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Abstract. This paper is a continuation of the work in [11] and [2] on the problem of estimating by a linear
estimator, N unobservable input vectors, undergoing the same linear transformation, from noise-corrupted
observable output vectors. Whereas in the aforementioned papers, only the matrix representing the linear
transformation was assumed uncertain, here we are concerned with the case in which the second order sta-
tistics of the noise vectors (i.e., their covariance matrices) are also subjected to uncertainty. We seek a robust
mean-squared error estimator immuned against both sources of uncertainty. We show that the optimal robust
mean-squared error estimator has a special form represented by an elementary block circulant matrix, and
moreover when the uncertainty sets are ellipsoidal-like, the problem of finding the optimal estimator matrix
can be reduced to solving an explicit semidefinite programming problem, whose size is independent of N .
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1. Introduction and Summary of Main Results

1.1. Minimax MSE Estimator: Single Signal with Certain Model

A central problem in estimation is to recover a set of unobservable parameters from data
corrupted by noise. In many applications, the relation between the parameters vector
and the data is given by a linear model

y = Hx + w,

where y ∈ R
n is the observed data, x ∈ R

m is the unknown parameter vector, H is the
n × m model matrix (we always assume that n ≥ m), and w ∈ R

n is a zero-mean noise
vector with positive definite covariance matrix C = E(wwT ). Given the data y, we seek
an estimator x̂ of x that is close to x in some sense. This estimation problem arises in a
large variety of areas in science and engineering e.g., communication, economics, signal
processing, seismology, and control.
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Owing to lack of statistical information about x, often the parameters are chosen to
optimize a criterion based on the observed data y. The celebrated Least Squares (LS)
estimator [19, 22, 23, 28], which was first used by Gauss to predict movements of planets
[16], seeks the linear estimate x̂LS of x, which minimizes the norm1 of the data error
i.e.,

x̂LS = argmin ‖C−1/2(y − Hx)‖2.

In the case where H has full column rank, x̂LS is given by

x̂LS = (HT C−1H)−1HT C−1y.

Notice that the LS estimator has the form

x̂LS = Gy, (1)

where G is an m × n matrix. An estimator of the form (1) is called a linear estimator
and the matrix G is called the estimator matrix. Linear estimators are popular due to two
main reasons. First, they are very easy to implement. Second, restricting ourselves to
linear estimators often leads to tractable optimization problems. In this paper we shall
likewise consider linear estimators.

The LS estimator minimizes the weighted norm of the data error ‖C−1/2(y − Hx)‖
and may not provide a good solution in terms of the estimation error ‖x − x̂‖. In view of
this, Eldar et al. [11] suggested to seek an estimator x̂ that minimizes the mean-squared
error (MSE):

MSE = E(‖x − x̂‖2)

and to restrict attention to linear estimators of the form x̂ = Gy. For a linear estimator,
the MSE is equal to the sum of the variance V (x̂) and the squared norm of the bias B(x̂):

MSE = Tr(GCGT )
︸ ︷︷ ︸

V (x̂)

+ xT (I − GH)T (I − GH)x
︸ ︷︷ ︸

‖B(x̂)‖2

.

Since the bias depends on the unknown parameters x, we cannot choose an estimator
to directly minimize the MSE. A common approach is to restrict the estimator to be
unbiased, i.e., the estimator matrix G satisfies GH = I, and then seek the estimator of
this form that minimizes the MSE, which is equal in this case to the variance Tr(GCGT ).
It is well known that the LS estimator achieves this goal, i.e., x̂LS = GLSy, where

GLS
�=(HT C−1H)−1HT C−1 = argmin

G:GH=I
Tr(GCGT )

However, this does not imply that the LS estimator leads to a small variance or a small
MSE. In fact, it is well known that for ill-conditioned problems the resulting vari-
ance/MSE can be very large [19]. As a result, various modifications of the LS estimator
have been proposed.

1 Throughout the paper we use the following notation: ‖v‖ is the Euclidean norm of the vector v and the
norm of matrix A is the Frobenius norm i.e., ‖A‖ =

√

Tr(AT A).
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Among the alternatives are Tikhonov regularization [29] (also known in the statistical
literature as the ridge estimator [20]), the shrunken estimator [24], and the covariance
shaping LS estimator [15]. In general, these alternatives attempt to reduce the MSE in
estimating x by allowing for a bias, however, they too optimize an objective which does
not depend directly on the MSE, but rather depends on the data error Hx̂ − y.

The approach advocated in [11, 12], in order to minimize the MSE, is to use additional
apriori information on the signal x, such as an upper bound on its size (norm):

‖x‖T ≤ L,

where ‖x‖T = (xT Tx)1/2 and T is a positive definite matrix. This leads to the following
optimization problem

min
G

max
‖x‖T≤L

E(‖x − x̂‖2). (2)

It is shown in [3] that if L is known, then the solution to (2) has a smaller MSE
than the LS estimator for any ‖x‖T ≤ L. Thus, in an MSE sense, this estimator is
always preferable to the LS estimator. If no a priori knowledge on the norm bound L is
available, then it can be reasonably estimated by say L = ‖x̂LS‖. For the case in which
H = Cw = I, it is proven in [4] that the resulting estimator has a smaller MSE than the
LS estimator for any x. Simulation results presented in Section 4.1 demonstrate that this
performance advantage holds in more general cases as well.

1.2. Minimax MSE Estimator: Single Signal with Uncertain Model

In many applications the model matrix H is subject to uncertainties. For example, H
may be estimated from noisy data. If the actual data matrix H deviates from the one
assumed, say H0, then the performance of an estimator designed based on H0 alone may
deteriorate considerably. Indeed, in Section 4.3 an example is given with a small devi-
ation between H0 and H which causes the LS estimator to be highly unstable. Various
methods have been proposed to account for uncertainties in H. The Total LS method
(TLS) [18, 21] finds a pair (̂H, ŷ), which minimizes the error ‖̂H − H0‖2 + ‖ŷ − y‖2

subject to the consistency equation ŷ ∈ R(̂H). The TLS estimator x̂T LS is then a solution
to the system ̂Hx = ŷ. Although the TLS method allows for uncertainties in H, in many
cases it results in correction terms that are unnecessarily large. Recently, several methods
[8, 17, 26] have been developed to treat the case in which the perturbation to the model
matrix H is bounded. These methods seek the parameters that minimize the worst-case
data error across all bounded perturbations of H, and possibly bounded perturbations
of the data vector. In [9] the authors seek the estimator that minimizes the best possible
data error over all possible perturbations of H. Here again, the above objectives depend
on the data error and not on the estimation error, or the MSE. To address this issue it is
suggested in [11] to use the robust optimization approach of Ben-Tal and Nemirovsky [5,
6] in combination with the minimax approach (2). This leads to an optimization problem
of the form

min
G

max
‖x‖T≤L,H∈UH

E(‖x − x̂‖2) (3)
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where

UH = {H0 + �H : �H ∈ R
n×m‖�H‖, ≤ ρH}. (4)

An additional major source of uncertainty in signal processing (perhaps more com-
mon) is associated with the statistics of the noise vector w; Indeed, assuming that its
covariance matrix C is known exactly is unrealistic. Thus in this paper we seek the
minimax MSE estimator that is robust with respect to uncertainty not only in the model
matrix H but also in the covariance matrix C. It is assumed that the only knowledge of
C is that it resides in an uncertainty set UC of the form

UC = {C0 + �C : �C ∈ R
n×n, ‖�C‖ ≤ ρC, �C = �T

C, C0 + �C � 0}. (5)

This leads to the following optimization problem

min
G

max
‖x‖T≤L,H∈UH,C∈UC

E(‖x − x̂‖2) (6)

We refer to the resulting estimator as the robust MSE estimator (RMSE).
In [10] the minimax MSE problem of (6) was considered for the case in which H is

certain and the uncertainty set on C is defined only on the eigenvalues of C, but not on
the eigenvectors.

A related estimation problem with uncertainties in both the model and the covariance
matrices is discussed in [7]. Contrary to our setting, the model in [7] assumes that the
input vector x is random with a priori gaussian distribution. The aim is to find an estimate
of x̄ that maximizes a lower bound on the worst case (with respect to the uncertainties)
a posteriori probability of the observations. For that purpose a maximum likelihood
objective function is used. In [14, 13] RMSE estimators where derived for the case in
which x is a random vector with uncertain covariance matrix, and both H and C are also
subjected to uncertainty.

In Section 3 we show that the optimal solution of (6) can be found by a semidefinite
program (SDP). This result is a generalization of the result derived in [11], where only
uncertainty in H was assumed. The importance of treating uncertainty in C is dem-
onstrated in Section 4.4, where we show an example in which the nominal and actual
values of C are only slightly different but the LS estimator calculated with the nominal
value is very unstable: its MSE is 23.39 while the maximum value of the squared error
(over 1000 realizations of the noise vectors) was 258.5, more than 11 times bigger!. In
contrast, the robust MSE estimator developed in this paper had MSE equal to 24.34 and
its maximum value (over the same 1000 realizations of the noise vector) was only 35.75.

The robust MSE estimator depends on two parameters L and ρH, which may or
may not be known a priori depending on the specific application. When L and ρH are
unknown, we propose to estimate L by the norm of the TLS estimator, and ρH by
‖H0 − ̂H‖. In Section 4.2, we show an example demonstrating that with these choices
the RMSE significantly outperforms the TLS estimator.



Robust Mean-Squared Error Estimation 5

1.3. Minimax MSE Estimator: Multiple Signals with Uncertain Data

In the main part of the paper, starting from Section 5, we develop robust MSE estimators
for a multiple signals system with uncertain model matrix H and uncertain covariance
of the noise vectors. Thus we consider the problem of estimating N unknown deter-
ministic parameter vectors xk ∈ R

m, 0 ≤ k ≤ N − 1 from N observation vectors
yk ∈ R

n, 0 ≤ k ≤ N − 1. Each observation vector yk is related to the corresponding
parameter vector xk through the linear model

yk = Hxk + wk, 0 ≤ k ≤ N − 1, (7)

where H is an n×m matrix, and each wk, (0 ≤ k ≤ N −1) is a zero-mean random noise
vector with covariance matrix E(wkwT

k ). Each input vector xk, (0 ≤ k ≤ N − 1), satis-
fies a weighted norm constraint ‖xk‖T ≤ L. The model is illustrated in Fig 1. Multiple
signals models, of which (7) is a special case, where introduced and studied in Beck
et al. [2], in the case where the covariance matrices are fixed and the uncertainty set
associated with H is an ellipsoidal-like set. Here again, we consider uncertainty in the
noise covariance matrices and we seek estimators which are robust against both sources
of uncertainty.

In many applications, the noise vectors are correlated. For example, in neurophysiol-
ogy, in which a multichannel recording array of electrodes sites is used to record spikes
from the surrounding neural cell population, the noise vectors are correlated as result
of noise emanating from group of cells close to the recording array but not enough for
their firing patterns to be detected and sorted by the recording array.

w1

H y1x1

yN−1H

wN−1

xN−1

H y0

w0

x0

...

Fig. 1. The multiple signals model
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We thus consider the case in which the noise vectors are indeed correlated. In this
case, it is better to estimate the vectors x0, x1, . . . , xN−1 jointly rather than separately, a
fact that will be illustrated by an example in Section 7. To model the correlation between
the noise vectors, we note that in many applications the order in which observations
occur is immaterial, so that the statistics of yi and the joint statistics of yi and yj do
not depend on i and j . Equivalently, the statistics of the noise vectors wi and the joint
statistics of wi and wj do not depend on i and j . In this case,

E(wiwT
i ) = C, ∀0 ≤ i ≤ N − 1, (8)

for some covariance matrix C � 0, and

E(wiwT
j ) = B, ∀0 ≤ i �= j ≤ N − 1, (9)

for some matrix B. Moreover, by (9) we have that E(wiwT
j ) = E(wj wT

i ), so that B is
symmetric. Under the above structure, the system (7) can be written as the single signal
system

y = ˜Hx + w, (10)

where ˜H is the nN × mN matrix defined by:

˜H
�=











H 0 · · · 0
0 H · · · 0
...

...
...

0 0 · · · H











,

y = (yT
0 , . . . , yT

N−1)
T , x = (xT

0 , . . . , xT
N−1)

T and w = (wT
0 , . . . , wT

N−1)
T . The covari-

ance matrix of the expanded vector w is denoted by ˜C
�=E(wwT ) and is given by the

following nN × nN matrix:

˜C =











C B · · · B
B C · · · B
...

...
...

B B · · · C











. (11)

A matrix of the form (11) is called an elementary block circulant matrix and is denoted
by M(C, B).

The multiple signals system (7) can be written as the single signal system (10), whose
RMSE estimator is the solution of the problem

min
G

max
‖xi‖2

T≤L̃2,˜H∈U
˜H,˜C∈U

˜C

E(‖x − x̂‖2). (12)

However, we cannot use the results of Section 3 since now there is a norm constraint
on each of the indivudal blocks of x. Furthermore, both ˜H and ˜C are structured, and so
the corresponding uncertainty sets should also have the same structure, i.e., U

˜H should
consist of block diagonal matrices and U

˜C should consist of elementary block circulant
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matrices. Althgouh the matirx G in (12) is an mN ×nN matrix, we will show in Section
6 that the solution of (12) depends on only two m × n matrices G0 and G1 (regardless
of the value of N ). This result utilizes the elementary block circulant structure of C and
is independent of any specific structure of the uncertainty sets.

In Section 7 we consider a specific case of the uncertainty sets UH and U
˜C, under

which the above matrices G0 and G1 can be computed efficiently by solving an SDP
problem. In this case UH is the ellipsoidal-like uncertainty set defined in (4), whereas for
the uncertainty in the covariance matrix ˜C, we consider a case where the noise vectors
wk are composed of a noise component uk with known second order statistics and a
noise component vk with uncertain second order statistics. To be more specific,

wk = uk + vk,

where u0, u1, . . . , uN−1 are correlated noise vectors with known covariance matrix
E(ukuT

k ) = C0 and cross correlation covariance matrix E(uiuT
j ) = B0, i �= j .

The vectors v0, v1, . . . , vN−1 are mutually uncorrelated, and are also uncorrelated with

u0, u1, . . . , uN−1. Let us denote the uncertain covariance matrix of vk by �C
�=E(vkvT

k ),
then

E(wkwT
k ) = C0 + �C, 0 ≤ k ≤ N − 1

E(wiwT
j ) = B0, i �= j.

We assume that �C is norm bounded ‖�C‖ ≤ ρC, thus the ellipsoidal-like uncertainty
set U

˜C is given by

U
˜C = {M(C, B0) : C ∈ UC},

where UC is defined in (5). We show that in thef above setting of the uncertainty sets,
the optimal solution of (12) can be found by solving an SDP problem whose size is
independent of N .

1.4. Summary of the Organization of the Paper

Sections 2 to 4 deal with the single signal problem and sections 5 to 7 with the multiple
signals estimation case. In Section 2 we present the problem of the single signal esti-
mation problem and define the notation used throughout the paper. In Section 3 we
consider the case of ellipsoidal-like uncertainty sets and show that the robust MSE esti-
mator matrix is the solution to an SDP problem and thus we conclude that finding the
robust MSE estimator is a tractable problem. Some examples are discussed in Section
4. The multiple signals estimation problem is presented in Section 5. In Section 6 we
prove that under general assumptions on the structure of the uncertainty sets, the RMSE
estimator matrix G can be chosen to be an elementary block circulant matrix. Using
this result, we find in Section 7 that the robust MSE estimator in the multiple signals
case is the solution of an SDP whose size does not depend on N . Section 7 is con-
cluded with an example which demonstrates the advantage of the RMSE estimator for a
multiple signals system as compared to the LS estimator and the RMSE estimator which
treats the multiple signals system as N independent single signal systems. Some of the
mathematical background needed in the paper is collected in the appendices.
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2. Problem Formulation of the Single Signal Estimation Problem

We denote vectors by boldface lowercase letters and matrices by boldface uppercase
letters. The identity matrix of appropriate dimension is denoted by I, (·)T and R(·)
denote the transpose and the range of the corresponding matrix, respectively. For two
symmetric matrices A, B the notation A � B means that A−B is a positive semidefinite
matrix. If A is symmetric then λmax(A) denotes the largest eigenvalue of A. For a matrix
M, vec(M) denotes the vector obtained by stacking the columns of M

In this part we consider the problem of estimating an unknown deterministic param-
eter vector x ∈ R

m from an observation y ∈ R
n, where y is related to the parameter

vector x through the linear model

y = Hx + w. (13)

Here H is an n × m (n ≥ m) matrix and w is a zero-mean random noise vector with
covariance matrix C = E(wwT ). The matrices H and C are “uncertain” and are only
known to belong to some uncertainty sets UH and UC respectively. It is assumed that x
is known to satisfy a weighted norm constraint xT Tx ≤ L, where T is a known positive
definite matrix.

We estimate x using a linear estimator x̂ = Gy for some m×n matrix G. The matrix
G is chosen to minimize the MSE:

MSE = E(‖x̂ − x‖2)

= E(‖Gy − x‖2)

= E(‖G(Hx + w) − x‖2)

= E(wT GT Gw) + 2E(wT (GH − I)x) + xT (I − GH)T (I − GH)x

= Tr(GCGT ) + xT (I − GH)T (I − GH)x. (14)

Since the MSE depends on the unknown parameters x and on the unknown matrices H
and C, we cannot construct an estimator to directly minimize the MSE. Instead, we seek
the linear estimator that minimizes the worst-case MSE across all possible values of x,
H and C. Thus, we consider the problem

min
G

max
‖x‖T≤L,H∈UH,C∈UC

E(‖x̂ − x‖2)

= min
G

max
‖x‖T≤L,H∈UH,C∈UC

{

xT (I − GH)T (I − GH)x + Tr(GCwGT )
}

. (15)

The optimal solution G to (15) is called the robust MSE estimator matrix. and the
induced estimator x̂ = Gy is called the robust MSE estimator (RMSE estimator).

In the next section we show that for certain reasonable uncertainty sets, the problem
(15) can be reduced to a standard SDP [6, 25, 30], which is the problem of minimizing
a linear objective subject to linear matrix inequality constraints, i.e. constraints of the
form A(x) � 0, where A is a matrix depending affinely on x. The advantage of an SDP
formulation is its computational tractability i.e., it can be solved in polynomial time e.g.,
via interior point methods (see [1, 6, 25, 30]).
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3. SDP Formulation of the Estimation Problem with Ellipsoidal-like Uncertainty
Sets

In this section we consider the following choice of uncertainty sets of C and H

UC = {C0 + �C : �C ∈ R
n×n, ‖�C‖ ≤ ρC, �C = �T

C, C0 + �C � 0}, (16)

UH = {H0 + �H : �H ∈ R
n×m‖�H‖ ≤ ρH}, (17)

where C0 is an n × n positive definite matrix, H0 is an n × m (n ≥ m) matrix assumed
to have full rank m and ρC and ρH are nonnegative constants. H0 and C0 represent the
nominal values of H and C respectively while �H and �C represent unknown pertur-
bation matrices, which are norm bounded. Notice that UC is not an ellipsoidal set due to
the additional constraints that force all matrices in UC to be positive semidefinite. The
main result of this section is Theorem 1, which states that the problem of finding the
optimal matrix G solving the problem (15), with uncertainty sets (16) and (17), can be
formulated as an SDP problem. Before proving the main result, some technical lemmas
are required.

Lemma 1. Let Q ∈ R
n×n be a symmetric PSD matrix. Then,

max
X∈Rn×n,‖X‖≤δ,X=XT ,C0+X�0

{Tr(XQ)} = δ
√

Tr(QT Q) (18)

The maximum is attained at X = δ√
Tr(QT Q)

Q.

Proof. For all matrices X with ‖X‖ ≤ δ we have

Tr(XQ) ≤ ‖X‖‖Q‖ ≤ δ
√

Tr(QT Q),

where the first inequality follows from the Cauchy-Schwartz inequality. Now, the matrix

X̄ = δ
√

Tr(QT Q)
QT (19)

is symmetric, PSD (by the assumption on Q) and ‖X̄‖ = δ, thus X̄ is a feasible solution
of problem (18) with a corresponding objective function value equal to the upper bound
δ‖Q‖. Thus, X̄ is optimal. 
�
We will also need the following result

Lemma 2 ([11]). Given matrices P, Q, R with R = RT ,

R � PT ZQ + QT ZT P, ∀Z : ‖Z‖ ≤ δ

if and only if there exists a λ ≥ 0 such that
(

R − λQT Q −δPT

−δP λI

)

� 0.

With the help of the above lemmas we are able to prove our main result.
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Theorem 1. Let x ∈ R
m denote the unknown parameters in the model y = Hx + w,

where H ∈ UH is an n × m matrix, x is known to satisfy the weighted norm constraint
‖x‖T ≤ L, and w ∈ R

n is a zero-mean random noise vector with covariance C ∈ UC
where

UC = {C0 + �C : ‖�C‖ ≤ ρC, �C = �T
C, C0 + �C � 0},

UH = {H0 + �H : ‖�H‖ ≤ ρH}.
Then the robust MSE estimator matrix, i.e., the matrix G that solves

min
G

max
‖x‖T≤L,H∈UH,C∈UC

{

xT (I − GH)T (I − GH)x + Tr(GCGT )
}

(20)

is the optimal solution of the following SDP problem in the variables τ, λ, t1, t2 ∈ R, X ∈
R

n×n and G ∈ R
m×n:

min
τ,λ,t1,t2,X,G

{L2τ + t1 + ρCt2}

subject to




τ I − λT−1 T−1/2(I − GH0)
T 0

(I − GH0)T−1/2 I −ρHG
0 −ρHGT λI



 � 0

(

t1 gT

g I

)

� 0
(

X GT

G I

)

� 0
(

t2 xT

x t2I

)

� 0,

where x = vec(X) and g = vec(GC1/2
0 ).

Proof. Maximizing the inner objective function of (15) with respect to x, problem (20)
reduces to the following equivalent formulation:

min
G

max
‖�H‖≤ρH,‖�C‖≤ρC,�C=�T

C,C0+�C�0
ϒ(G, �H, �C), (21)

where

ϒ(G, �H, �C) = tr(G(C + �C)GT ) (22)

+L2λmax

(

T−1/2(I − G(H0 + �H))T (I − G(H0 + �H))T−1/2
)

.

Since ϒ(G, �H, �C) is separable with respect to �H and �C, it follows that the optimal
value of the inner maximization problem in (21) is the sum of the optimal values of two
independent maximization problems

max
‖�C‖≤ρC,�C=�T

C,C0+�C�0
Tr(G(C0 + �C)GT ) (23)
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and

max
‖�H‖≤ρH

L2λmax(T−1/2(I − G(H0 + �H))T (I − G(H0 + �H))T−1/2). (24)

Let us consider first (23). Since

Tr(G(C0 + �C)GT ) = Tr(GC0GT ) + Tr(G�CGT ) = Tr(GC0GT ) + Tr(�CGT G),

we are left with the optimization problem

max
‖�C‖≤ρC,�C=�T

C,C0+�C�0
Tr(�CGT G). (25)

Invoking Lemma 1 with Q = GT G, we obtain that the solution of (23) is Tr(GC0GT )+
ρC
√

Tr(GT GGT G).
Now, let us consider (24). We can express (24) as the solution to the problem

min
τ

L2τ (26)

subject to

T−1/2(I − G(H0 + �H))T (I − G(H0 + �H))T−1/2 � τ I, ∀�H : ‖�H‖ ≤ ρH.

(27)

By Schur’s complement (see Lemma 7 in the appendix), the constraint (27) is equivalent
to
(

τ I T−1/2(I − G(H0 + �H))T

(I − G(H0 + �H))T−1/2 I

)

� 0, ∀�H : ‖�H‖ ≤ ρH.

(28)

Now, (28) can be rewritten equivalently as

R � PT �HQ + QT �T
HP, ∀�H : ‖�H‖ ≤ ρH, (29)

where

R =
(

τ I T−1/2(I − GH0)
T

(I − GH0)T−1/2 I

)

P = (

0 GT
)

Q = (

T−1/2 0
)

.

We now use Lemma 2, which states that (29) is satisfied if and only if there exists a
λ ≥ 0 such that





τ I − λT−1 T−1/2(I − GH0)
T 0

(I − GH0)T−1/2 I −ρHG
0 −ρHGT λI



 � 0. (30)
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To summarize, problem (21) reduces to

min
τ,λ,G

{

Tr(GC0GT ) + ρC

√

Tr(GGT GGT ) + L2τ
}

(31)

subject to (30). Obviously, (31) subject to (30) is equivalent to:

min
τ,λ,t1,t2,G

{t1 + ρCt2 + L2τ } (32)

subject to





τ I − λT−1 T−1/2(I − GH0)
T 0

(I − GH0)T−1/2 I −ρHG
0 −ρHGT λI



 � 0 (33)

Tr(GC0GT ) ≤ t1 (34)
√

Tr(GGT GGT ) ≤ t2. (35)

Denoting g = vec(GC1/2
0 ), we obtain that constraint (34) is equivalent to gT g ≤ t1,

which is the same as
(

t1 gT

g I

)

� 0

Finally, constraint (35) can be expressed as a set of two constraints:

GT G � X,
√

Tr(XT X) ≤ t2,

which, by Schur’s complement (Lemma 7 in the appendix ), are the same as

(

X GT

G I

)

� 0,

(

t2 xT

x t2I

)

� 0

and the proof is completed. 
�

4. Examples for the Single Signal Case

In this section we illustrate the results of Section 3 through some examples. The first
example shows that in the case where H and C are known, the RMSE estimator is better
than the common LS estimator even if we do not have a priori knowledge on L. In the
second example, we consider the case where C is known and H is uncertain and we
compare the RMSE estimator to the TLS estimator. We show that the RMSE estimator
outperforms the TLS estimator in the case where L and ρH are not known but rather are
estimated from the TLS result. The third example will illustrate the robustness of the
RMSE estimator with respect to H and the last example will illustrate the robustness
of the RMSE estimator with respect to C . The SDP programs needed to compute the
RMSE estimator (see Theorem 1) where solved by SeDuMi (see [27]).
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4.1. Known H and C

In this subsection we present a typical example demonstrating that, even when H and C
are certain, the estimation error associated with minimizing the worst case MSE (mini-
max MSE estimator) is consistently smaller than the corresponding error associated with
the LS estimator x̂LS . No a priori knowledge is assumed on L, the upper bound on the
signal norm. Instead, L is estimated from the LS solution itself, i.e., L = ‖x̂LS‖, as
discussed in [4]. Let

H0 =

















1 0 0 0
0.6 1 0 0
0.3 0.6 1 0
0.2 0.3 0.6 1
0 0.2 0.3, 0.6
0 0 0.2 0.3

















, C0 = σ 2I, T = I. (36)

H0 of the above structure represents typically a convolution with an LTI filter. The signal
x has a norm 5 and was randomly generated from the uniform distribution of all vectors
of norm 5. We compare two estimators:

1. The Least Squares estimator (LS), which is given by

x̂LS = (HT
0 C−1

0 H0)
−1HT

0 C−1
0 y.

2. The minimax MSE estimator (MMSE) with known H and C. This estimator is of
the form x̂ = Gy, where G is the solution to the SDP problem in Theorem 1
with ρH = ρC = 0, and in the case T = I reduces to αx̂LS where α = L2/(L2 +
Tr((H∗

0C−1
0 H0)

−1)). We estimate L as the norm of the LS estimator i.e.,̂L = ‖x̂LS‖.

For each of the estimation methods, we calculated the MSE. In Fig. 2 we plot the
MSE averaged over 1000 noise realizations as a function of σ . The noise vectors where
generated from a multivariate normal distribution with zero mean and covariance matrix
C0.

From Fig. 2 it is clear the the MMSE estimator is better than the LS estimator and
more so as the variance grows.

4.2. Comparison of RMSE and TLS with Known C and Uncertain H

In this subsection we consider the case in which C is known (ρC = 0) and H is uncertain.
H0, C0 and T are defined as in (36). The signal x has a norm 5 and was randomly gener-
ated from the uniform distribution of all vectors of norm 5. We compare two estimators:

1. The Total Least Squares estimator (TLS). The TLS problem seeks to minimize
‖(H0; y)−(Ĥ; ŷ)‖ subject to ŷ ∈ R(Ĥ). Once a minimizing pair (Ĥ; ŷ) is found, the
estimator x̂T LS is defined to be the solution to Ĥx = ŷ (see e.g., [21] and references
within).

2. The RMSE estimator with ρC = 0, ρH = ‖Ĥ − H0‖ and L = ‖x̂T LS‖, which is the
solution of the SDP problem in Theorem 1.
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Fig. 2. MSE as a function of σ for the LS and MMSE estimators with known H and C and unknown L

H was chosen to be H = H0 + �H, where �H was randomly generated from the
uniform distribution of all 6 × 4 matrices of norm 0.5. �H and x remain fixed in all
noise realizations. For each of the estimation methods, we calculated the MSE. In Fig. 3
we plot the MSE averaged over 400 noise realizations as a function of σ . The noise
vectors where generated from a multivariate normal distribution with expectation zero
and covariance matrix C0.

The results show that the RMSE estimator significantly outperforms the TLS esti-
mator. It is interesting to note that for large values of σ the TLS solution becomes very
unstable. For example, for σ = 2 the MSE of the RMSE estimator was 19.6 and the
MSE of the TLS solution was 254.7(!).

4.3. Robustness of the RMSE Estimator with respect to H

In this subsection we demonstrate the robustness of RMSE with respect to H. In our
example

H0 =

















a 0 0 0
0.4 a 0 0
0.6 0.4 a 0
1 0.6 0.4 a

0 1 0.6, 0.4
0 0 1 0.6

















, C0 = 0.52I, T = I, L = 10, ρH = 0.02. (37)
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Fig. 3. MSE as a function of σ for the TLS and RMSE with unknown H

The signal x has a norm 10 and was randomly generated from the uniform distribution
of all vectors of norm 10. Suppose that the real value of H is

H =

















0.95a 0 0 0
0.4 0.95a 0 0
0.6 0.4 0.95a 0
1 0.6 0.4 0.95a

0 1 0.6, 0.4
0 0 1 0.6

















, (38)

We calculated the MSE for the LS estimator and for the RMSE estimator by averaging
over 1000 realizations of the noise vector. The results are summarized in the table below.

a σ4(H0) MSE sd maximum

LS RMSE LS RMSE LS RMSE

0.02 0.104 21.93 34.71 29.75 7.93 273.7 91.9
0.06 0.073 46.69 58.27 65.55 6.55 603.6 107.5
0.10 0.051 102.86 81.14 133.09 3.16 845.8 97.5
0.14 0.045 132.0 85.35 189.93 2.45 1468.5 105.6

σ4(H0) is the smallest singular value of H0, which is equal to
√

λmin(HT
0 H0). The

parameter a controls the ill-posedness of the problem: as it grows the problem becomes
more ill-posed. sd is the standard deviation of the squared error and maximum is the
maximum (over the 1000 realizations of the noise) of the squared error. Observing sd
and maximum in the table, the results clearly demonstrate the severe instability of the
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LS estimator in face of uncertainty in H, and on the other hand the robustness of the
RMSE estimator. Notice also that for the more severe ill-posedness cases (a ≥ 0.10),
the RMSE estimator has even a smaller MSE compared to the LS estimator.

4.4. Robustness of the RMSE Estimator with respect to C

In this subsection we demonstrate the robustness of the RMSE estimator with respect
to the covariance matrix C. In our example H0 is defined as in (36), T = I, ρH = 0,
ρC = 0.7 and L = 6. The signal x has a norm 6 and was randomly generated from
the uniform distribution of all vectors of norm 6. The nominal value of the covariance
matrix C0 and the actual value of the covariance matrix C are given by

C0 =

















1 + a 1 1 1 1 1
1 1 + a 1 1 1 1
1 1 1 + a 1 1 1
1 1 1 1 + a 1 1
1 1 1 1 1 + a 1
1 1 1 1 1 1 + a

















,

C =

















1 + 0.5a 1 1 1 1 1
1 1 + 0.5a 1 1 1 1
1 1 1 + 0.5a 1 1 1
1 1 1 1 + 0.5a 1 1
1 1 1 1 1 + 0.5a 1
1 1 1 1 1 1 + 0.5a

















.

We calculated the MSE for the LS estimator and for the RMSE estimator by averaging
over 1000 realizations of the noise vector. The results are summarized in the table below

a MSE sd maximum

LS RMSE LS RMSE LS RMSE

0.1 7.86 21.59 10.49 1.37 81.86 28.82
0.2 17.03 23.22 23.77 6.4 218.98 37.28
0.3 23.39 24.34 31.32 6.4 258.5 35.75
0.4 33.93 25.5 46.1 8.24 437.98 44.97
0.5 42.73 26.36 58.98 8.42 444.53 44.66

The same phenomena encountered in the case where H was uncertain are present
in the case where C is uncertain. The RMSE becomes increasingly better than the LS
estimator as a grows. The robustness of the RMSE estimator and the non robustness of
the LS estimator is evident from the table.

5. The Multiple Signals Estimation Problem

In this part we consider the problem of estimating N unknown deterministic parameter
vectors xk ∈ R

m, 0 ≤ k ≤ N − 1 from N vector observations yk ∈ R
n, 0 ≤ k ≤ N − 1,



Robust Mean-Squared Error Estimation 17

where each observation vector yk is related to the corresponding parameter vector xk

through the linear model

yk = Hxk + wk, 0 ≤ k ≤ N − 1. (39)

Here H is an n × m matrix, and wk, 0 ≤ k ≤ N − 1 are zero-mean random noise
vectors with covariance matrix C = E(wkwT

k ) and cross correlation B = E(wkwT
l ) .

The system (39) can be written as

y = ˜Hx + w, (40)

where ˜H is the nN × mN matrix defined by:

˜H
�=











H 0 · · · 0
0 H · · · 0
...

...
...

0 0 · · · H











,

y = (yT
0 , . . . , yT

N−1)
T , x = (xT

0 , . . . , xT
N−1)

T and w = (wT
0 , . . . , wT

N−1)
T . The covari-

ance matrix of the expended vector w is denoted by ˜C
�=E(wwT ) and is given by the

following nN × nN matrix:

˜C =











C B · · · B
B C · · · B
...

...
...

B B · · · C











. (41)

As in the single signal case, we assume that the model matrix and the noise statistics
are not known exactly. Specifically, we assume that H and ˜C belong to some uncer-
tainty sets UH and U

˜C respectively. As was mentioned in the introduction, we impose
the following natural assumption on U

˜C:

Assumption A. U
˜C contains only PSD elementary block circulant matrices.

Consider the case where H and C are known. Clearly, if the noise vectors were
uncorrelated (i.e., B is the zero matrix 0) then we can treat our estimation problem as
N independent single signal problems, where each problem reduces to the problem,
considered in [11], of estimating an unknown vector x̃ from observations ỹ = Hx̃ + w̃
subject to the constraint that ‖x̃‖T ≤ L, where w̃ is a zero-mean noise vector. If, on the
other hand, the noise vectors are correlated, then we may be able to improve the estima-
tion performance by treating the vectors to be estimated jointly, since the estimator x̂k

of xk may depend on all the observations yl , 0 ≤ l ≤ N − 1, and not just on yk .
We estimate x using a linear estimator

x̂ = Gy, (42)
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where G is an mN × nN matrix. Thus, the optimization problem we aim to solve is

min
G

max
‖xi‖T≤L,H∈UH,˜C∈U

˜C

E(‖x̂ − x‖2)

= min
G

max
‖xi‖T≤L,H∈UH,˜C∈U

˜C

{

xT (I − G˜H)T (I − G˜H)x + Tr(G˜CGT )
}

. (43)

One of the main results, proven in Section 6, is that an optimal matrix G, can be
chosen to have a very unique structure. Specifically, we find that G can be chosen to be
a block matrix of the form

G =











G0 G1 · · · G1
G1 G0 · · · G1
...

...
...

G1 G1 · · · G0











. (44)

Matrices of the structure (44) are called elementary block circulant matrices and are a
special case of block circulant matrices (seeAppendixA for further details) . Substituting
(44) in (42) we have that the optimal linear estimator has the following structure:

x̂k = G0yk +
∑

i �=k

G1yi , 0 ≤ k ≤ N − 1. (45)

The latter formula implies the intuitively appealing result that all the vectors yl, l �= k

have the same effect on the estimator of xk . The structure (44) suggests a considerable
computational simplification of the solution to (43) since we need to find only two n×m

matrices G0, G1 rather then a huge mN × nN matrix G.

6. The Structure of the Optimal Linear Estimator Matrix G: General
Uncertainty Sets

In this section UH is an arbitrary uncertainty set and U
˜C is assumed to satisfy assumption

A but otherwise no specific structure of UH and U
˜C is assumed. In Theorem 2 below, we

show that the optimal linear estimator x̂ = Gy solving problem (43) can be chosen with
G being an elementary block circulant matrix.

Theorem 2. Let x = (

xT
0 , xT

1 , . . . , xT
N−1

)T
denote the unknown parameters in the model

y = ˜Hx + w, where ˜H = M(H, 0) and H is an n × m matrix that belongs to an uncer-
tainty set UH, w is zero-mean random vector with an nN × nN covariance matrix ˜C
that belongs to an uncertainty set U

˜C satisfying assumption A. If there exists an optimal
solution to

min
G

max
‖xi‖T≤L,H∈UH,˜C∈U

˜C

E(‖x̂ − x‖2)

= min
G

max
‖xi‖T≤L,H∈UH,˜C∈U

˜C

{

xT (I − G˜H)T (I − G˜H)x + Tr(G˜CGT )
}

,

then there exists an optimal solution G which is equal to M(G0, G1) for some G0, G1 ∈
R

m×n.



Robust Mean-Squared Error Estimation 19

Proof. Before we begin the proof, we introduce some notation. The set of all permu-
tations of {0, 1, . . . , N − 1} is denoted by SN . For every permutation σ ∈ SN and a
positive integer l, we associate an lN × lN matrix Pσ,l comprised of N × N blocks of
size l × l. The (i, j) block of Pσ,l is defined as:

(Pσ,l)i,j = δj,σ (i)Il , (46)

where

δi,j =
{

0, i �= j,

1, i = j
(47)

is the kronecker delta. For example, if N = 4 and σ(0) = 1, σ (1) = 0, σ (2) = 2 and
σ(3) = 3, then,

Pσ,4 =









0 I4 0 0
I4 0 0 0
0 0 I4 0
0 0 0 I4









, (48)

where I4 is the identity matrix of size 4 × 4. Permutation matrices Pσ,l satisfy some
interesting properties that will be useful later on in the proof:

1. For every σ ∈ SN and positive integer l, Pσ,lPT
σ,l = PT

σ,lPσ,l = I.

2. For every σ ∈ SN and for every block vector x = (xT
0 , . . . , xT

N−1)
T , Px = y where

yk = xσ(k), 0 ≤ k ≤ N − 1. (49)

3. For every elementary block circulant matrix A = M(A0, A1), where A0, A1 ∈ R
m,n

and every permutation σ ∈ SN , we have that Pσ,mAPT
σ,n = A, or equivalently,

Pσ,mA = APσ,n.

We are now ready to prove that there is an optimal G which is elementary block circ-
ulant. Let G be an optimal solution to (43), we claim that so is Pσ,mGPT

σ,n for every
permutation σ ∈ SN . To this end we prove that 
(G) = 
(Pσ,mGPT

σ,n) where


(G) = max
‖xi‖T≤L,H∈UH,˜C∈U

˜C

{

xT (I − G˜H)T (I − G˜H)x + Tr(G˜CGT )
}

(50)

is the objective function in the minimization problem (43). Indeed, (the number of the
property used is indicated):

Tr(G˜CGT )
1= Tr(PT

σ,mPσ,mG˜CGT )

= Tr(Pσ,mG˜CGT PT
σ,m)

3= Tr(Pσ,mGPT
σ,n
˜CPσ,nGT PT

σ,m)

= Tr((Pσ,mGPT
σ,n)

˜C(Pσ,mGPT
σ,n)

T ),
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and,

max
‖xi‖T≤L,˜C∈U

˜C

{xT (I − G˜H)T (I − G˜H)x}

2= max
‖xi‖T≤L,H∈UH,˜C∈U

˜C

{xT PT
σ,m(I − G˜H)T (I − G˜H)Pσ,mx}

1= max
‖xi‖T≤L,H∈UH,˜C∈U

˜C

{xT PT
σ,m(I − G˜H)T PT

σ,mPσ,m(I − G˜H)Pσ,mx}

1= max
‖xi‖T≤L,H∈UH,˜C∈U

˜C

{xT (I − Pσ,mG˜HPT
σ,m)T (I − Pσ,mG˜HPT

σ,m)x}

3= max
‖xi‖T≤L,H∈UH,˜C∈U

˜C

{xT (I − (Pσ,mGPT
σ,n)

˜H)T (I − (Pσ,mGPT
σ,n)

˜H)x},

where in the last equality we used the fact that˜H is a block diagonal matrix and as a result
also a elementary block circulant matrix. Since (43) is a convex optimization problem,
if Pσ,mGPT

σ,n is an optimal solution to (43) for all σ ∈ SN , then so is the convex com-

bination 1
N !

∑

σ∈SN
Pσ,mGPT

σ,n. We will now show that ˜G
�= 1

N !

∑

σ∈SN
Pσ,mGPT

σ,n =
M(G0, G1) for some matrices G0, G1 ∈ R

m×n. Specifically, we will show that if

G =











G00 G01 · · · G0,N−1
G10 G11 · · · G1,N−1
...

...
...

GN−1,0 GN−1,1 · · · GN−1,N−1











, (51)

then

G0 = 1

N

N−1
∑

i=0

Gi,i ,

G1 = 1

N(N − 1)

∑

i �=j

Gi,j .

Indeed, for every σ ∈ SN we have

(Pσ,mGPT
σ,n)i,j = Gσ−1(i),σ−1(j)

As a result,

˜Gi,j = 1

N !

∑

σ∈SN

Gσ−1(i),σ−1(j). (52)

Suppose that i �= j . For every k �= l, the number of times the expression Gk,l occurs
in (52) is equal to the number of permutation σ ∈ SN that satisfy σ−1(i) = k and
σ−1(j) = l which is (N-2)!. Thus,

˜Gi,j = 1

N !

∑

k �=l

(N − 2)!Gk,l = 1

N(N − 1)

∑

k �=l

Gk,l
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Thus, ˜Gi,j is the same matrix for every i �= j which is precisely the matrix G1 above.
A similar argument proves that ˜Gi,i = G0, completing the proof of the theorem. 
�

7. SDP Formulation of the Multiple Signals Estimation Problem: Ellipsoidal-like
Uncertainty Sets

In Section 6 we have shown that under Assumption A, but otherwise regardless of the
specific choice of the uncertainty sets UH and U

˜C, the RMSE estimator matrix G can be
chosen to be a elementary block circulant matrix. In this section we deal with the case
where UH is an ellipsoidal-like set (see (17)). As for U

˜C, we deal with the case where no
uncertainty is associated with the cross correlation matrix E(wiwT

j ), i �= j . Thus, the

uncertainty set U
˜C is of the form2:

U
˜C = {M(C, B0) : C ∈ UC}

where UC is defined as in (16). We also assume that the nominal value of the covariance
matrix ˜C is a positive definite matrix. i.e.,

Assumption B. M(C0, B0) is a positive definite matrix.

We will show that in this setting of the uncertainty governing H and ˜C, the problem of
computing the solution G to problem (43), can be formulated as an SDP problem.

Notice that in general, the inner maximization problem in (43)

max
‖xi‖T≤L

{

xT (I − G˜H)T (I − G˜H)x
}

, (53)

is an NP-hard problem. Indeed, even in the simplest instance of problem (53)

max{xT Rx : |xi | ≤ 1, i = 0, . . . , N − 1}
is already NP-Hard. However, by exploiting the special structure of G and ˜H, we will
be able to solve (53) efficiently.

Since G and ˜H are both elementary block circulant matrices, it follows immediately
that (I − G˜H)T (I − G˜H) is also an elementary block circulant matrix. Therefore, there
exists S0, S1 ∈ R

m×m such that

(I − G˜H)T (I − G˜H) = M(S0, S1), (54)

and M(S0, S1) is a symmetric matrix. Notice that if we define S2, S3, . . . , SN−1 to be
equal to S1 then we have

M(S0, S1) = C(S0, S1, . . . , SN−1). (55)

Using (54) and (55), (53) can be expressed as:

max
‖xi‖T≤L

xT C(S0, S1, . . . , SN−1)x. (56)

The following lemma is the key result which enables us to solve the maximization
problem (53).

2 This structure of U
˜C was motivated in the introduction.
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Lemma 3. Let S0, S1, . . . , SN−1 ∈ R
m×m be matrices such that C(S0, S1, . . . , SN−1)

is a symmetric matrix. Let T be a positive definite matrix and let L > 0 be a constant.
Then,

max
‖xi‖T≤L

xT C(S0, . . . , SN−1)x = max
∑N−1

i=0 ‖xi‖2
T≤NL2

xT C(S0, . . . , SN−1)x.

Furthermore,

max
‖xi‖T≤L

xT C(S0, . . . , SN−1)x

= NL2 max
0≤j≤N−1

{

λmax

(

T−1/2

(

N−1
∑

i=0

ωij Si

)

T−1/2

)}

, (57)

where ω = e− 2π i
N .

Proof. By making the change of variables zk = T1/2xk we have:

max
‖xi‖T≤L

xT C(A0, . . . , AN−1)x = max
‖zi‖≤L

zT C(Ã0, . . . , ÃN−1)z (58)

where Ãj = T−1/2Aj T−1/2 0 ≤ j ≤ N − 1 . If we relax the constraint set of our
maximization problem, then we obtain the following simple relation:

max
‖zi‖≤L

zT C(Ã0, . . . , ÃN−1)z
︸ ︷︷ ︸

(P1)

≤ max
‖z‖2≤NL2

zT C(Ã0, . . . , ÃN−1)z

︸ ︷︷ ︸

(P2)

. (59)

The value of the solution of (P2) is NL2λmaxC(Ã0, . . . , ÃN−1) and it is attained at
an eigenvector of C(Ã0, . . . , ÃN−1) with square norm of NL2. But, from Remark 2
following Theorem 4, we infer that for every eigenvalue we can find a corresponding
eigenvector z of square norm NL2 that satisfies ‖z0‖ = ‖z1‖ = · · · = ‖zN−1‖ = L.
From this it follows that val(P1) = val(P2) and that the optimal value of (P1) is equal
to

NL2λmax(C(Ã0, . . . , ÃN−1))
Theorem 4= NL2 max

0≤j≤N−1

{

λmax

(

N−1
∑

i=0

ωij Ãi

)}

= NL2 max
0≤j≤N−1

{

λmax

(

T−1/2

(

N−1
∑

i=0

ωij Ai

)

T−1/2

)}

, (60)

completing the proof. 
�

The next Theorem is the main result of this section. It states that the problem of find-
ing the RMSE estimator matrix can be formulated as an SDP problem, which moreover,
is of a size independent of the number of input vectors N .
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Theorem 3. Let x = (xT
0 , xT

1 , . . . , xT
N−1)

T denote the vector of unknown parameters
in the model y = ˜Hx + w, where ˜H = M(H, 0) with H being an n × m matrix, and w
a zero-mean random vector with covariance ˜C = M(C, B0). Consider the uncertainty
sets

UH = {H0 + �H : ‖�H‖ ≤ ρH},
UC = {C0 + �C : ‖�C‖ ≤ ρC, �C = �T

C, C0 + �C � 0},
and assume that M(C0, B0) is a PSD matrix. Then the optimal matrix G that solves

min
G

max
‖xi‖T≤L,H∈UH,C∈UC

{

xT (I − G˜H)T (I − G˜H)x + Tr(G˜CGT )
}

(61)

is equal to M(G0, G1), with G0 = 1
N

(A0 + (N − 1)A1) and G1 = 1
N

(A0 − A1), where
A0 and A1 are the optimal solutions of the following SDP problem in the variables
τ, λ0, λ1, t0, t1, t2 ∈ R, A0, A1 ∈ R

m×n and X, Y, Z ∈ R
n×n:

min
A0,A1,X,Y,Z,τ,λ0,λ1,t0,t1,t2

{NL2τ + t0 + (N − 1)t1 + ρCt2}

subject to




τ I − λiT−1 T−1/2(I − AiH0)
T 0

(I − AiH0)T−1/2 I −ρHAi

0 −ρHAT
i λiI



 � 0, i = 0, 1

(

ti aT
i

ai I

)

� 0, i = 0, 1,

(

Y AT
0

A0 I

)

� 0,

(

Z AT
1

A1 I

)

� 0,

Y + (N − 1)Z � X,
(

t2 xT

x t2I

)

� 0,

where a0 = vec(A0(C0 + (N −1)B0)
1/2), a1 = vec(A1(C0 −B0)

1/2) and x = vec(X).

Proof. First, note that the expression
∑N−1

i=0 ωij Si , which appears in (57), is exactly
F j ((I − G˜H)T (I − G˜H)). By the properties listed in Lemma 5, we can deduce that for
every 0 ≤ j ≤ N − 1,

N−1
∑

i=0

ωij Si = F j ((I − G˜H)T (I − G˜H))

= F j

(

(I − G˜H)T
)

F j

(

I − G˜H
)

= (F j (I) − F j (G)F j (˜H)
)T (F j (I) − F j (G)F j (˜H)

)

= (

I − F j (G)F j (˜H)
)T (

I − F j (G)F j (˜H)
)

. (62)
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Since ˜H = M(H0 + �H, 0) we have that

F j (˜H) = H0 + �H (63)

for every 0 ≤ j ≤ N − 1. Also, by (84) and (85) the following holds

F j (G) =
{

G0 + (N − 1)G1 j = 0
G0 − G1 1 ≤ j ≤ N − 1

(64)

Thus, substituting (62), (63) and (64) into (57) we conclude that

max
‖xi‖T≤L

xT (I − G˜H)T (I − G˜H)x = NL2 max{α(�H), β(�H)}, (65)

where

α(�H) = λmax

(

T−1/2(I − A0(H0 + �H))T (I − A0(H0 + �H)T−1/2
)

,

β(�H) = λmax

(

T−1/2(I − A1(H0 + �H))T (I − A1(H0 + �H)T−1/2
)

,

and

A0 = G0 + (N − 1)G1,

A1 = G0 − G1.

The inner maximization problem of (61) is the sum of two independent maximization
problems:

max
‖�H‖≤ρH

NL2 max{α(�H), β(�H)} (66)

and

max
‖�C‖≤ρC,�C=�T

C,C0+�C�0
Tr(G˜CGT ). (67)

First, the maximization problem (66) can be expressed as

min NL2τ

s.t.

T−1/2(I − Ai (H0 + �H))T (I − Ai (H0 + �H))T−1/2 � τ I ∀�H : ‖�H‖ ≤ ρH

i = 0, 1.

As in the proof of Theorem 1, the constraints of the above minimization problem can be
expressed as





τ I − λiT−1 T−1/2(I − AiH0)
T 0

(I − AiH0)T−1/2 I −ρHAi

0 −ρHAT
i λiI



 � 0, i = 0, 1.
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Now, the objective function of (67) can also be simplified. Since G and ˜C are ele-
mentary block circulant then so is G˜CGT . That is, there exists R0 and R1 such that
G˜CGT = M(R0, R1). Thus, Tr(G˜CGT ) = NTr(R0). Furthermore,

Tr(G˜CGT ) = NTr(R0)

(81)= NTr(F−1
0 (F(G˜CGT )))

=
N−1
∑

j=0

Tr(F j (G˜CGT ))

=
N−1
∑

j=0

Tr(F j (G)F j (˜C)F j (G)T )

F j (̂C)=C=
N−1
∑

j=0

Tr(̂Gj
̂Cj
̂GT

j )

= Tr(A0(C + (N − 1)B0)AT
0 ) + (N − 1)Tr(A1(C − B0)AT

1 )

Substituting C = C0 + �C we obtain

Tr(G˜CGT ) = Tr(A0(C0 + (N − 1)B0)AT
0 ) + (N − 1)Tr(A1(C0 − B0)AT

1 )

+Tr(�C(AT
0 A0 + (N − 1)AT

1 A1)).

From Lemma 1 we have:

max
‖�C‖≤ρC,�C=�T

C,C0+�C�0
Tr(G˜CGT ) = Tr(A0(C0 + (N − 1)B0)AT

0 )

+(N − 1)Tr(A1(C0 − B0)AT
1 )

+
√

Tr
(

(AT
0 A0 + (N − 1)AT

1 A1)2
)

Thus, (43) can be expressed as

min
A0,A1,τ,λ0,λ1,t0,t1,t2

{NL2τ + t0 + (N − 1)t1 + ρCt2}

subject to




τ I − λiT−1 T−1/2(I − AiH0)
T 0

(I − AiH0)T−1/2 I −ρHAi

0 −ρHAT
i λiI



 � 0, i = 0, 1

Tr(A0(C0 + (N − 1)B0)AT
0 ) ≤ t0

Tr(A1(C0 − B0)AT
1 ) ≤ t1

√

Tr
(

(AT
0 A0 + (N − 1)AT

1 A1)2
) ≤ t2.

By Schur’s complement (Lemma 7 in the appendix), the constraints:

Tr(A0(C0 + (N − 1)B0)AT
0 ) ≤ t0, Tr(A1(C0 − B0)AT

1 ) ≤ t1
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are equivalent to
(

ti aT
i

ai I

)

� 0, i = 0, 1,

where a0 = vec(A0(C0 + (N − 1)B0)
1/2) and a1 = vec(A1(C0 − B0)

1/2). Finally, the
constraint

√

Tr
(

(AT
0 A0 + (N − 1)AT

1 A1)2
) ≤ t2

is equivalent to the following set of constraints:

AT
0 A0 � Y, (68)

AT
1 A1 � Z, (69)

Y + (N − 1)Z � X
√

Tr(XT X) ≤ t2 (70)

Constraints (68), (69) and (70) can be expressed as
(

Y AT
0

A0 I

)

� 0, i = 0, 1,

(

Z AT
1

A1 I

)

� 0, i = 0, 1,

(

t2 xT

x t2I

)

� 0,

where x = vec(X). The proof of the theorem is completed. 
�
Example: We now demonstrate the RMSE estimator in the multiple signals scenario.
H0 and H are defined as in (37) and (38) respectively. We consider the case where
N = 20, L = 5, ρH = 0.06 and ρC = 0.3. The nominal noise covariance matrix is
given by

˜C = M(C0, B0),

where

C0 =

















2 1 1 1 1 1
1 2 1 1 1 1
1 1 2 1 1 1
1 1 1 2 1 1
1 1 1 1 2 1
1 1 1 1 1 2

















, B0 = tI6

The “real” covariance matrix is given by M(C, B0) where C = C0 − 0.1I6. t is
a parameter that quantifies the amount of correlation between the noise vectors. In our
numerical experiments we considered the values t = 0.1 (weak correlation) and t = 0.8
(strong correlation). x = (xT

0 , xT
1 , . . . , xT

19)with subvectors xi satisfying‖x0‖ = ‖x1‖ =
· · · = ‖x19‖ = 5. L is defined to be 5. We considered three estimation methods:
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1. JOI - The RMSE estimator that jointly estimates x0, x1, . . . , x19. This estimator is of
the form x̂ = GJ y, where GJ is the solution to the SDP problem in Theorem 3.

2. SIN - The RMSE estimator that estimates xi for every 0 ≤ i ≤ 19 separately. This
estimator is of the form x̂i = GSyi , where GS is the solution to the SDP problem in
Theorem 1.

3. LS - The LS estimator corresponding to the system (40):

xLS = (˜HC−1
˜H)−1

˜HT C−1y.

We calculated the MSE for the LS, SIN and JOI estimators by averaging over 1000
realizations of the noise vector. The results are summarized in the table below

a t σ4(H0) MSE sd maximum

LS SIN JOI LS SIN JOI LS SIN JOI

0.8 0.1 0.61 117.6 101.6 101.2 28.6 23.3 21.8 249.1 207.5 204.3
0.4 0.1 0.25 418 257.5 252.7 143.8 50.6 41.6 1197.2 536.1 488.6
0.2 0.1 0.08 3361 484.5 450.9 1300 10 7.7 9088.4 515.2 510.2
0.8 0.8 0.61 114.3 98.1 85.6 96.89 74.68 68.42 1160.4 858 745.3
0.4 0.8 0.25 421.8 259.1 225.3 483.8 152.9 118.4 4152 1416 1181.3
0.2 0.8 0.08 2994 483.5 449.5 4112 21.1 16.3 36266 596 566

The same phenomena encountered in the single signal case is present here. Both SIN
and JOI become increasingly better than the LS estimator as a grows and the problem
becomes more ill-posed. The robustness of the RMSE estimator and the non robustness
of the LS estimator are evident from the table.

Moreover, as was expected, for t = 0.1 (weak correlation) JOI is only slightly better
than SIN and in the case t = 0.8, the advantage of JOI over SIN is more significant.

Appendix

A. Block Circulant Matrices and the Discrete Fourier Transform

Results on the eigen-structure of block circulant matrices proved to be essential for the
study of multiple signals systems, see [2], and they are likewise essential in our study.
For the sake of completeness we give in this appendix a short summary of those results
that are needed to prove the main results in sections 6 and 7.

A block circulant matrix is a matrix of the form

C(A0, A1, . . . , AN−1)
�=











A0 A1 · · · AN−1
AN−1 A0 · · · AN−2

...
...

...

A1 A2 · · · A0











, (71)

where each submatrix Aj is a k × l matrix. The dimensions k and l will be clear from
the context and are not therefore part of the notation.
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A.1. General Properties

From the definition of block circulant matrices we have the following facts:

Lemma 4. Let A0, A1, . . . , AN−1 ∈ R
k×l and B0, B1, . . . , BN−1 ∈ R

l×m Then,

1. CT (A0, A1, . . . , AN−1) is also a block circulant matrix and

CT (A0, A1, . . . , AN−1) = C(AT
0 , AT

N−1, . . . , AT
1 ). (72)

2. The product C(A0, . . . , AN−1)C(B0, . . . , BN−1) is a block circulant matrix
C(C0, . . . , CN−1) where

Cj =
N−1
∑

i=0

Aj Bj−i , 0 ≤ j ≤ N − 1. (73)

Note, that in Lemma 4, as well as throughout the paper, the indexes are computed
modulo N . Thus, for example BN = B0 and B−1 = BN−1.

Remark 1. From equation (72) it follows that a block circulant matrix C(A0, A1, . . . ,

AN−1) where A0, . . . , AN−1 ∈ R
m×m is symmetric if and only if

AT
i = AN−i , ∀0 ≤ i ≤ N − 1. (74)

Let A = C(A0, A1, . . . , AN−1). Then the discrete fourier transform (DFT) of A
denoted by F(A) is the block circulant matrix of the same dimensions given by

F(A) = C(̂A0,̂A1, . . . ,̂AN−1), (75)

where ̂Aj , 0 ≤ j ≤ N − 1 is defined as:

̂Aj
�=

N−1
∑

i=0

ωij Ai , 0 ≤ j ≤ N − 1, (76)

and ω = e− 2π i
N (here i = √−1). In the sequel, we will also use the notation3

F j (A)
�=̂Aj =

N−1
∑

i=0

ωij Ai , 0 ≤ j ≤ N − 1. (77)

F j (A) are called the discrete fourier components. The inverse DFT (IDFT), denoted by
F−1, is defined by:

F−1(A) = (˜A0,˜A1, . . . ,˜AN−1), (78)

where

˜Aj = 1

N

N−1
∑

i=0

ω−ij Ai , 0 ≤ j ≤ N − 1. (79)

3 We use two notations for the DFT components; depending on the context one notation is better suited
than the other.
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We also use the notation

F−1
j (A)

�=˜Aj . (80)

It is not difficult to see that for every A = C(A0, . . . , AN−1) we have:

F−1(F(A)) = A, (81)

F(F−1(A)) = A. (82)

The following properties of F j are generalizations to the block circulant case of well
known properties of the DFT for circulant matrices:

Lemma 5. Let A, B and C be block circulant matrices:A = C(A0, A1, . . . , AN−1) ,
B = C(B0, B1, . . . , BN−1) and C = C(C0, C1, . . . , CN−1) where Aj , Cj ∈ R

k×l , Bj ∈
R

l×m, 0 ≤ j ≤ N − 1. Then for every 0 ≤ j ≤ N − 1 the following holds:

1. (F j (A))∗ = F j (A∗).

2. F j (ImN) = Im.

3. F j (A + C) = F j (A) + F j (C).

4. F j (AB) = F j (A)F j (B).

5. If k = l and A is invertible then F j (A−1) = (F j (A))−1.

An important special case of block circulant matrices are elementary block circulant
matrices, which are matrices of the form:

M(A0, A1)
�=C(A0, A1, . . . , A1) =











A0 A1 · · · A1
A1 A0 · · · A1
...

...
...

A1 A1 · · · A0











. (83)

In this case there are only two DFT components:

F0(M(A0, A1)) = A0 + (N − 1)A1, (84)

F j (M(A0, A1)) = A0 − A1, 1 ≤ j ≤ N − 1. (85)

It is also easy to see that there are only two inverse DFT components:

F−1
0 (M(A0, A1)) = 1

N
(A0 + (N − 1)A1), (86)

F−1
j (M(A0, A1)) = 1

N
(A0 − A1), 1 ≤ j ≤ N − 1. (87)
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A.2. Eigenvalues of Symmetric Block Circulant Matrices

In this subsection, we consider the eigenvalues and eigenvectors of a symmetric block
circulant matrix. We use the following notation: Let A ∈ R

k×k be a symmetric matrix,
a matrix U ∈ R

k×k is called an eigenvector matrix of A if its columns are linearly
independent eigenvectors of A. Theorem 4 below shows that the eigenvalues of a block
circulant matrix are exactly the eigenvalues of its discrete fourier components.

Theorem 4. Let A0, A1, . . . , AN−1 ∈ R
k×k be matrices such that A = C(A0, A1, . . . ,

AN−1) is a symmetric matrix (see (74)). For each 0 ≤ j ≤ N −1 let Uj be an eigenvec-

tor matrix of F j (A) = ∑N−1
i=0 ωij Ai , where ω = e− 2π i

N , and let λj,0, λj,1, . . . , λj,k−1
be the eigenvalues of F j (A). Then:

1. An eigenvector matrix of A is the matrix

U =











U0 U1 U2 · · · UN−1

U0 ωU1 ω2U2 · · · ωN−1UN−1
...

...
...

...

U0 ωN−1U1 ω2(N−1)U2 · · · ω(N−1)(N−1)UN−1











. (88)

2. The eigenvalues of A are the N · k eigenvalues λj,i , 0 ≤ i ≤ k − 1, 0 ≤ j ≤ N − 1.

Proof. First, let us establish that Uj exists for every 0 ≤ j ≤ N − 1. In order to show
this, we prove that the matrix ̂Aj = ∑N−1

i=0 ωij Ai is Hermitian. This then implies that
for every 0 ≤ j ≤ N − 1, ̂Aj has k independent eigenvectors with real eigenvalues.
Now,

(

N−1
∑

i=0

ωij Ai

)∗
=

N−1
∑

i=0

ωN−ij A∗
i

(74)=
N−1
∑

i=0

ω(N−i)j AN−i =
N−1
∑

i=0

ωij Ai , (89)

so that ̂Aj is Hermitian and as a result has an eigenvector matrix, which we denote by
Uj . From the definition of an eigenvector matrix we have that ̂Aj Uj = Uj D, where
D = Diag(λj,0, λj,1, . . . , λj,k−1). Now,

A











Uj

ωj Uj

...

ω(N−1)j Uj











=

















(
∑N−1

i=0 ωij Ai

)

Uj

ωj
(
∑N−1

i=0 ωij Ai

)

Uj

...

ω(N−1)j
(
∑N−1

i=0 ωij Ai

)

Uj

















=











Uj D
ωj Uj D

...

ω(N−1)j Uj D











, (90)

which implies that the columns of
(

UT
j ωj UT

j · · · ω(N−1)j UT
j

)T

are k eigenvectors

of A with eigenvalues λj,0, λj,1, . . . , λj,k−1.
The only fact left to prove is that the matrix (88) is invertible. Assume that










U0 U1 U2 · UN−1

U0 ωU1 ω2U2 · ωN−1UN−1
...

...
...

...

U0 ωN−1U1 ω2(N−1)U2 · · · ω(N−1)(N−1)UN−1





















α1
α2
...

αN











=











0
0
...

0











, (91)
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where αi ∈ R
k . Denoting xj = Ujαj for 0 ≤ j ≤ N − 1, (91) is equivalent to the set

of equations

x0 + x1 + · · · + xN−1 = 0
x0 + ωx1 + · · · + ωN−1xN−1 = 0
...

...
...

...

x0 + ωN−1x1 + · · · + ω(N−1)(N−1)xN−1 = 0

(92)

Since the Fourier matrix










1 1 1 · · · 1
1 ω ω2 · · · ωN−1

...
...

...
...

1 ωN−1 ω2(N−1) ω(N−1)(N−1)











is invertible we have xj = 0 for every 0 ≤ j ≤ N − 1 and so Uαj = xj = 0 which
implies that αj = 0 for every 0 ≤ j ≤ N − 1. The proof is completed. 
�
Remark 2. A direct result of the structure (88) of the eigenvector matrix U is the fact that
for each eigenvalue, there exists a corresponding eigenvector (a column of the matrix
U) whose subvectors all have the same norm.

A.3. Inversion of a Block Circulant Matrix

A direct consequence of Theorem 4 is that a block circulant matrix is invertible if and
only if all its discrete fourier components are invertible. This is evident from the fact
that a matrix is invertible if and only if it does not have a zero eigenvalue. In this case,
we can find an explicit expression for the inverse of the block circulant matrix using the
properties of the DFT listed in Lemma 5.

Lemma 6. Let A = C(A0, A1, . . . , AN−1) where A0, A1, . . . , AN−1 ∈ R
k×k . Then A

is invertible if and only if F j (A) are invertible for every 0 ≤ j ≤ N − 1. In that case,
B = A−1 is also a block circulant matrix B = C(B0, B1, . . . , BN−1) where

Bj = 1

N

N−1
∑

i=0

ω−ij (F i (A))−1, 0 ≤ j ≤ N − 1.

B. Known Results

Lemma 7 (Schur’s complement). Let

M =
(

A BT

B C

)

be a symmetric matrix with C � 0. Then M � 0 if and only if �C � 0, where �C is the
Schur complement of C in M and is given by

�C = A − BT C−1B.
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Lemma 8 (S-lemma). Let P(z) = zT Az + 2uT z + v and Q(z) = zT Bz + 2xT z + y

be two quadratic functions of z, where A and B are symmetric and there exists a z0
satisfying P(z0) > 0. Then the implication

P(z) ≥ 0 ⇒ Q(z) ≥ 0

holds true if and only if there exists an α ≥ 0 such that
(

B − αA x − αu
xT − αuT y − αv

)

� 0.
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