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Comparing Between Estimation Approaches:
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Abstract—We treat the problem of evaluating the performance
of linear estimators for estimating a deterministic parameter
vector x in a linear regression model, with the mean-squared error
(MSE) as the performance measure. Since the MSE depends on
the unknown vector x, a direct comparison between estimators is
a difficult problem. Here, we consider a framework for examining
the MSE of different linear estimation approaches based on the
concepts of admissible and dominating estimators. We develop
a general procedure for determining whether or not a linear
estimator is MSE admissible, and for constructing an estimator
strictly dominating a given inadmissible method so that its MSE
is smaller for all x. In particular, we show that both problems can
be addressed in a unified manner for arbitrary constraint sets on
x by considering a certain convex optimization problem. We then
demonstrate the details of our method for the case in which x is
constrained to an ellipsoidal set and for unrestricted choices of x.
As a by-product of our results, we derive a closed-form solution
for the minimax MSE estimator on an ellipsoid, which is valid for
arbitrary model parameters, as long as the signal-to-noise-ratio
exceeds a certain threshold.

Index Terms—Admissible estimators, dominating estimators,
linear estimation, mean-squared error (MSE) estimation, minimax
MSE estimation, regression.

I. INTRODUCTION

AN important estimation problem that has been treated ex-
tensively in the literature is the problem of estimating a

deterministic parameter vector in the regression model
, where are the observations, is a given model

matrix, and is a random noise vector with positive definite
covariance matrix. In an estimation context, the goal is to con-
struct an estimator of from the observations that is close
to in some sense. In this paper, we focus on linear estimation,
in which the estimator is linear in the observations .

A popular measure of estimator performance is the mean-
squared error (MSE), which is the average squared-norm of the
estimation error . Due to the fact that the parameter vector

is assumed to be fixed, the averaging is only over the noise,
and not over , typically resulting in a parameter-dependent
MSE. Since the MSE generally depends on , it cannot be min-
imized directly. Thus, alternative criteria for constructing esti-
mators must be sought.
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Beginning with the celebrated least-squares approach pro-
posed by Gauss, a myriad of linear and nonlinear estimators
have been developed for the regression model with the common
goal of leading to “good” MSE performance. The first estima-
tors considered for this problem where restricted to be linear
and unbiased [1]–[3]. In the past 30 years, attempts have been
made to develop linear methods that may be biased but closer
to the true parameter in an MSE sense. These include the
Tikhonov regularizer [4], [5], the shrunken estimator [6], and
the covariance shaping least-squares estimator [7]. Another re-
cent approach is to assume that is constrained to a subset and
then seek linear minimax estimators that minimize a worst-case
measure of MSE on [8]–[14].

The difficulty encountered in this estimation problem is that
the MSE performance of a linear estimator depends generally
on , rendering comparison between different strategies a diffi-
cult (and often impossible) task. This explains the multitude of
approaches suggested for this problem. Since ranking the esti-
mators in terms of MSE is not obvious, an important practical
question is how to decide which method to use. Although in
general this question is hard to answer, some strategies may be
uniformly better than others in terms of MSE. An estimator is
said to dominate a given estimator on a set if its MSE is
never larger than that of for all values of in , and is strictly
smaller for some in [15]; strictly dominates if its MSE
is smaller than that of for all in . An estimator that is not
dominated by any other method is said to be admissible on .
Clearly, a desirable property of an estimator is that it is admis-
sible: Otherwise, it is dominated by some other linear approach
which will have better MSE performance for all choices of .

Constructing an admissible estimator is a trivial task; for ex-
ample, if includes the zero vector, then is admissible
since it is the only linear strategy with zero MSE for . A
more interesting problem is to determine whether a given linear
estimator is admissible, or more generally, to characterize all
linear admissible approaches on a subset . Such a description
can lead to practical methods for selecting between estimators.
If our estimator of choice is inadmissible, then we are guaran-
teed theoretically that a better estimator exists in an MSE sense.
However, the theory does not provide a concrete method for
finding such an estimator. Therefore, given an inadmissible es-
timator, it is of interest to develop a general procedure for con-
structing a dominating admissible estimator, i.e., one that is uni-
formly better in terms of MSE.

The problem of characterizing all linear admissible estima-
tors has received considerable attention in the statistical liter-
ature. Admissible linear estimators for arbitrary values of
are discussed in [16]–[19], ellipsoidal constraints are treated in
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[20]–[22], and linear inequality constraints on are considered
in [23]. However, these references do not address the important
practical problem of constructing an admissible estimator dom-
inating a given inadmissible approach.

A specific class of dominating estimators that has been
studied extensively in the literature are estimators dominating
the least-squares method when the noise is Gaussian. Following
the seminal work of Stein [24], many nonlinear approaches
dominating the least-squares method have been developed,
including the James–Stein estimator [25], among others
[26]–[29]. In [14], it was shown that the linear minimax MSE
estimator that minimizes the worst-case MSE on a bounded set

dominates the least-squares approach on .
In this paper, we focus on linear estimation and develop a

general procedure for determining whether or not an estimator
is admissible on an arbitrary constraint set . We also propose
a method for constructing admissible estimators that strictly
dominate any given inadmissible strategy. Our approach uni-
fies many of the previous admissibility results and provides ex-
plicit methods for constructing admissible dominating estima-
tors. Thus, in applications, these results can be used to choose
between the multitude of linear estimators available in the liter-
ature and can also suggest new methods of estimation when the
conventional techniques are inadmissible.

To reduce the abstract concepts of admissible and dominating
estimators to a concrete mathematical problem, we show that
both issues of admissibility and domination can be addressed
by considering a certain convex optimization problem. The ad-
vantage of this formulation is that we can use duality theory
to develop explicit necessary and sufficient admissibility and
domination conditions. To demonstrate the details of our ap-
proach, we consider the case in which consists of vectors

that satisfy the weighted norm constraint for
some positive definite matrix and scalar . For this setting we
present explicit necessary and sufficient conditions on a linear
estimator to be admissible which are easy to verify. Given
an inadmissible method, we also develop closed from expres-
sions for linear dominating estimators in many special cases. In
the general case, we show that a dominating estimator can be
found by solving a semidefinite programming problem (SDP)
[30], [31], which is a convex optimization problem that can be
solved efficiently. As a by product of our results, we provide a
closed-form solution for the minimax MSE estimator of [10]
that minimizes the worst-case MSE for signal-to-noise-ratios
(SNRs) exceeding a certain threshold. Although this problem
has been treated previously by Pilz in [9], we show that the so-
lution obtained in [9] is different that ours and is incorrect in
general. We also investigate the admissibility of the Tikhonov
and shrunken estimators on ellipsoidal constraint sets. We then
extend the admissibility and domination results to the case in
which is not restricted.

The paper is organized as follows. In Section II, we intro-
duce our problem and discuss the main ideas and results. In Sec-
tion III, we show that both problems of determining the admis-
sibility of an estimator on an arbitrary constraint set as well
as constructing estimators dominating inadmissible approaches
on can be treated by considering a certain convex optimiza-
tion problem. Dominating estimators and necessary and suffi-

cient admissibility conditions on an ellipsoidal constraint set
are developed in Sections IV and V, respectively. The minimax
MSE estimator and a comparison with the estimator developed
in [9] are also treated in Section IV. Section VI presents some
examples of inadmissible and dominating methods. Finally, the
results are extended to unrestricted choices of in Section VII.

II. PROBLEM FORMULATION AND MAIN RESULTS

We denote vectors in by bold face lower case letters and
matrices in by bold face upper case letters. The identity
matrix is denoted by , and are the Hermitian conjugate
and the pseudoinverse of the corresponding matrix respectively,
and is an diagonal matrix with diag-
onal elements . The notation means that
is Hermitian and positive (nonnegative) definite, and
means that . Given a Hermitian matrix , we de-
note by the Hermitian square root and by and

the largest and smallest eigenvalues, respectively. The
range space and null space of a matrix are denoted, respec-
tively, by and .

We consider the problem of estimating the deterministic pa-
rameter vector in the linear regression model

(1)

where is a known matrix and is a zero-mean random
vector with covariance matrix . We assume for simplicity
that has full column rank and that . The vector is
known to lie in a subset , where can be arbitrary; in
particular, we may choose .

Our goal is to design a linear estimator of the form
that minimizes the MSE, which is given by

(2)

Evidently, the MSE depends in general on the unknown param-
eter vector and therefore cannot be minimized directly. An
alternative strategy to designing linear estimators is to restrict
the estimator to be unbiased, so that , and then seek
the estimator that minimizes the variance. This leads to the cel-
ebrated least-squares estimator. However, this method does not
necessarily result in a small MSE. A myriad of approaches have
been suggested to further reduce the MSE, for example, [4]–[12]
and references therein.

Two important concepts in comparing the MSE of different
estimators are those of domination and admissibility. An esti-
mator dominates an estimator on if

for all

for some (3)

The estimator strictly dominates on if

for all (4)

If dominates then clearly it is a better estimator in terms of
MSE. An estimator is admissible if it is not dominated by any
other linear estimator. If an estimator is inadmissible, then there
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exists another linear approach which leads to lower MSE on .
Thus, although we cannot directly compare the performance of
different strategies, we would like our estimator to at least be
admissible.

The previous discussion raises three important questions
which we would like to address:

1) Given a linear estimator of , can we verify whether
or not it is admissible on ?

2) If is inadmissible, then:
a) can we develop a systematic method to construct an

admissible linear estimator that dominates on ?
b) can we verify whether or not a given estimator dom-

inates on ?
In the next section, we provide solutions to the questions

above for arbitrary constraint sets . We then specialize the re-
sults in Sections IV–VII to two choices of .

III. ADMISSIBLE AND DOMINATING ESTIMATORS ON

ARBITRARY PARAMETER SETS

We begin with the problem of determining whether a given
linear estimator dominates the linear estimator . An explicit
condition can be obtained by noting that (3) is equivalent to

(5)

For particular choices of , (5) can be reduced to easily verifi-
able conditions. This is illustrated for ellipsoidal parameter sets
in Section IV.

Thus, given an estimator , we can determine whether it is
dominated by another estimator by checking if it satisfies (5).
However, we still need a constructive method for finding a dom-
inating estimator . In addition, it is desirable to construct not
only to dominate but to also be admissible. The following
theorem shows that both problems of admissibility and of con-
structing a strictly dominating estimator can be addressed by
examining the solution to a convex optimization problem.

Theorem 1: Let denote the deterministic unknown param-
eters in the model , where is a known
matrix with rank , and is a zero-mean random vector with
covariance . Let be a given linear estimate
of , let , and let . Define
the matrix as

(6)

where

(7)

let , and . Then we have
the following:

1) is unique;
2) is admissible on if and only if , or equiva-

lently, if and only if ;
3) if then strictly dominates on ;
4) is admissible on .

Before proving the theorem we note that the minimum in (6) is
well defined since the objective is continuous and coercive [32].

Proof: We prove each of the statements 1)–4).
1) Since is strictly convex in (because

is strictly convex), is also strictly
convex, and the minimum of is unique.

2) Since and is unique,
implies that . The converse is trivially true.

Now, if is admissible, then for every there exists an
such that . Thus, for

all , and . Since , we also have
that , from which we conclude that .
Conversely, if , then since is unique, for any

, we have that , and is admissible.
3) If , then for all ,

and strictly dominates .
4) From statement 2), it suffices to show that .

Since is the unique minimum, for any

(8)
If , then there exists a such that

(9)

from which we conclude that

(10)

However, then

(11)

which contradicts (8). Thus, .
Theorem 1 provides a general recipe for determining admis-

sibility of a linear estimator and for constructing admissible and
strictly dominating estimators, by solving a convex optimization
problem.1 Therefore, we can utilize convex analysis techniques
in order to develop admissibility and domination conditions, as
we show in the ensuing sections. For general choices of , it-
erative procedures that are designed for saddle point problems
can be used to solve (6), such as subgradient algorithms [33] or
the prox method [34].

An interesting result of statement 3) of the theorem is that
if is inadmissible then there exists an estimator that strictly
dominates it. We also note that the only properties of the error
measure that are used in the proof of the theorem are
that the function is continuous, coercive and strictly convex.
Thus, Theorem 1 is valid for any error measure with these char-
acteristics.

An immediate consequence of Theorem 1 is that the minimax
MSE estimator [10] which is designed to min-
imize the worst-case MSE over , strictly dominates any
inadmissible unbiased linear estimator . Specifi-
cally, by definition, is the solution to

(12)

1Note that the problem is convex in G for arbitrary constraint sets U since
the supremum of a convex function over any set U is convex.
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For an unbiased linear estimator, the MSE, which we denote by
, does not depend on . Therefore

(13)

Combining (13) with part 4 of the theorem, it follows that if
is inadmissible, then is admissible and strictly dom-

inates .

IV. DOMINATING ESTIMATORS ON AN ELLIPSOID

We now treat the optimization problem (6) for ellipsoidal un-
certainty sets of the form

(14)

with and . Specifically, we develop necessary and
sufficient optimality conditions on by using Lagrange duality
theory, as well as explicit closed-form solutions for many spe-
cial cases. Using these conditions, we derive a closed-form ex-
pression for the minimax MSE estimator of (12) for high SNR
values. This corrects a previous erroneous result of Pilz [9].
(A detailed discussion of the Pilz estimator is provided in Ap-
pendix C.) We also consider efficient numerical solutions for ar-
bitrary choices of and . In Section V, we use these results
to develop an easily verifiable set of necessary and sufficient
conditions on an estimator to be admissible on .

We begin with the problem of determining whether a given
linear estimator dominates the linear estimator on the set

defined by (14). Thus, we consider the conditions (5) on .
From (2), we have that

(15)
where we defined

(16)

By introducing the change of variable , we have that2

(17)

where we used the fact that the eigenvalues of are equal to
the eigenvalues of for any and . Similarly

(18)

Using (17) and (18), the constraints (5) become

(19)

We note that alternative conditions are derived in [21].

A. Necessary and Sufficient Optimality Conditions

The next problem we address is how to choose an admissible
estimator strictly dominating a given inadmissible estimator

2Here, we have replaced sup by max since the set U is compact.

. From Theorem 1, it follows that can be constructed as the
solution to the problem

(20)

Substituting (2) into (20), and noting that is in-
dependent of and , our problem becomes

(21)

where we defined

(22)

Lemma 1 below asserts that the unique optimal has the
form for an matrix ,
which reduces the dimensionality of the problem when .

Lemma 1: Let the matrix be the solution to the
problem (21), where , is an matrix with rank

, and . Then

(23)

where is the matrix that is the solution to

(24)

Proof: see Appendix A.
Using Lemma 1 our problem reduces to finding the matrix

that is the solution to (24). From (17)

(25)

where

(26)

We can express as the solution to

(27)

subject to

(28)

The problem (24) can then be reformulated as

(29)

subject to (28).
Since the objective in (29) and the constraint (28) are

convex in and , and the problem is strictly feasible, the
Karush–Kuhn–Tucker (KKT) conditions [32] assert that is
optimal if and only if there exists a matrix and a scalar

such that the following conditions hold:

1) and where the Lagrangian is
defined by
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2) feasibility: ,
3) complementary slackness:

In Appendix B, we show that these conditions are equivalent
to the conditions in the following theorem.

Theorem 2: Consider the problem of Theorem 1. Let
be a given linear estimate of , let
, and .

Then

has the form , where satisfies the condi-
tions below for some :

1) ;
2) ;
3) ;
4) ;
5) ;
6) .

Using the optimality conditions of Theorem 2 we can easily
show that , or equivalently, , if and only if .
Indeed, if , then conditions 1), 2), 4), and 5) are trivially
satisfied. To satisfy 6), we must have that , in which case
3) becomes .

B. Closed-Form Admissible and Dominating Estimators

We now introduce two classes of problems for which the opti-
mality conditions of Theorem 2 can be solved explicitly. In Sec-
tion IV-B-1) we treat the case of jointly diagonalizable matrices
and, in Section IV-B-2), the high SNR scenario with .

1) Jointly Diagonalizable Matrices: Suppose that
and have the same eigenvector matrix. Thus,

if has an eigendecomposition , where is a
unitary matrix and with , then

(30)

(31)

where with and
. A closed-form expression for the optimal

matrix in this case is given in the following theorem.
Theorem 3: Consider the problem of Theorem 2. Let

where with , and sup-
pose that and where

with and .
Then

where with

(32)

Here

(33)

where is determined as follows. Define

(34)

Then, if . Otherwise, is the unique value in
the range for which , where

(35)

Proof: To prove the theorem, we need to show that
with given by (32) satisfies the conditions of The-

orem 2. Using the fact that , ,
, and , these conditions reduce to:

1) ;
2) ;
3) ;
4) ;
5) ;
6) .
Since , is real and the first condition is satisfied. By

definition of , we also have that . To show that
we must have . Since , . Furthermore,
if and only if and . However, if , then

so that cannot be equal to 0. Therefore,
and .

To satisfy conditions 3) and 4), we need to have

(36)

and

(37)

Since , both conditions are satisfied. Finally,
the last two conditions are satisfied by our definition of . It
remains to show that if , then there is a unique value
of such that .

Since is monotonically increasing in , and each term
in the sum in the definition of is positive, is mono-
tonically decreasing in as long as there exists at least on for
which , or equivalently, as long as . In addition,

is continuous. Now, we are assuming that . Fur-
thermore, for . Therefore, there is a unique

such that .
2) High SNR: We now treat the case in which the matrices

are not necessarily commuting, however and the SNR
exceeds a threshold. In this setting, we can also obtain a closed-
form solution, as incorporated in the following theorem.

Theorem 4: Consider the problem of Theorem 2. Let

(38)

where is chosen as follows. If is defined, and
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then . Otherwise, is the unique solution to

(39)
We then have that if

(40)

then with given by (38).
Before proving the theorem, we show that the solution is in-

deed valid for large enough SNR values when . Let
for some given matrix , such that .

The SNR is then defined as . Denoting
, (40) becomes

(41)

where

(42)

and is chosen to satisfy

(43)
We now show that for high enough SNR, . To
this end we note that is continuous and monotonically
increasing in . For high values of , will be larger
than one. For , we have that . Indeed, since

,

(44)

Using the fact that if then [35, Theorem
1.1], we conclude that . Therefore, there exists a value
such that for , we have . Now, from (43), it
follows that as the SNR increases, decreases. Thus, for high
enough SNR values, (40) will be satisfied for any choice of ,

, and .
We also note that of (38) is invariant to scaling of the matrix
and the constant , i.e., if and are multiplied by a

constant , then remains the same. This follows from the fact
that from (39), is invariant to this scaling.

We now prove Theorem 4.
Proof: To prove the theorem we need to show that of

(38) satisfies the optimality conditions of Theorem 2.
Since , , and are Hermitian, the first condition is satis-

fied. From the definition of we have that so that
. The assumption (40) implies that

(45)

so that . Now

(46)

and 3) and 4) are also satisfied. Conditions 5) and 6) follow from

(47)

so that

(48)

It remains to show that there exists a satisfying (39). This
is a result of the fact that the left-hand side of (39) is monotoni-
cally decreasing in , is equal to 0 for and is larger than
the right-hand side when .

A simplified special case of Theorem 4 arises when
for some .

Corollary 5: Consider the problem of Theorem 2 with
for some . Let

(49)

where is chosen as follows. If and

then . Otherwise

We then have that if

then with given by (49).
3) Minimax MSE Estimator: Corollary 5 can be used to de-

velop a closed-form solution for the minimax MSE estimator
of (12) for high SNR. Specifically, from (13), it follows that
the minimax MSE estimator can be obtained as the solution to

, where . In this
case, with . From Corollary 5, we then have
that if

(50)

where

(51)

then the optimal minimax MSE matrix is

(52)

Since , our general discussion implies that the solution
(52) will be valid at high SNR for any and .

In [10] a closed-form expression for the minimax MSE
estimator was derived for the case of commuting matrices.
The minimax MSE estimator for general matrices was
developed under a certain condition by Pilz in [9], and
coincides with the solution of [10] when the matrices com-
mute. However, the solution of [9] is incorrect in general
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Fig. 1. Worst-case MSE in estimating x as a function of SNR using the
minimax estimator of (52) and that proposed in [9].

(the error occurs in the proof of Theorem 4) and leads to a
larger worst-case MSE than our estimator (52). To demonstrate
this, in Fig. 1, we plot the worst-case MSE as a function of the
SNR defined by , where resulting from
the minimax MSE estimator of (52) and that proposed in [9],
for , , , and

(53)

Clearly, the two estimators are different. Furthermore, our
estimator leads to a smaller worst-case MSE, proving that the
method of [9] cannot be minimax. A detailed discussion of the
Pilz estimator and its relation with the minimax MSE estimator
of (52) is provided in Appendix C.

C. SDP Formulation

We have seen in the previous section that in some special
cases, Theorem 2 can be used to develop explicit solutions to
(21). We now treat the general case, and show that the optimal

can be found numerically by solving an SDP [30], [31],
which is the problem of minimizing a linear objective subject to
linear matrix inequality constraints, i.e., constraints of the form

, where the matrix depends linearly on . The ad-
vantage of this formulation is that it readily lends itself to effi-
cient computational methods which are guaranteed to converge
to the global optimum.

Problem (21) was shown in Section IV to be equivalent to
minimizing (29) subject to (28), which can be written as

(54)

subject to

(55)

Let , where de-
notes the vector obtained by stacking the columns of . With
this notation, the constraints (55) become

(56)

Next we exploit the following lemma [36, p. 28].
Lemma 2: (Schur’s complement) Let

be a Hermitian matrix. Then, if and only if ,
and . Equivalently,

if and only if , and .
From Lemma 2, it follows that the constraints (56) are equiv-

alent to the linear matrix inequalities

(57)

The problem of (21) can thus be formulated as the SDP
subject to (57). Denoting the optimal and

by and , we have that , and
.

V. ADMISSIBLE ESTIMATORS ON AN ELLIPSOID

We now use Theorem 2 to develop necessary and sufficient
conditions on to be admissible on of (14).

Theorem 6: Let be a given linear estimate of
in the model (1), let and let . Then

is admissible on if and only if
for a matrix satisfying the following:

1) ;
2) ;
3) .

The admissibility conditions of the theorem can be shown to be
equivalent to those derived in [20], [22]. However, our method
of proof is different. Since our proof is direct and straightfor-
ward, we include it here for completeness.

Proof: To establish the theorem it is sufficient to show that
is the optimal solution to (20), or equivalently, that

satisfies the conditions of Theorem 2 with
for some if and only if it satisfies conditions

1)–3).
Since conditions 1)–3) are a subset of the conditions of The-

orem 2, it follows immediately that any satisfying Theorem
2 also satisfies 1)–3). On the other hand, if satisfies condi-
tions 1)–3), then it also satisfies the conditions of Theorem 2
with , completing the proof.

Given an admissible , we can construct a whole class of
admissible estimators by simply scaling , as incorporated in
the following proposition.

Proposition 1: If is admissible on of (14), then is
admissible for any .
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Proof: From Theorem 6, for
some , so that , where .
Since , we have immediately that .
Similarly, since , the fact that
implies that . It remains to show that if
satisfies condition 3, then so does . Now

(58)

Since , and is Hermitian

(59)

so that

(60)

Therefore

(61)

We now rely on the following lemma (see, e.g., [37]).
Lemma 3: Let , , and be Hermitian nonnegative def-

inite matrices with . Then, .
Using Lemma 3 together with (61), we have that

(62)

completing the proof.
Another general class of admissible estimators is given in the

following proposition.
Proposition 2: Consider the problem of Theorem 6. Let

, where is a unitary matrix and
with . Then is admissible for any

where and the values
satisfy

where is the th diagonal element of .
Proof: To prove the proposition we need to show that

satisfies the conditions of Theorem 6. The first two con-
ditions are trivially satisfied. The last condition follows from the
fact that

(63)

VI. EXAMPLES

We now present some examples of admissible and strictly
dominating estimators on the ellipsoidal constraint set of (14).

A. Tikhonov Estimation

A popular estimator in applications is the Tikhonov estimator
[4], [5], which has the form

(64)

for some . This estimator can be obtained as the solution
to the regularized least-squares problem

(65)

Using Theorem 6, we can develop conditions on such that
is admissible.

Proposition 3: The Tikhonov estimator is admissible on
if and only if .

Proof: To prove the proposition we need to show that
the conditions of Theorem 6 are satisfied if and only if

.
Denoting , we can express as

, with . We have immediately
that for any choice of . Next, from the fact that

(66)

Finally, since we have that .
Therefore, is admissible if and only if it satisfies the trace
condition (condition 3)).

Now

(67)

Therefore

(68)

where the last equality can be verified by multiplying both sides
of the equation by . Using (68)

(69)

completing the proof.
Suppose now that does not satisfy the constraint

, so that is inadmissible. To obtain
an admissible estimator, one approach is to modify by
multiplying by a scalar satisfying ,
resulting in the admissible Tikhonov estimator

(70)

Note, however, that we are not guaranteed that the estimator
(70) dominates the original Tikhonov estimator . Indeed, in
Figs. 2 and 3, we plot the MSE of and for
and respectively, as a function of the SNR defined by

, where . The parameters are chosen as
, , 0.6 m

(71)
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Fig. 2. MSE in estimating x as a function of SNR using the Tikhonov,
admissible Tikhonov and minimax admissible estimators, for U = 0:5.

Fig. 3. MSE in estimating x as a function of SNR using the Tikhonov, the
admissible Tikhonov and the minimax admissible estimators, for U = 2.

and . It is evident from the figures that
does not dominate .

An estimator that is admissible and strictly dominates
can be obtained from Theorem 1 as , where

(72)

with . We refer to this estimator as
the minimax admissible estimator. In the case in which
and for some , we have that , and

have the same eigenvector matrix. We can then use Theorem
3 to obtain a closed-form solution for the minimax admissible
estimator. It can be seen from the theorem that the resulting
estimator is no longer a Tikhonov estimator in general.

The MSE resulting from the minimax admissible estimator is
plotted as a function of the SNR in Figs. 2 and 3. As can be seen

from the figures, this estimator dominates the original Tikhonov
estimator for all SNR.

B. Shrunken Estimator

Another popular estimator is the shrunken estimator [6],
which is a shrinkage of the least-squares estimator, and is given
by

(73)

for some . For this estimator, , and therefore
it follows from Theorem 6 that is admissible if and only if

.
We now use Theorem 3 to find a strictly dominating and

admissible estimator in the case in which and
. Since , is independent

of and is given by . Thus, is chosen such
that

(74)

which results in

(75)

We conclude that the minimax admissible estimator is always a
shrunken estimator with shrinkage

(76)

The resulting shrunken estimator is equivalent to the minimax
MSE estimator derived in [10] for the case .

VII. ADMISSIBLE AND DOMINATING ESTIMATORS

ON THE ENTIRE SPACE

We now treat the case in which , so that is not
restricted. The main difference between this setting and the el-
lipsoidal constraint case is that, as we will see below, when
is not restricted the optimization problem we end up with is not
strictly feasible. Therefore, some manipulations are necessary
in order to develop a solution.

A. Dominating Estimators

Given an inadmissible estimator , we can use Theorem 1
to construct an admissible estimator strictly dominating on

by solving the problem

(77)

where is defined in (16). Now

otherwise.
(78)
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Therefore, (77) is equivalent to

(79)

subject to

(80)

Using arguments similar to Lemma 1 we can show that the op-
timal solution has the form , where

and is the solution to

(81)

subject to

(82)

The constraint (82) is not strictly feasible if is rank defi-
cient, so that we cannot apply the KKT conditions. To obtain a
strictly feasible problem we note that using Lemma 2, (82) is
equivalent to

(83)

Denoting by the orthogonal projection onto the null
space of , the constraints (83) can be written as

(84)

where we used the notation . From (84), it

follows that for some matrix , where
is the orthogonal projection onto the

range space of . Substituting

(85)

into (81) and (84), our problem becomes

(86)

subject to

(87)

which is a strictly feasible convex optimization problem. There-
fore, we can now use the KKT conditions to find optimality con-
ditions, resulting in the following theorem.

Theorem 7: Consider the problem of Theorem 1. Let
be a given linear estimate of , let

and . Denote the orthogonal projection
onto by and let .
Then

has the form , where satisfies the fol-
lowing:

1) ;
2) ;
3) ;
4) ;
5) .

Proof: See Appendix D.
In Theorems 8 and 9 below, we use the conditions of Theorem

7 to derive explicit closed-form solutions for the same special
cases treated in Section IV-B. For arbitrary choices of and
an SDP formulation similar to that presented in Section IV-C
can be used.

Theorem 8: Consider the problem of Theorem 7. Let
where with , and suppose

that where . Then

where with

.
(88)

Note that this theorem is analogous to Theorem 3 where here
we replace by 0.

Proof: To prove Theorem 8, we need to show that
with given by (88) satisfies the optimality condi-

tions of Theorem 7. Using the fact that ,
, and , we have that where

with

,
(89)

and . The conditions then become
as follows, which are clearly saisfied:

1) ;
2) ;
3) for all such that ;
4) ;
5) for all .

Next, we consider noncommuting matrices with bounded
eigenvalues.

Theorem 9: Consider the problem of Theorem 7, and let

(90)

We then have that if

(91)

then with given by (90).
Proof: To prove the theorem, we need to show that

given by (90) satisfies the optimality conditions of Theorem 7.
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Since and are Hermitian, the first condition is satisfied.
Furthermore, using the fact that , we have that .
The assumption (91) implies that

(92)

so that . Now

(93)

and conditions 4) and 5) are also satisfied. To prove condition
3), we need to show that
for any ; this is equivalent to ,
which is clearly satisfied, completing the proof.

B. Admissible Estimators

We now use Theorem 7 to develop necessary and sufficient
conditions on to be admissible for all .

Theorem 10: Let be a given linear estimate of
in the model (1), let and let . Then

is admissible on if and only if for
a matrix satisfying the following:

1) ;
2) .

Proof: The theorem follows by noting that
satisfies the conditions of Theorem 7 where

if and only if it satisfies conditions 1) and 2).
A general class of admissible estimators is given in the fol-

lowing proposition.
Proposition 4: Consider the problem of Theorem 10.

Let , where is a unitary matrix and
with . Then is

admissible for any , where
and the values satisfy .

Proof: The proof follows by showing that the resulting es-
timator satisfies the conditions of Theorem 10.

VIII. CONCLUSION

We addressed the important issue of comparing the MSE
performance of linear estimators by considering a unified ap-
proach for developing admissible estimators strictly dominating
a given linear estimator, and for characterizing the admissi-
bility of linear methods. The results can be applied to arbitrary
constraint sets on the parameter vector to be estimated, and
general error measures. As we showed, the admissibility of a
linear estimator as well as the construction of a linear estimator
strictly dominating an inadmissible strategy can both be treated
by considering a certain convex optimization problem. The ma-
chinery of convex optimization can then be utilized to analyze
the MSE performance for specific uncertainty sets.

Our results can be used in practice to help select an appro-
priate estimator from the multitude of methods proposed in the
literature. We also suggest strategies for designing new estima-
tors with lower MSE in the case in which the conventional ap-
proaches are inadmissible.

An interesting extension of this work is to apply our general
procedure to other parameter sets that appear in applications.
For example, in an image processing context the elements of

, which represent pixel values, are always nonnegative so that
.

APPENDIX A
PROOF OF LEMMA 1

To prove the lemma, we note that the objective in (21)
depends on only through and . For any
choice of

(94)

where

- -
(95)

is the orthogonal projection onto . In addition,
since .

Now, suppose that is an optimal solution to (21), and
let . Then and

.
Since from Theorem 1 the solution is unique, we must have
that , or . Using (95)

(96)

for some matrix . The proof of the lemma then follows
from substituting of (96) into (21).

APPENDIX B
KKT CONDITIONS

In this appendix, we show that the KKT conditions can be
reduced to the conditions of Theorem 2. To this end, we express
the Lagrange multiplier as a function of , and then translate
the conditions on to conditions on .

Differentiating with respect to and equating to 0,

(97)

Since , (97) implies that .
Differentiating with respect to and equating to 0

(98)

where . Note, that since and
, the inverse in (98) is always defined.

With given by (98)

(99)

where we denoted and used the matrix
inversion lemma [37]. To show that the inverse exists, suppose
to the contrary that there exists a such that

(100)

Then, multiplying both sides of (100) by

(101)

Since and , (101) implies that
, which is impossible since .
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Taking the inverse on both sides of (99) and using the matrix
inversion lemma

(102)

Since is Hermitian and nonnegative definite, so is . Thus,
any such that of (102) is Hermitian and nonnegative definite
can be expressed in the form of (98).

The requirement is equivalent to

(103)

which, taking the inverse of both sides, becomes .
The condition reduces to

(104)

Since , (104) implies that , which is
equivalent to . Taking the inverse on both sides of
(104) we also have that , which together imply that

. Thus, and satisfy the first KKT condition if
, , and

(105)

We now treat the complementary slackness condition. To this
end, let

(106)

From feasibility, we have that , and from complementary
slackness . Since , this implies that ,
or

(107)

Substituting (102) into (107), the condition becomes

(108)

Finally, since from (97), we have that , the
second complementary slackness condition becomes

, completing the proof.

APPENDIX C
DISCUSSION OF THE RESULTS OF [9]

In this appendix, we discuss the minimax MSE solution of
[9]. In particular, we show that this solution coincides with the
minimax MSE estimator of (52) only in the case in which the
matrices and are jointly diagonalizable.

In [9, Theorem 4], Pilz considers the minimax MSE
estimator that minimizes the worst-case weighted MSE

for some weighting matrix . The
maximum is over all satisfying
where is an arbitrary fixed vector. Let have
an eigendecomposition where is unitary and

. Then, for and , which
is the case considered in this paper, the proposed estimator is
given by

(109)

where

(110)

Here

(111)

and is a diagonal matrix with diagonal elements

(112)

where is the th diagonal element of the matrix

(113)

Substituting (111) into (110)

(114)

where we used the facts that and for any invertible
matrix , . The solution is
claimed to be valid as long as

(115)

We now show that the estimator is similar in structure to
the minimax MSE estimator of (52); however, the two coincide
only in the case in which and are jointly diagonalizable,
i.e., only when is a diagonal matrix.

Denoting by the diagonal matrix with diagonal elements
, the matrix can be written as

(116)

where

(117)

Here, we used the fact that for any
. Substituting of (116) into (114)

(118)

Comparing (118) with (52), we see that the two expressions
are similar. They coincide if and only if

(119)

or, equivalently

(120)

where and are defined in (113) and (51), respectively. By
definition, is the diagonal matrix with diagonal elements .
Therefore, (120) is satisfied if and only if is diagonal, and

. Now, we can write as . Since is
diagonal, it follows that is diagonal only if is diagonal.
In this case, and of (117) reduces to

(121)



ELDAR: COMPARING BETWEEN ESTIMATION APPROACHES: ADMISSIBLE AND DOMINATING LINEAR ESTIMATORS 1701

Furthermore, if is diagonal, then the condition (115) can be
written as

(122)

Since , (122) becomes

(123)

or, equivalently

(124)
which is the same as (50).

We conclude that the solution in [9] coincides with the
minimax MSE estimator of (52) only if and are jointly di-
agonalizable. Otherwise, our estimator of (52) leads to smaller
worst-case performance, as demonstrated in the example in
Fig. 1. Note, that the case of jointly diagonalizable matrices has
been treated in [10], in which it was shown that a closed-form
solution exists for all choices of and , not only for matrices
satisfying (120).

We now discuss the source of the error in the proof of [9,
Theroem 4]. The problem considered is that of minimizing

subject to , where
. The author claims that

(125)

where is a diagonal matrix with diagonal elements equal to the
diagonal elements of , with equality if and only if
is diagonal. The author then concludes that the optimal choice
of is such that is diagonal. This conclusion is indeed
correct if the problem is not constrained. However, since the
problem is constrained, we cannot draw such a conclusion, since
this condition may result in a stricter constraint on the diagonal
leading to a higher objective.

APPENDIX D
PROOF OF THEOREM 7

From the KKT conditions applied to the problem of (86) and
(87), it follows that is optimal if and only if there exists a
matrix such that:

1) , where the Lagrangian is defined as

2) feasibility:
3) complementary slackness:

.
Differentiating with respect to and equating to 0

(126)

We next exploit the following lemma.

Lemma 4: Let , . Then
.

Proof: To prove the lemma it suffices to show that

(127)

Indeed, since for any Hermitian matrix ,
if (127) is satisfied then

.
Now, clearly for any .

Let be such that . Then

(128)

Since and , we conclude that (128) can
hold true only if and so that

.
Since , and

, from Lemma 4, it follows that
. From (126), we then have that

(129)

or equivalently

(130)

and

(131)

Thus satisfies the first KKT condition if and only if there
exists a such that (129) or (130) are satisfied.

The requirement is equivalent to
, or in terms of the matrix

(132)

The constraint reduces to

(133)

which using Lemma 2 is equivalent to

(134)

(135)

(136)

The condition (136) follows from (131). Substituting (85) into
(134), the condition becomes , and (135) reduces to

(137)

Now, from (84) we have that . In addition,
from (132)

(138)
Thus, and (137) is equivalent to

. We conclude that the first KKT condition is satisfied
if and only if , and

.
Using the fact that and

the second KKT condition is equivalent to
. The third condition can be written as

(139)
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where . Writing as
, (139) becomes

(140)

Since and , the left-hand side
of (140) is nonpositive, while the right-hand side is nonnegative
since and . Therefore, (140) is satisfied if
and only if

(141)

Using the fact that from (130)

(142)

completes the proof of the theorem.
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