Mitigating Inter-Cell Coupling Effects in MLC NAND Flash via Constrained Coding

Amit Berman and Yitzhak Birk
{bermanam@tx, birk@ee}.technion.ac.il
Technion – Israel Institute of Technology
August, 2010
Agenda

 Problem Definition: Inter-Cell Coupling
 Related Work
 Novel Solution: Constrained Coding System
 An Example
 Conclusions
Inter-Cell Coupling

- FG-FG inter-cell coupling causes the charge in one cell to affect a neighboring cell’s threshold voltage.

Santa Clara, CA
August 2010
A. Berman and Y. Birk
When considering each cell in isolation, the observed phenomenon is a “widening” of the threshold voltage distributions.
Neglecting C_{FGXY}, and assuming $Q_{FG}=0$ the floating gate voltage due to ICC is:

$$V_{FG} = \frac{C_{ONO} V_{CG} + C_{FGX} (V_1 + V_2) + C_{FGY} (V_3 + V_4) + V_{FGCG} (V_5 + V_6)}{C_{TUN} + C_{ONO} + 2C_{FGX} + 2C_{FGY} + 2C_{FGCG}}$$
Coupling with Program & Verify

- Program & Verify:
 - Charge is added to a cell in small increments
 - V_t is checked after each addition
 - Programming ceases upon reaching the desired V_t

- Therefore, V_t of any given cell is affected only charge changes made to its neighbors after its own charging has been completed.

The effect of inter-cell coupling depends on the programming scheme.
Existing Coupling-Mitigation Schemes

- Proportional programming
 [Fastow et al, USP 6,996,004]

- Intelligent read decoding
 [Li et al, USP 7,301,839]
Proportional Programming

- Concurrent, incremental programming of all cells, tailored for near-simultaneous completion.

Pros:
- Desired V_t for all cells (altered only by the last pulse of each neighbor);
- Narrow distributions.
- Insensitive to coupling parameters.
- Simple read

Shortcomings:
- Complicated, possibly slow programming
- Can’t account for next line if programmed later
- Can’t fully compensate when “pull” is greater than desired level (would require negative “bias”)

A. Berman and Y. Birk
Intelligent Read Decoding [Li et al]

- Simple, conventional programming
- Based on coupling equations, parameters and on programming scheme, decode smartly to offset coupling effects.

Pros:
- Simple programming
- Overlapping distributions are separated by decoding

Cons:
- Must know coupling parameters; no variation allowed.
- Requires accurate reading of V_t
- Complex, slow read
Our Approach: Constrained Coding

- Forbid certain adjacent-cell level combinations:
 - Criterion depends on programming order
 - Threshold is a design trade-off
- Programming: use only permissible combinations (legal code words)
- Decoding: use inverse mapping
Constrained Coding – Main Features

- **Pros:**
 - Limits the effect of inter-cell coupling → narrow distributions → many levels
 - Fairly simply encoding and decoding
 - Only need to know an upper bound on coupling coefficients

- **Cons:**
 - Code rate <1 → some loss of capacity relative to ideal with narrow distributions.
Constrained Coding - Remarks

- Can easily be combined with ECC

- Complementary to the previous schemes and can be combined with them:
 - Semi-accurate programming + minimal restrictions
 - Some restrictions with simpler intelligent read decoding
Constrained Coding System

Source: 00101…

Constrained Encoder

All combinations available

Flash Memory

Constrained Decoder

Destination: 00101…

Decoder recovers original data
Example: 1-D, “Breadth 1st” Coding

- 1-D: a single row of cells is considered
- Programming (charge & verify)
 - All >0 cells programmed to level 1
 - All >1 cells programmed to level 2
 - …
- Sequence eligibility criterion:

\[
D(C) = \max \{ N_L - C, 0 \} + \max \{ N_R - C, 0 \} < T
\]

- \(T\) represents a trade-off:
 - Large \(T\): efficient coding, but wider distributions and fewer levels
 - Small \(T\): opposite pros and cons

\(N_L, C, N_R\): respective target levels
Required Redundancy (T=5,2 bpc)

\[\text{Redu}(S) = 1 - \lim_{l \to \infty} \frac{\log_2 N(l; S)}{l \log_2 n} = 0.0483 \]

• Notation:
 - \(N(l; S) \) - number of legal (permissible) \(l \)-symbol code words
 - \(n \) - number of program levels in a cell
 - \(S \) - language of all legal code words
• The required redundancy is (at least) 4.83%
Capacity Implication (T=5)

- Assumption: constrained coding permitted an increase in the number of levels from 4 to 5.

- Baseline: \(1.0 \cdot \log_2(4) = 2\)

- Constrained coding: \(0.95 \cdot \log_2(5) = 2.2 > 2\)

- A 10% increase in capacity
We build graph of the constraint language

- With 4 levels per cell, this example excludes the combinations (sequences) 3-0-3, 3-0-2 and 2-0-3.
For demonstration, consider code rate = 2/3
For this, we can build a lookup table and use it.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>031</td>
</tr>
<tr>
<td>01</td>
<td>131</td>
</tr>
<tr>
<td>02</td>
<td>331</td>
</tr>
<tr>
<td>03</td>
<td>321</td>
</tr>
<tr>
<td>10</td>
<td>301</td>
</tr>
<tr>
<td>11</td>
<td>300</td>
</tr>
<tr>
<td>12</td>
<td>310</td>
</tr>
<tr>
<td>13</td>
<td>311</td>
</tr>
<tr>
<td>20</td>
<td>021</td>
</tr>
<tr>
<td>21</td>
<td>121</td>
</tr>
<tr>
<td>22</td>
<td>210</td>
</tr>
<tr>
<td>23</td>
<td>211</td>
</tr>
<tr>
<td>30</td>
<td>221</td>
</tr>
<tr>
<td>31</td>
<td>231</td>
</tr>
<tr>
<td>32</td>
<td>200</td>
</tr>
<tr>
<td>33</td>
<td>201</td>
</tr>
</tbody>
</table>
The design can also be implemented with state machine. E.g., to exclude 3-0-3:

Design of encoder-decoder block (cont.)
Conclusions

- Constrained coding can be used to chop off the tail of V_t distributions with only a minor reduction in coding rate
- Can be used beneficially to increase capacity or to increase reliability
- Can replace proportional programming and intelligent decoding or complement them
- Detailed papers in preparation
- A patent application has been filed by Technion
End

Questions?

Amit Berman and Yitzhak Birk
{bermanam@tx, birk@ee}.technion.ac.il
Technion – Israel Institute of Technology
August, 2010