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Abstract

Motivated by a problem of transmitting data over
broadcast channels (Birk and Kol, INFOCOM 1998), we
study the following coding problem: a sender communi-
cates with n receivers R1, . . . , Rn. He holds an input
x ∈ {0, 1}n and wishes to broadcast a single message
so that each receiver Ri can recover the bit xi. Each
Ri has prior side information about x, induced by a di-
rected graph G on n nodes; Ri knows the bits of x in the
positions {j | (i, j) is an edge of G}. We call encoding
schemes that achieve this goal INDEX codes for {0, 1}n

with side information graph G.
In this paper we identify a measure on graphs, the

minrank, which we conjecture to exactly characterize
the minimum length of INDEX codes. We resolve the
conjecture for certain natural classes of graphs. For ar-
bitrary graphs, we show that the minrank bound is tight
for both linear codes and certain classes of non-linear
codes. For the general problem, we obtain a (weaker)
lower bound that the length of an INDEX code for any
graph G is at least the size of the maximum acyclic in-
duced subgraph of G.

1. Introduction

Source coding is one of the central areas of coding
and information theory. Shannon’s famous source cod-
ing theorem states that the average number of bits nec-
essary and sufficient to encode a source is equal (up to
one bit) to the entropy of the source. In many distributed
applications, though, the receiver may have some prior
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side information about x, before it is sent. Source coding
with side information addresses encoding schemes that
exploit the side information in order to reduce the length
of the code. Classical results in this area [16, 19, 18]
describe how to achieve optimal rates with respect to the
joint entropy of the source and the side information.

Witsenhausen [17] initiated the study of the zero-
error side information problem. For every source input
x ∈ X, the receiver gets an input y ∈ Y that gives some
information about x. This is captured by restricting the
pairs (x, y) to belong to a fixed set L ⊆ X×Y. Both the
sender and the receiver know L, and thus each of them,
given his own input, has information about the other’s
input. Witsenhausen showed that fixed-length side in-
formation codes were equivalent to colorings of a related
object called the confusion graph, and thus the logarithm
of the chromatic number of this graph tightly charac-
terizes the minimum number of bits needed to encode
the source. Further results by Alon and Orlitsky [2] and
Koulgi et al. [12] showed that graph-theoretic informa-
tion measures could be used to characterize both the av-
erage length of variable-length codes, as well as asymp-
totic rates of codes that simultaneously encode multiple
inputs drawn from the same source.

In this paper, we study a new variant of source coding
with side information, first proposed by Birk and Kol [6]
in the context of a server that disseminates a set of data
blocks (e.g., the daily newspaper) over a broadcast chan-
nel (e.g., satellite or coaxial cable) to a set of caching
clients. At the end of the main transmission, each client
possesses some subset of the transmitted blocks, be it
due to intermittent reception, “interest filters” or limited
storage capacity. Also, any given client is only interested
in some subset of the blocks, and requests retransmis-
sion of those blocks that it needs but does not possess.
There is no communication among clients, but a (slow)
“backward” channel can be used by a client to send re-
quests and metadata to the server. Each client requests
a subset of the data blocks, and advises the server of
the data blocks already available in its cache. Assum-
ing large blocks and in view of the fact that the amount



of metadata per block is independent of block size, the
challenge is to minimize the amount of supplemental in-
formation that must be broadcast by the server in order
to enable every client to derive all its requested blocks.

Birk and Kol [6] suggested the idea of coding on de-
mand by an informed source (ISCOD). With ISCOD, the
server uses its knowledge of the cache contents and re-
quested blocks of each client along with a systematic
erasure correcting code (e.g., Reed-Solomon) to derive
a set of supplemental data blocks that would jointly en-
able every client to derive its requested blocks. The
supplemental blocks are then transmitted. Each client
uses a subset of the received supplemental blocks along
with some of its cached blocks to derive its requested
block(s). Instance-specific upper bounds on the amount
of data that must be transmitted are presented, along
with some heuristic algorithms. The bounds are nev-
ertheless shown not to be tight. No lower bounds are
presented. Finally, [6] presents a two-way protocol for
exchanging control information between the server and
the clients.

A client may request multiple blocks. With a broad-
cast channel, however, this is equivalent to multiple
single-request clients, each with the same cache content
as the original one, and is so represented. In [6], it is
pointed out that when a given block is requested by mul-
tiple clients, the main communication savings is through
only transmitting it once. Both [6] and the current paper
only address the case of unique requests.

The above scenario is formalized as a source coding
with side information problem as follows (cf. [6]). There
is a sender who has an input x from a source alphabet
X (in this paper we confine ourselves to the alphabet
X = {0, 1}n). There are n receivers R1, . . . , Rn, where
for each i, Ri is interested in the bit xi. The side in-
formation is characterized by a simple directed graph G
(no self loops or parallel edges) on {1, 2, . . . , n}. For
a subset S ⊆ [n], x[S] denotes the projection of x on
the coordinates in S. The side information of Ri equals
x[N(i)] where N(i) � {j ∈ V | (i, j) is an edge} de-
notes the set of out-neighbors of i in the graph G.

Example 1. Let R1, R2, . . . , Rn be the n receivers
(clients) over a broadcast channel whose source alphabet
is X = {0, 1}n. For an input (data) x ∈ X, each receiver
Ri is interested in the value xi (requested block) but
knows xi−1 as side information (cached block). (Abus-
ing notation slightly, receiver R1 knows xn.) The side
information graph is thus a directed cycle of length n.
Since xi−1 is “independent” of xi, it may not be clear
at first how the sender (server) can take advantage of the
side information of the receivers to shorten the broad-

cast. However, there is a strategy in which the sender can
save one bit: rather than send all the bits of x, the sender
broadcasts the n−1 parities x1⊕x2, x2⊕x3, . . . , xn−1⊕
xn. Now, each receiver Ri for i > 1 can recover xi by
taking the parity of xi−1⊕xi with xi−1. The receiver R1

on the other hand just xors the n − 1 parities broadcast
by the sender together with xn to recover x1.

Definition 2 (INDEX codes). A deterministic INDEX

code C for {0, 1}n with side information graph G on
n nodes, abbreviated as “INDEX code for G”, is a set of
codewords in {0, 1}� together with:

1. An encoding function E mapping inputs in {0, 1}n

to codewords, and

2. A set of decoding functions D1,D2, . . . Dn such
that Di(E(x), x[N(i)]) = xi for every i.

The graph G is known in advance to the sender and the
receivers; thus the encoding and decoding functions typ-
ically depend on G. The length of C, denoted by len(C),
is defined to be �.

The above problem can also be cast in an equivalent
setting with a single receiver: The receiver is given an
index i and the side information x[N(i)] as inputs and
wants to recover the value xi. (The equivalence fol-
lows from the fact the sender does not know the index
i given to the receiver, and thus has to use an encoding
that allows recovering xi, for any i.) Using this equiva-
lent form, we can contrast our side information problem
with Witsenhausen’s zero-error side information prob-
lem. A first notable difference is that while in Witsen-
hausen’s setting the entire input x has to be recovered,
in our setting only a single bit xi is needed. This al-
lows significant savings in the encoding length, as the
following example demonstrates: Suppose the side in-
formation graph is a perfect matching on n nodes. Since
the receiver has only a single bit of side information,
then n − 1 bits are necessary to recover the entire input.
On the other hand, if only a single bit is needed, then
the sender can encode his input by the n/2 parities of
pairs of matched bits. A second difference from Wit-
senhausen’s setting is that the type of side information
addressed in our problem is restricted to side informa-
tion graphs. This natural restriction emanates from the
broadcast application mentioned above and also imposes
more structure that enables us to obtain an interesting
combinatorial characterization of the minimum length
of INDEX codes in terms of the side information graphs.

We also consider in this paper randomized INDEX

codes, in which the encoding and decoding functions are
allowed to be randomized and are even allowed to use a



common public random string. Decoding needs to suc-
ceed only with high probability, taken over the random
choices made by the encoding and decoding functions.

Our contributions. In this paper we identify a graph
functional, called minrank, which we show to charac-
terize the minimum length of INDEX codes, for natural
types of codes and for wide classes of side information
graphs. Let G be a directed graph on n vertices without
self-loops. We say that a 0-1 matrix A = (aij) fits G if
for all i and j: (i) aii = 1, and (ii) aij = 0 whenever
(i, j) is not an edge of G. Thus, A − I is the adjacency
matrix of an edge subgraph of G, where I denotes the
identity matrix. Let rk2(·) denote the 2-rank of a 0-1
matrix, namely, its rank over the field GF (2).

Definition 3. minrk2(G) � min {rk2(A) : A fits G}
The above measure for undirected graphs was con-

sidered by Haemers [11] in the context of proving
bounds for the Shannon capacity Θ of undirected
graphs. For an undirected graph G whose adjacency
matrix is M , the 2-rank of M + I (which fits G) has
also been studied in the algebraic graph theory com-
munity. For example, Brouwer and van Eijl [7] and
Peeters [15] study this quantity for strongly regular and
distance-regular graphs, respectively. It has been shown
by Peeters [14] that computing minrk2(G) is NP-hard.
Finally, it is known that minrk2 has the “sandwich prop-
erty”, similar to other natural quantities such as the
Lovász Theta function:

Proposition 4 ([10, 11]). For any undirected graph G,
ω(G) ≤ Θ(G) ≤ minrk2(G) ≤ χ(G). Moreover, each
of these inequalities is strict.

Our first result (see Section 3) shows that minrk2(G)
completely characterizes the minimum length of linear
INDEX codes (i.e., ones whose encoding function is lin-
ear), for arbitrary directed side information graphs G:

Theorem 5. The optimal length of a linear INDEX code
for a side information graph G equals minrk2(G).

The upper bound in the above theorem strictly im-
proves a previous result of Birk and Kol [6]. Birk
and Kol showed a construction of a linear INDEX code,
whose length is the “cover cost” of the side information
graph (and showed that the construction is suboptimal).
For undirected graphs, the cover cost is the same as the
chromatic number of the complement graph. Since the
minrank can be strictly smaller than this chromatic num-
ber, it immediately follows that this bound beats the Birk
and Kol bound. The lower bound for linear codes is of

interest, since linear codes are possibly the most natural
type of codes. In fact, all the existing INDEX codes (with
or without side information) we are aware of are linear.

Our second contribution is a lower bound which
holds for general INDEX codes including deterministic
and randomized INDEX codes. This result is presented
in Section 4.

Theorem 6. The length of any δ-error randomized
INDEX code for G is at least MAIS(G) · (1 − H2(δ)),
where MAIS(G) is the size of the maximum acyclic in-
duced subgraph of G and H2(·) is the binary entropy
function.

If G is undirected, then MAIS(G) equals the size of
the largest independent set in G, i.e., ω(G). Given the
gap between ω(G) and minrk2(G) mentioned above,
a natural question is whether minrk2(G) characterizes
the optimal length of general INDEX codes for general
graphs G.

Conjecture 7. The optimal length of a general INDEX

code for G equals minrk2(G), i.e. linear codes achieve
the optimal length over all codes for G.

In Section 5 we give supporting evidence for this con-
jecture by proving that minrk2(G) is a lower bound
on the minimum length of a wide class of non-linear
codes. An INDEX code is called linearly-decodable,
if all its n decoding functions are linear. A linearly-
decodable code need not be linearly encodable. A
simple argument shows that the length of a linearly-
decodable INDEX code for any graph G is at least
minrk2(G). We relax the notion of linearly-decodable
codes to “semi-linearly-decodable” codes. An INDEX

code is k-linearly-decodable, if at least k of its decod-
ing functions are linear. Note that n-linearly-decodable
codes are simply linearly-decodable, while 0-linearly-
decodable codes are unrestricted. We are able to prove
the conjecture for k-linearly-decodable codes when k ≥
n − 2:

Theorem 8. For any graph G, and for any k ≥ n − 2,
the length of any k-linearly-decodable INDEX code for
G is at least minrk2(G).

Our lower bound for general codes (Theorem 6)
immediately gives tight bounds for directed acyclic
graphs and undirected graphs G that satisfy ω(G) =
minrk2(G) = χ(G). In particular, they hold for perfect
graphs1. In Section 6, we are able to prove that min-
rank characterizes the minimum length of INDEX codes,

1Recall that an undirected graph G is called perfect, if for every
induced subgraph G′ of G, ω(G′) = χ(G′). Perfect graphs include
a wide class of graphs such as trees, bipartite graphs, interval graphs,
chordal graphs, etc.



even for non-perfect graphs, namely odd holes (undi-
rected odd-length cycles of length at least 5) and odd
anti-holes (complements of odd holes).

Theorem 9. Let G be any graph, which is either a
DAG, a perfect graph, an odd hole, or an odd anti-hole.
Then, the length of any INDEX code for G is at least
minrk2(G).

Finally, we consider the following natural direct sum-
type problem: If a graph G has k connected components
G1, . . . , Gk, then is the length of the best INDEX code
for G equal to the sum of the lengths of the best codes
for G1, . . . , Gk? The answer should intuitively be affir-
mative, but a direct proof seems to be elusive. In fact,
using the techniques of Feder et al. [9], one can show a
connection between the two, but incurring a loss of an
additive term that depends linearly on k. After lower
bounding the length of a code by its information cost,
we are able to prove a tight direct sum theorem w.r.t.
the information cost measure. We note that almost all
our lower bounds hold not only for the length of INDEX

codes but also for their information cost. This result is
presented in Section 4.

Techniques. The many results presented in this paper
required us to resort to a multitude of techniques from
linear algebra, information theory, Fourier analysis, and
combinatorics.

The lower bounds for linearly-encodable and
linearly-decodable codes are based on dimension argu-
ments from linear algebra. To extend the lower bound
for linearly-decodable codes to semi-linearly-decodable
codes, we used an intriguing “balance property” of
Boolean functions: If all linear Boolean functions are
“balanced” on some set U (i.e., get the same number
of 0’s and 1’s on the set), then all Boolean functions
(whether linear or not) are balanced on U . To prove
this property, we use Fourier analysis to represent arbi-
trary Boolean functions as linear combinations of linear
functions. We then introduce the notion of “conditional
minrank” of a Boolean matrix and explore its proper-
ties using the balance property. This in turn allows us
to extend the lower bound for linearly-decodable codes
to (n − 2)-linearly-decodable codes. Extension of the
proof technique to hold for k-linearly-decodable codes,
for k < n−2, would require better understanding of the
conditional minrank measure.

The lower bound for general (randomized) codes and
the direct sum theorem are proved via information the-
ory arguments. We extend previous arguments from
[5, 4] to obtain a direct sum theorem for the informa-
tion cost of codes.

Finally, our lower bounds for odd holes and odd anti-
holes are purely combinatorial. We employ a connection
between vertex covers of a graph G and the structure of
the confusion graph corresponding to the INDEX coding
for G. We note that dealing with odd holes, and with the
pentagon in particular, turned out to be very challenging,
because the standard technique of lower bounding the
chromatic number of the corresponding confusion graph
via its independence number does not work.

Related work. There are settings other than source
coding in which INDEX codes have been addressed. Am-
bainis et al. [3] considered the so called “random access
codes”2, which are identical to randomized INDEX codes
without side information. Their main thrust was proving
tight bounds on the length of the codes in the quantum
setting, where inputs can be encoded by qubits rather
than classical bits; their result applied to the classical
setting is a special case of our Theorem 6 for the case
when G is the empty graph.

The problem of INDEX coding with side information
can also be cast as a one-way communication complex-
ity problem of the indexing function [13] (from which
the term INDEX codes was coined) with the additional
twist of side information. Alice (the sender) is given an
input x, sends a single message to Bob. Bob is given
an index i and the side information x[N(i)], and wants
to learn xi. Another formulation of INDEX coding is in
terms of network coding [20, 1]. As such, it represents a
restricted case of a single source, a single encoder and a
single channel, but with the important addition of a spe-
cial flavor of side information. Parts of this information
are known to different decoders, and the encoder is fully
aware of this knowledge.

Notation. Throughout the paper, we use the following
notations. Let [n] denote the set {1, 2, . . . , n}. Let ei

denote the i-th standard basis vector. The dimensions
of these vectors are understood from the context. For a
subset S ⊆ [n], we denote by x[S] the projection of a
vector x on the coordinates in S.

2. Sandwich property of minrank

We start with an observation relating minrank to other
well-known graph measures.

2We chose the term INDEX codes to avoid confusion since the term
“random access” denotes a different concept in the information theory
community.



Proposition 4 (restated) For any undirected graph G,
ω(G) ≤ Θ(G) ≤ minrk2(G) ≤ χ(G). Moreover, each
of these inequalities is strict.

Proof. Fix an optimal coloring of G. Define the 0-1 ma-
trix A by Aij = 1 if i and j get the same color in G, and
0, otherwise. The matrix A fits G, and rk2(A) = χ(G).
Hence, minrk2(G) ≤ rk2(A) = χ(G).

Recall that the Shannon capacity Θ(G) of a graph G
is defined as limk→∞ α(Gk)1/k. Here Gk denotes the
(strong) k-th power of G, where there is an edge between
distinct (u1, u2, . . . , uk) and (v1, v2, . . . , vk) if and only
if for all j either uj = vj or uj is connected to vj in G.
It can be verified that Gk has an independent set of size
α(G)k, so Θ(G) ≥ α(G) = ω(G).

Suppose A fits G such that rk2(A) = minrk2(G).
It can be verified that the k-th matrix tensor power of
A, denoted by A⊗k, fits Gk. Since A⊗k has a square
identity sub-matrix corresponding to a largest indepen-
dent set in Gk, we have α(Gk) ≤ rk2(A⊗k). It is well
known that rk2(B⊗k) = rk2(B)k for any matrix B, so
rk2(A⊗k) = rk2(A)k = minrk2(G)k. Taking the k-th
root on both sides and letting k → ∞ proves the re-
quired bound.

From the results in [10], it is known that the fam-
ily of Symplectic graphs Gn with parameter n satisfies
minrk2(Gn) = 2n + 1 whereas χ(Gn) = 2n + 1, ex-
hibiting a large gap between these two measures. In con-
trast, gap between minrk2(G) and ω(G), to the best of
our knowledge, is via odd cycles: for a cycle of length
2n+1 its minrank equals n+1 whereas its independence
number equals n. Lovász’s classic paper which intro-
duced the θ-function shows that the Shannon capacity
of the 5-cycle equals

√
5, which is strictly smaller than

its minrank.

3. Linear codes

In this section we obtain a tight characterization of
the length of linear INDEX codes for all side information
graphs G.

Theorem 5 (restated) The optimal length of a lin-
ear INDEX code for a side information graph G equals
minrk2(G).

Proof. Let A be the matrix that fits G whose rank equals
minrk2(G) � k. Assume without loss of generality that
the span of the first k rows A1, . . . , Ak equals the span
of all the rows of A. The encoding function is simply
the k bits bj � Aj · x for 1 ≤ j ≤ k.

Decoding proceeds as follows. Fix a receiver Ri for
some i ∈ [n] and let Ai =

∑k
j=1 λjAj for some choice

of λj’s. The receiver first computes Ai ·x =
∑k

j=1 λjbj

using the k-bit encoding of x. Now, consider the vector
ci = Ai − ei, where ei is the i-th standard basis vector.
Observe that the only non-zero entries in ci correspond
to coordinates which are among the neighbors of i in G.
This means that the receiver can compute ci ·x using the
side information. Receiver Ri can now recover xi via
(Ai · x) − (ci · x) = ei · x = xi.

For the lower bound, suppose C is an arbitrary
linear INDEX code for G defined by the set S =
{u1, u2, . . . , uk}, i.e. x is encoded by the taking its in-
ner product with each vector in S.

Claim 10. For every i, ei belongs to the span of S∪{ej :
j ∈ N(i)}.

Before we prove the claim, we show how to finish
the proof of the lower bound. Fix an i ∈ [n]; the claim
shows that ei =

∑k
j=1 λjuj +

∑
j∈N(i) µjej , for some

choice of λ and µ. Rearranging, we have
∑

j λjuj =
ei −

∑
j∈N(i) µjej � Ai. It follows that Ai has value

0 in coordinates outside N(i) and that Ai belongs to the
span of S. Therefore, the matrix A whose rows are given
by A1, A2, . . . , An fits G and has rank at most k. We
conclude that k ≥ rk2(A) ≥ minrk2(G).

It remains to prove the claim. Fix an i and suppose
to the contrary that ei is not in the subspace W spanned
by the vectors in S ∪ {ej : j ∈ N(i)}. Recall that the
dual of W , denoted by W⊥ denotes the set of vectors
orthogonal to every vector in W , i.e., W⊥ = {v : v·w =
0 for all w ∈ W}. It is well-known that W⊥⊥ = W .
Therefore, the assumption ei /∈ W implies that there is a

vector x ∈ W⊥ such that x · ei

(∗)

= 0. On the other hand,

since x ∈ W⊥, we have that x is orthogonal to every
vector in S ∪ ∪{ej : j ∈ N(i)}. It follows that (i) the
encoding for x equals 0k, and (ii) the side information
xj available to receiver Ri equals 0 for all j ∈ N(i).
This violates the correctness of the encoding because the
input 0n also satisfies (i) and (ii), yet Equation (*) shows
that it differs from x in coordinate i.

4. General codes

In this section, we prove lower bounds for the class
of general randomized INDEX codes. The main techni-
cal statement is a direct-sum result for the information
cost of a randomized INDEX code. See [8] for the basic
information theory notions and facts used in this section.



4.1. Direct sum for information cost

Definition 11 (Information Cost). Let C be a random-
ized index code for G. Let R denote the public ran-
dom string of C, and let E(x,R) denote the encoding
of x in C.3 Let X be uniformly distributed in {0, 1}n.
The information cost of C, denoted by icost(C), equals
I(X;E(X) | R) = H(X | R) − H(X | E(X), R).

It can be seen that the information cost of determin-
istic INDEX codes is just the entropy of the codewords,
and thus is closely related to the length of the code.

Theorem 12. Let G1, G2, . . . , Gk be vertex-induced
subgraphs of a directed graph G such that:

1. The vertex sets of G1, G2, . . . , Gk are pairwise dis-
joint.

2. For any i < j and vertices vi ∈ V (Gi) and vj ∈
V (Gj), there is no directed edge in G from vi to vj .

Let C be a δ-error randomized INDEX code for G.
Then, there exist δ-error randomized INDEX codes
C1,C2, . . . ,Ck for G1, G2, . . . , Gk such that icost(C) ≥∑

i icost(Ci).

Proof. Let E(x,R) be encoding function of the INDEX

code C. Let X be uniformly distributed on {0, 1}n

and let E denote the random variable E(X,R). By
definition, icost(C) = I(X ; E | R). Define U0 =
V \⋃k

i=1 Vi, and let Uj = U0 ∪ (
⋃j

i=1 Vi) for j =
1 . . . k. By the chain rule for conditional entropy,

I(X ; E | R)

= I(X[U0] ; E | R) +
k∑

j=1

I(X[Vj ] ; E | X[Uj−1], R)

≥
k∑

j=1

I(X[Vj ] ; E | X[Uj−1], R)

For each j we will show that the expression
I(X[Vj ] ; E(X,R) | X[Uj−1], R) within the above
sum is the information cost of an INDEX code Cj for Gj .
The proof of this is based on a reduction lemma proven
in [5].

Define an INDEX code Cj for Gj using the code C

as follows. Let xj ∈ {0, 1}|Vj | denote the source in-
put. Loosely speaking, xj will be mapped to the ver-
tices in Gj , and the inputs corresponding to the vertices

3E also depends on the sender’s private randomness which is being
suppressed for ease of presentation.

in the other graphs will be generated using a combina-
tion of private and public random strings. Formally, let
Y have the same distribution as X[Uj−1], and let Z have
the same distribution as X[V \Uj ]. The public random
string for Cj consists of (R, Y ) while Z will be part of
the private randomness of the encoder. The encoding of
xj in Cj is defined by mapping xj to Vj , Y to Uj−1,
and Z to V \Uj , and then use E to encode the combined
input.

Let i ∈ Vj be any coordinate and consider what is
needed to recover the bit corresponding to coordinate i.
By the property of Gj , it can be seen that the neigh-
bors of i in G are either among the neighbors of i in
Vj or belong to Uj−1. Now, the values for the former
are part of the side information for coordinate i while
the values for the latter can be found in the public ran-
dom string Y . This means that the receiver in the INDEX

coding problem for Gj can apply the decoding function
Di to recover the i-th coordinate. The routine calcula-
tions similar to [5] can be used to show that the error
of this code is at most δ, and that the information cost
equals I(X[Vj ] ; E(X,R) | X[Uj−1], R), completing
the proof of the theorem.

4.2. Lower bound for randomized codes

Theorem 6 can now be shown as a simple application
of the above Theorem 12.

Theorem 6 (restated) The length of any δ-error ran-
domized INDEX code for G is at least MAIS(G) · (1 −
H2(δ)), where MAIS(G) is the size of the maximum
acyclic induced subgraph of G and H2(·) is the binary
entropy function.

Proof sketch. Let G′ be a maximal acyclic induced sub-
graph of G. Let u1, u2, . . . , uk denote the vertices of G′

such that there is no edge from ui to uj whenever i < j.
Apply Theorem 12 where Gj is a graph with a single
vertex uj . We have icost(C) ≥ ∑

j icost(Cj). Now,
since Cj is a INDEX code for a single vertex graph, there-
fore, it encodes just a single bit that can be decoded with
probability of error at most δ. By the classical Fano’s
inequality in information theory, it must have at least
1 − H2(δ) bits of information.

5. On the tightness of the minrank bound

In this section, we provide supporting evidence for
our conjecture that minrk2(G) is a lower bound on the
minimum length of non-linear INDEX codes for arbi-
trary graphs G.



Let C be an INDEX code for G. Let D1, . . . , Dn be
the n decoding functions of C. Fix a codeword c ∈ C,
and for each index i ∈ [n], we denote by Dc

i the func-
tion induced by fixing c as input to Di: Dc

i (x[N(i)]) =
Di(c, x[N(i)]). Although Dc

i is applied only to the side
information bits x[N(i)], it will be convenient for us to
view it as acting on the whole input x with the restric-
tion that it depends only on the set of coordinates N(i).
Thus, from now on, Dc

i : {0, 1}n → {0, 1}. Note that
Dc

i (x) = xi for every x whose encoding E(x) equals c.

Proposition 13. If |{x | Dc
i (x) = xi ∀i}| ≤ M for

every codeword c ∈ C, then len(C) ≥ �n − log M.

5.1. Semi-linearly-decodable codes

An INDEX code C is said to be k-linearly-decodable,
if for every codeword c ∈ C, at least k of the de-
coding functions Dc

1, . . . , D
c
n are linear. Note that the

smaller k is, the less restricted is the class of k-linearly-
decodable codes. When k = n, these codes are simply
called linearly-decodable, while 0-linearly-decodable
are unrestricted codes. Our upper bound (Theorem 5)
is a linearly-decodable INDEX code (and thus also k-
linearly-decodable, for any k).

Our goal is to obtain lower bounds on the length of
k-linearly-decodable codes for a value of k as small as
possible.

Theorem 14. Let c be a codeword in a k-linearly decod-
able code C with side information graph G, where k ≥
n − 2. Then, |{x | Dc

i (x) = xi ∀i}| ≤ 2n−minrk2(G).

Proposition 13 immediately implies that the length of
C is at least minrk2(G), proving Theorem 8.

The rest of this section is devoted to the proof of The-
orem 14. Fix a graph G. We say that a function f fits
an index i if f(x) = g(x) + xi for some function g that
depends only on N(i). To simplify the notation, let ei

denote i-th standard basis vector and write f = g + ei

so that f(x) = g(x) + ei · x = g(x) + xi.
Fix a k-linearly-decodable code C for G and a code-

word c ∈ C. Let Dc
1, . . . , D

c
n be the n decoding func-

tions associated with c. Note that each function Dc
i + ei

fits index i, for all i. If the decoding function Dc
i is lin-

ear for some fixed i, then Dc
i (x) = d · x for some vector

d. It can be seen that the value of d in every coordinate
outside of N(i) equals 0. Thus, we can also say that the
vector d + ei fits4 index i.

To motivate the proof of Theorem 14, consider the
following simple argument for linearly-decodable codes

4This is consistent with our earlier notation, namely, a matrix A
fits G if and only if the i-th row of A fits index i, for all i.

i.e. k = n. Let A be the n × n Boolean matrix, whose
rows are d1 + e1, . . . , dn + en. Since di + ei fits index i,
it follows that A fits G, so rk2(A) ≥ minrk2(G). Next,
observe that Dc(x) = xi if and only if (di + ei) ·x = 0.
Therefore, {x | Dc(x) = xi ∀i} is a linear subspace
denoting the kernel of the matrix A. By standard lin-
ear algebra, its dimension is at most n − rk2(A) ≤
n − minrk2(G), and therefore the size of W is at most
2n−minrk2(G).

To deal with the case k < n, we would like to gen-
eralize the above argument. For the rest of this section,
we define the following notions: (i) a set S of k indices
such that the decoding functions Dc

i (x) = di · x are lin-
ear for each i ∈ S (ii) the subspace WS =

⋂
i∈S{x |

(di + ei) · x = 0} (iii) the function fj = Dc
j + ej for

each j ∈ [n] \ S.
The key idea of our proof is to view the function fj

in the ±1 world and consider its Fourier representation.
Since Dc

j(x) depends only on N(j), the characters that
have non-zero weight in the Fourier representation will
be shown to be associated with vectors that fit index j.

We now come to an important notion that will be used
in the proof. Let T be a subset of the indices in [n] \ S.
Let H = 〈hj : j ∈ T 〉 be a collection of |T | vectors, not
necessarily distinct, such that the vector hj associated
with j ∈ T fits index j. Extending the definition, we say
that H fits T . Define qH(T ) = dim(WS ∩ {x | hj · x =
0 ∀j ∈ T} and let q(T ) denote the maximum value of
qH(T ) over all collections H that fit T .

Proposition 15. 1. q(∅) = dim(WS).

2. For every j ∈ T , q(T \ {j}) ∈ {q(T ), q(T ) + 1}.

3. More generally, q(T ) ≤ q(T ′) ≤ q(T )+ |T |− |T ′|
for any T ′ ⊆ T .

4. q(T ) ≤ dim(WS) ≤ q(T ) + |T |.
5. If q(T ) = dim(WS) − |T |, then q(T ′) =

dim(WS) − |T ′| for every T ′ ⊆ T .

6. Suppose q({j}) = dim(WS) for every j ∈ T .
Then q(T ) = dim(WS) as well.

7. Let T = [n] \ S, then q(T ) ≤ n − minrk2(G)

Proof. Part 1 follows simply by definition. Part 2 fol-
lows from the standard linear algebra fact adding a sin-
gle constraint to any subspace can only decrease its di-
mension, but by at most 1; an inductive argument yields
Part 3. Setting T ′ = ∅ in Part 3 and then using Part 1
yields Part 4.

For Part 5, note that the Part 4 implies that
dim(WS) − |T ′| ≤ q(T ′). By Part 3, q(T ′) ≤ q(T ) +



|T | − |T ′| = dim(WS) − |T ′|, using the premise of
Part 5. Therefore, q(T ′) = dim(W ) − |T ′ as well.

For Part 6, the premise says that there exist vectors
hj for all j ∈ T such that hj · x = 0 for all x ∈ WS .
Define the collection H = 〈hj : j ∈ T 〉. It can be seen
that qH(T ) = dim(W ) which is the maximum value
that q(T ) can attain by Part 4.

Finally, for Part 7, let H = 〈hj : j ∈ T 〉 be the
collection of vectors such that qH(T ) = q(T ). Recall
that qH(T ) is the dimension of the subspace V = W ∩
{x | hj · x = 0 ∀j ∈ T}. The vectors in H fit T , so let
A be the matrix whose rows consist of the vectors in H

together with the decoding vectors associated with the
indices in S. It follows that A fits G. Since its kernel
equals V , we conclude:

qH(T ) = dim(V ) = n−rk2(A) ≤ n−minrk2(G)

The following lemma is the main technical result that
will be used to prove Theorem 14.

Lemma 16. Let S, WS and the functions fj for j /∈ S
be as defined above. For any T ⊆ [n] \ S, |T | ≤ 2,

|WS ∩ {x | fj(x) = 0 ∀j ∈ T}| ≤ 2q(T ).

Applying the above lemma with T = [n]\S, and then
using q(T ) ≤ n − minrk2(G) (Proposition 15, Part 7)
immediately yields Theorem 14. Unfortunately, we cur-
rently do not know how to prove the lemma (or some
suitable weaker version of it) for |T | > 2.

We first prove a stronger version of Lemma 16 for the
special case when q(T ) has the smallest possible value
dim(WS) − |T | (Proposition 15, Part 4), but the size
of T can be arbitrary. In this case, the bound given by
Lemma 16 is always achieved with equality.

Lemma 17. Using the notation of Lemma 16, if q(T ) =
dim(WS) − |T |, then

|WS ∩ {x | fj(x) = 0 ∀j ∈ T}| = 2dim(WS)−|T |.

Proof Sketch. The case when T is empty follows by the
definition of dimension. For a non-empty T , we write

|WS ∩ {x | fj(x) = 0 ∀j ∈ T}|
=

∑
x∈WS

∏
j∈T

(1 − fj(x))

We will show that the latter expression equals
2dim(WS)−|T | using Fourier analysis.

For each j, consider the function f̃j(x) = 1−2fj(x)
which is just a mapping 0 �→ 1 and 1 �→ −1 of the value

fj(x). The Fourier transform of f̃j(x) is a linear com-
bination of the characters (−1)h·x. The crucial property
that can be shown is the following: since fj is a function
that fits index j, then the characters with non-zero coef-
ficients in Fourier transform correspond to those vectors
h that fit index j. Thus, f̃j(x) =

∑
h fits j ch(−1)h·x, for

some choice of ch’s. Using simple algebra, the expres-
sion ∏

j∈T

(1 − fj(x)) =
∏
j∈T

(
1 + f̃j(x)

2

)

within the above sum can be rewritten as sum of 2 ex-
pressions

1. |WS |
2|T | = 2dim(WS)−|T | and

2. a weighted sum of terms of the form
(−1)(

∑
j∈T ′ hj)·x over all choices of ∅ 
= T ′ ⊆ T

and collections H = 〈hj : j ∈ T ′〉 of vectors that
fit T ′.

For any fixed H that fits T ′, it suffices to show that the
corresponding term (−1)(

∑
j∈T ′ hj)·x summed over all

x ∈ WS equals 0.
Since q(T ) = dim(WS)−|T |, Proposition 15, Part 5

implies that q(T ′) = dim(WS) − |T ′|. It follows that
the vectors {hj | j ∈ T ′} are jointly independent of the
subspace WS , therefore their sum

∑
j∈T ′ hj does not

belong to WS . This means that (
∑

j∈T ′ hj) · x is bal-
anced on WS : for half the vectors in WS it will evaluate
to 0 and for the other half it will evaluate to 1. We con-
clude ∑

x∈WS

(−1)
∑

j∈T ′ (
∑

j hj)·x = 0,

finishing the proof of the lemma.

We can now prove Lemma 16:

Proof of Lemma 16. We prove the lemma by induction
on the size of T . The case |T | = 0, meaning T = ∅, fol-
lows simply from the fact that q(∅) = dim(WS) (Propo-
sition 15, Part 1) and then applying Lemma 17. Assume
that the statement of the lemma holds for all T such that
|T | ≤ t. We will prove it for |T | = t + 1, conditioned
on t + 1 ≤ 2.

For i ∈ T , let T−i = T \ {i}. By Proposition 15,
Part 2, for every j ∈ T , q(T−j) ∈ {q(T ), q(T )+1}. We
split our analysis into two cases.
Case 1: For some i ∈ T q(T−i) = q(T ). In this case

|WS ∩ {x | fj(x) = 0 ∀j ∈ T}|
≤ |WS ∩ {x | fj(x) = 0 ∀j ∈ T−i}|
≤ 2n−q(T−i) = 2n−q(T )



where the second inequality follows from the induction
hypothesis and the last equality follows from our as-
sumption in Case 1.
Case 2: For all i ∈ T , q(T−i) = q(T ) + 1. This is
the case we know how to handle only for |T | = 1, 2.
Suppose, first, that |T | = 1. Then, by the assump-
tion of this case, q(∅) = q(T ) + 1. Since q(∅) =
dim(WS) (Proposition 15, Part 1) we obtain q(T ) =
dim(WS)− 1. Hence, the statement follows in this case
from Lemma 17.

Consider now the case |T | = 2 and let T = {i, j}.
By the assumption of this case, q({i}) = q({j}) =
q({i, j}) + 1. By Proposition 15, Part 2, either both
q({i}) and q({j}) equal q(∅) = dim(WS) or both are
1 less than dim(WS). The first case is impossible be-
cause by Proposition 15, Part 5, q({i, j}) = dim(WS)
as well violating the assumption of this case. There-
fore, q({i}) = q({j}) = dim(WS) − 1 implying that
q({i, j}) = dim(WS) − 2. Hence, the statement fol-
lows in this case once again from Lemma 17.

6. Lower bounds for restricted graphs

In this section we show that for certain natural classes
of graphs, the minrank bound is tight w.r.t. arbitrary
INDEX codes.

Theorem 9 (restated) Let G be any graph, which is
either a DAG, a perfect graph, an odd hole, or an odd
anti-hole. Then, the length of any INDEX code for G is
at least minrk2(G).

The proofs for DAGs and perfect graphs are simple
and deferred to the full version of the paper. Below, we
prove the theorem for odd holes; the case of anti-holes
uses similar notions and ideas and is once again deferred
to the full version. In order to prove the bound for odd
holes, we need to study some combinatorial properties
of the confusion graph associated with INDEX coding.

Definition 18 (Confusion graph). The confusion graph
C(G) associated with INDEX coding for a directed graph
G (abbreviated “confusion graph for G”) is an undi-
rected graph on {0, 1}n such that x and x′ are adjacent
if for some i, we have x[N(i)] = x′[N(i)] but xi 
= x′

i.

If x and x′ are adjacent in C(G), then no INDEX code
C for G can map x and x′ to the same codeword, imply-
ing log χ(C(G)) is a lower bound on len(C).

Notation. Let 0 and 1 denote, respectively, the all-
zero and the all-one vectors. Let 1S denotes the char-
acteristic vector of a set S ⊆ [n].

Lemma 19. Let G be an undirected graph on n nodes
and let C(G) be the confusion graph corresponding to
INDEX coding for G. Then,

1. If S is a vertex cover of G, then any two inputs
x, x′ ∈ {0, 1}n that agree on S (i.e., x[S] = x′[S])
are adjacent in C(G).

2. If S is an independent set in G, then the set XS =
{1T | T ⊆ S} forms a clique in C(G).

3. If S, T are two disjoint and independent sets in G,
and there exists some i ∈ S that has no neighbors
in T or some j ∈ T that has no neighbors in S,
then the inputs 1S and 1T are adjacent in C(G).

The proof of the lemma is deferred to the full version.
Let G be an odd hole on 2n + 1 nodes (n ≥ 2). Let

C be any INDEX code for G. We will prove that the
number of codewords in C is at least 2n, implying that
len(C) ≥ n + 1 = minrk2(G) (as noted in Section 2).

Consider the following coloring of G: S1 =
{1, 3, . . . , 2n − 1}, S2 = {2, 4, . . . , 2n} and S3 =
{2n + 1}. For each i ∈ {1, 2, 3}, since Si is an in-
dependent set, then by Part 2 of Lemma 19, C must use
2|Si| different codewords to encode inputs in XSi

. Since
|S1| = |S2| = n, this already implies |C| ≥ 2n. As-
sume, to the contradiction, that |C| = 2n.

Since S1, S2, S3 are pairwise disjoint, then the sets
XS1 ,XS2 ,XS3 have only 0 as a common input and
are otherwise pairwise disjoint. Since |C| = 2n, and
no codeword can encode two different inputs in XSi

(i = 1, 2, 3), then there must be at least one codeword
encoding a nonzero input from XS1 , a nonzero input
from XS2 , and a nonzero input from XS3 . We call these
inputs x1, x2, x3.

We view x1, x2, x3 as characteristic vectors of sets
T1, T2, T3 ⊆ [n]. Since x1, x2, x3 
= 0, then
T1, T2, T3 
= ∅. Furthermore, they are all independent
and pairwise disjoint. Since the only nonzero vector in
XS3 is e2n+1, T3 = {2n + 1}.

Since x1, x2, x3 are encoded by the same codeword,
no two of them can be connected by an edge in the
confusion graph. Consider any i ∈ T1. By Part 3 of
Lemma 19, i must have a neighbor j ∈ T2. Simi-
larly, both i and j must have neighbors in T3. Since
T3 = {2n + 1}, both are neighbors of 2n + 1. We con-
clude that (i, j, 2n + 1) forms a triangle in G. However,
all odd holes are triangle-free. This is a contradiction,
and thus |C| > 2n.

The above theorem provides a tight lower bound on
the length of INDEX codes for odd holes, but not on their
size. Our upper bound (Theorem 5) gives a code whose



size is 2n+1, while the above proof only shows a lower
bound of |C| > 2n. Optimal code size lower bounds
are important for deriving lower bounds on the average
encoding length and on the information cost. In the full
version of this paper, we give tight lower bounds (i.e.,
2n+1) on the size of INDEX codes for odd holes; the
proof for n ≥ 7 involves a more involved combinatorial
argument while proof for the pentagon is by brute force
computer simulations.

7. Conclusions

In this paper, we explored upper and lower bounds
on the length of INDEX codes for {0, 1}n with side in-
formation graph G. We identified a measure on graphs,
the minrank, which we showed to characterize the length
of INDEX codes for natural classes of graphs (DAGs,
perfect graphs, odd holes, and odd anti-holes). We
also proved that minrank characterizes the minimum
length of natural types of INDEX codes (linear, linearly-
decodable, and semi-linearly-decodable) for arbitrary
graphs. For general codes and general graphs, we were
able to obtain a weaker bound in terms of the maximum
acyclic induced subgraph. Finally, we proved a direct
sum theorem for the information cost of INDEX codes
with side information.

The general question, i.e., whether minrank is a lower
bound on the length of any INDEX code for any graph,
remains open. Perhaps one could relax the conjecture
and consider fields other than GF (2).

The minrank by itself is an interesting subject of
study. We know that for undirected graphs, it is bounded
from below by the Shannon capacity and from above
by the chromatic number of the graph complement. It
would be interesting to explore further properties of
minrank with respect to other graph measures such as
the Lovász Theta function.
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