertible for almost all

.
In the case of the integer oversampling, and

, the matrix-valued function becomes a complex valued
function
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on . By taking the Fourier transform of and
using (21) and (22), we obtain

Thus, the inversion of the frame operator reduces to inverting
in .

In the more general setting, that is, for any rational oversam-
pling, the Zibulski–Zeevi matrix is equivalent to the matrix
described in the previous section.

Theorem 6.2: Let and . Then for all
and

where is defined in (20), and are such
that . Moreover, if and only
if for almost all .

The proof is presented in Appendix C.
Theorem 6.2 implies that the Zibulski–Zeevi condition on

invertibility of is equivalent to the one described in Sec-
tion IV, by Theorem 6.1.

The benefit of our approach is that the inverse of a matrix
gives us back in a constructive manner an inverse of the se-

quence in . Second, this new approach works for the
continuous as well as the discrete case, with no need to distinc-
tion as it was in [14]. The finite discrete setting is worked out in
the next section.

VII. GABOR FRAME-TYPE OPERATOR FOR

FINITE-LENGTH SIGNALS

In this section, we will illustrate in more detail how the method
described in Section V, more precisely the division of the se-
quence into smaller sequences, looks like when we consider
Gabor analysis on a space of finite-dimensional signals.

Thus, we now consider Gabor analysis of sequences of length
. The goal is to determine if the frame-type operator ,

which we denote by , is invertible and if so then to construct
the inverse. We can describe by its Janssen representation as-
sociated to vectors and parameters and , where
we assume that and divide and , with
and relatively prime. The Janssen representation of the oper-
ator (as described in Section V) is

where for all . We
define the set of sequences with index set by

. As discussed in Section V, if is invertible, then there is
a sequence such that , and the inverse
of is the operator .
First, we present the method for general and then show an
explicit example when .

Let . Then the standard convolution be-
tween and is defined as

where operation on indices is performed modulo . By
analogy with the infinite case, we define the twisted convolu-
tion of two elements by

with , where again the operation on indices is
performed modulo , and , with , rela-
tively prime and dividing , and .

Let be a sequence of Janssen coefficients representing .
We want to see if is invertible, and if so, then to construct the
inverse. Invertibility of is equivalent to the invertibility of the
sequence with respect to twisted convolution. Hence, we use
the techniques described in Section V.

Since divides and , admits a decomposition
into disjoint subsets , where .
Namely

Therefore, we can define subsequences of in a similar manner
as in (13)

if
else.

The construction for is pictured in Fig. 2 for a random
sequence (Fig. 1).

We now consider an explicit example. We will use the method
from Section V to check if the given Gabor frame-like operator
is invertible. This example is analogous to the one considered in
Section V, but the sequences there were infinite length.

Let , and let be two Gaussians of
different spread, that is

and (23)

Since , and the matrix
corresponding to a Janssen representation sequence

of a Gabor frame-like operator
is a 2 2 matrix of the form (16), with the difference that now
the entries of the matrix are finite length sequences.
The 2-D Fourier transform of (Fig. 3) has no zeros;
therefore, is an invertible sequence in .
This implies, by Wiener’s Lemma (Theorem 5.1), that has
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Fig. 1. Random 2-D sequence a of size 8 � 8.

Fig. 2. Decomposition of signal a into four (p = 2) subsequences: (a) a ,
(b) a , (c) a , and (d) a .

an inverse with respect to the twisted convolution, namely a
sequence

This shows that inverting a sequence in
essentially boils down to inverting a sequence, namely ,
in , for which fast Fourier transform schemes
can be applied.

Here, we presented a method of inverting Gabor frame op-
erators given by the Janssen representation. There exist many
other methods of inverting Gabor frame operators in the case
of finite-length signals that take advantage of a highly struc-
tured matrix form that the operator admits [13], [14]. How-
ever, the previous methods apply only when considering finite
discrete models and there is no analogue of them in the con-
tinuous setting. The method that we presented here covers both
environments (since it is not based on directly, but rather on
the Janssen coefficient sequence associated to ), thus giving a
smooth transition between the continuous and discrete settings.

Fig. 3. Two-Dimensional DFT of detA, where L = 2 � 3, � = � = 2
and the windows g; 
 are Gaussians given by (23). The transform is performed
on the group � , and the axis x and y are the numbers 0–31, that is
representatives of the group = .

VIII. CONCLUSION

In this paper, we described a new method for studying the
invertibility of Gabor frame operators. The approach can be
applied to both the continuous (on ) and the finite discrete
setting, where, in the latter case, we obtained algorithms for
directly computing the inverse of Gabor frame-type matrices
equivalent to those known in the literature. One of the nice fea-
tures of this framework is that it allows for a unified approach
to the continuous and discrete settings, which is not the case in
previous methods. It also leads to a nice matrix-type interpreta-
tion of twisted convolutions.

APPENDIX A

In this Appendix, we are going to describe briefly the proof of
Wiener’s Lemma. All the details are presented in [5]. What we
have to show is that if , for some , is invertible,
then there exists a sequence such that . The
proof is based on the properties of sequences defined in (13)
and Cramer’s rule for commutative algebras.

Assume that is invertible. Then is an invertible se-
quence in . It turns out that it is supported on
and so is its inverse . We construct the inverse of using
Cramer’s rule, that is the entries of the inverse matrix are given
by

where is a new matrix obtained from by substituting
th row of with a vector of zeros having on the th position,

and th column with a column of zeros having on the th
position. For each , is a sequence supported
on ; hence, the entries of the first column of have
disjoint supports. We define a sequence by summing up the
entries of the first column of , i.e.,
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and create a new matrix as an image of the sequence under
the mapping , . That is, has the same form as .
Finally, it can be shown that , i.e., is indeed the inverse
of .

APPENDIX B

Here, we prove Theorem 6.1.
Proof: Let

Therefore

Let and a group of permutations of the set
, then by the definition of the determinant and

previous calculations

APPENDIX C

Before proving Theorem 6.2, we come back to a ma-
trix-valued function introduced in Section 5.1 and state its
two important properties:

(24)

(25)

The first property is based on the fact that . The
second relation shows that can be derived from .
Next, we define the entries of the -matrix valued function

by

(26)
As shown in [7, Ch. 13] (replace one by ), has an
absolutely converging Fourier series expansion and is, therefore,
continuous and of period . Moreover, is invertible
on if and only if the -matrix is invertible
for every .

Lemma 8.1: The matrix-valued function defined in
(20) coincides with the matrix-valued function defined
in (26).

Proof: Using (18), (24), and (25), we compute

Now, we are in the position to prove Theorem 6.2.
Proof: Let . Then
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Since , there exist , such that
. Then if and only if

. Therefore, by changing summation over to
and noticing that for every , , we
obtain

By Lemma 8.1, coincides with the matrix-valued func-
tion . Hence

By Cramer’s rule

which completes the proof.
The above theorem is also true in higher dimensions with

obvious changes in the proof.
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