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Self-imaging with finite energy
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General solutions and conditions are presented for paraxial waves that image themselves with different

scales through free propagation.

These waves, represented as superpositions of Gauss—Laguerre modes,

have finite energy and thus finite effective width. The self-imaging wave fields described by Montgomery
[J. Opt. Soc. Am. 57, 772 (1967)], which possess a Fourier transform that is confined to a ring structure, are

obtained as a specific limiting case of an infinite aperture.

Wave fields possessing invariance and conservation
properties have recently stimulated research activity.
Typical examples of such fields are Gaussian modes,
Bessel beams,! phase dislocations,? and beams with
rotating intensity distributions.®> The subject of this
Letter is self-imaging (SI) in which the invariance
property is manifested in a repetition of the trans-
verse intensity distribution of a wave along the di-
rection of propagation. Montgomery* was the first to
derive general conditions for a coherent wave field to
have its complex amplitude repeated along the illumi-
nation direction. His results are valid for the homo-
geneous Helmholtz equation and require an infinite
support of the wave on any transverse plane. More-
over, every solution satisfying these conditions carries
infinite energy outside any finite support. In Ref. 5
it was shown that for finite-energy waves this SI has
an approximate character. Other studies®® consid-
ered the finiteness of object dimensions as an aber-
rating factor. Furthermore, they assumed transversal
periodicity of the object, which is an important but by
no means a general case. In Refs. 1 and 10 a superpo-
sition of nondiffracting beams was used for describing
SI waves.

Here we seek general paraxial waves that carry
finite total power and exhibit scaled SI; i.e., the
repeated images can be scaled relative to each other.
The formalism is based on an expansion in Gauss—
Laguerre (GL) or Gauss—Hermite (GH) propagation
modes. In this way we obtain simple yet powerful
conditions on the general structure of paraxial waves
possessing scaled SI. It is also shown that the scaled
phase map is self-imaged except for a quadratic-radial
phase term. The known case of an infinite aperture is
obtained as a limiting case.

Let a scalar wave be represented by the function

f(r,t) = u(r)expli(kz — wt)], (1)

where r = (p, ¢, z) in cyclindrical coordinates, w is the
angular frequency, and % is the wave number. The
reduced wave field, u(r), can be expanded in terms of
GL modes. We found it convenient to write each GL
mode in the form

Un,m(r) = G(p,Z2) Ry, m(p)Pm(h)Zn(2), (2a)

where p = p/w(Z) is the radial coordinate scaled by
the Gaussian spot size, which is given by w(Z) =
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wo(1 + 22)V2. We defined 2 = z/z, as the longitudinal
coordinate scaled by the Rayleigh length, zo = wwo?/A.
The functions comprising u, ,(r) are

G(p,2) = - &5 exp(=p )explip2)expl ~iy/(2)], (2b)
Il ~

Rom(p) = (V25) " Lt imye(25°), (20)

®,,(¢) = exp(ime), (2d)

Zy(2) = expl—iny(2)], (2e)

while (%) = arctan(Z) is the Gouy phase. The func-

tion (2b) is common to all modes and comprises the ra-
dial Gaussian envelope of the beam, a quadratic phase,

and a Gouy phase. Ll(;n|,|m|)/2 are the generalized La-
guerre polynomials, where the integers n, m satisfy

Im| +4,.... (3)

Let us examine a superposition of such modes:

n=|ml|, |m|+2,

S
u(r) = ZAjunj,mj(r)7 (4)
j=1

where A is the complex amplitude of mode j. Assum-
ing, without loss of generality, that n; = n;., the in-
tensity distribution is given by

S
I(r) = 1IG(B)* D 1A;I*RE, ,, (p)
=1

J

S S
+ > > 20A,l1AIR,,m,(5)
J=1lp=j+1

X Rp, m,(p)eos[Ampd — Anjpih(2) — jpl>

(5)

where Am;, = m; — my,, Anj, = n; — n,, and ¥;, =
[arg(A;) — arg(A,)]. Considering SI scaled as the
elementary Gaussian spot size, we require that

I(ﬁ,¢,21):I(ﬁ,¢+27TN,22) forallﬁ?‘i)' (6)

The first sum on the right-hand side of Eq. (5) is
invariant on propagation along Z (except for scale)
and is therefore self-imaged. Each term in the sec-
ond sum represents a wave rotating linearly with
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¥(2).2 Accordingly, Eq. (6) will be fulfilled if each of
these terms is equal at z; and zs:

cos[Amj,p — Anjpip(21) — 9jp)]
= cos[Amp(¢p + 27 N) — Anjpp(Z2) — ¥jp]. (7)
The coefficients of the cosine functions depend on p
through the functions R, ,;(p)Ry, m,(p). Thus the
equality of each term, and hence Eq. (7), is also a
necessary (as well as sufficient) condition for the
fulfillment of Eq. (6). Equation (7) is satisfied for all
¢ if and only if
Amj, ¢ — Anjpz,b(él) - %
=[Amj,(¢ + 27N) — Anpp(22) — 9jp] + 27 N'  (8)
for all . We are led to the condition that
Anj, = N;j,Q(29,21) for all modes j,p, 9
where N, is any integer and
2w _ 27,
b(Z2) — (21) Ay
Equation (9) is fulfilled if and only if the index n; of
each mode j that comprises the wave satisfies
nj=n +NjQ(§2,§1) for all j, (11)

where n; and N; are integers. The constant n; is
arbitrary, whereas the variable N; is such that n; is a
nonnegative integer. The magnification between self-
images is

M = w(z)/wz) = {1+ (2)%1/[1 + (2022 (12)

Although we required SI between two planes, Eq. (5)
indicates that the scaled intensity distribution is peri-
odic in (2). Because (Z) is bounded, the number of
periods is finite. Note that a SI condition between two
planes was also sought in Ref. 4, leading to periodic so-
lutions in z.

We now investigate the phase relation between
these intensity self-images. The amplitude of the
wave presented in Eq. (4) is

u(r) =

O (22,21) = (10)

g =i + (2]
M

X exp(iﬁzé) Z Aanj,mj(ﬁ)(I)mj(¢)
X expl—i(n; — n)y()], (13)

where K, ,;(p) comprises all the scaled-radial factors
that do not depend explicitly on 2. Because of the
orthogonality of the modes, the sum is equal in z;
and zy if and only if each term in it is equal in these
two planes. This condition is equivalent to Eq. (8).
Thus the two-dimensional scaled phase distributions
are related by

phase(z2) = phase(Z1) — (1 + ny) [¢(22) — ¢(21)]
+ (22 — 21)p% (14)

Hence the phase map of the wave (scaled with the
Gaussian spot size) is self-imaged with the intensity
distribution, except for a quadratic-radial term and a
constant. Moreover, we can see that this derivation
leads directly to the previous result [Egs. (10) and (11)].

The conditions of Eqs. (10) and (11) apply for every
paraxial wave showing SI with any magnification (M)
and between any two planes (separated by Az = z5 —
z1). To prove this, we must find at least one suitable
GL basis in which these conditions can be applied, i.e.,
a location for the waist and its radius. If M = 1, then,
from Eq. (12), 21 = —Az/2 and z¢ can be arbitrarily
chosen. Otherwise, we obtain

202 =[Az% + 221Az — (M? — 1)z,2)/(M? - 1), (15)

which defines a parabolic segment on the (z1,zp)
plane. Because Q[(z; + Az)/z9, 21/20] is continuous
and nonconstant in this domain, it is always possible
to choose zg to make ) a rational number, which is
a necessary condition for the fulfillment of Eq. (11).
Note, however, that there may still be a great deal of
freedom in analyzing and synthesizing the SI objects,
because there are an infinite number of legitimate
values of z¢ and z;.

The solutions given by Egs. (10) and (11) are not
described by the Montgomery rings that were used
to represent the general solution for SI in the litera-
ture.*> However, we now show that these solutions
can be obtained as a special limiting case in which
the beam appears to have an infinite effective extent.
First we note that the paraxial SI objects introduced by
Montgomery are described in their most general way
by rings in the Fourier domain as

£ = &%+ (2/MA2)N, (16)

where N is an integer and ;2 is a constant describing
the lowest-frequency ring. The condition presented in
Ref. 4 is obtained for &2 = 0. We set the following
conditions for the mode superposition of Eq. (4):

(A) To make the modes resemble (infinite) plane
waves and Bessel modes, we can reduce the quadratic-
radial phase by requiring that Z << 1. In the limit
(Az/z9) — 0, we obtain a uniform periodicity in z and
an infinite number of self-images. According to this
limit and Eq. (11),

nj—np = ZWNj(zo/Az)é;O» o, a7

(B) The effective half-angular beam spread of a GL
mode obeys?

(/Mtan(Bpeam) = Vn + L/wo= Jn/wy.  (18)

The angular beam spread must be kept small to satisfy
the paraxial approximation, in spite of Eq. (17). For
convenience we keep

AJnj /wo = constant(j) >0 forall j (19)

during the limiting process. As a consequence,
(wo/A) — o, and thus also nq; — <.

(C) Obviously, we demand that p be much smaller
than the effective width of the beam, which is taken
as the standard deviation of the intensity distribution.
It can be shown ? that

z<<1,n>>1

(Ax)*y = (1/4) (n + Dw?(z) ——— nwo?/4. (20)
Thus p << /n /2 for all n comprising the wave.
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(D) The smaller the difference n — |m|, the lower
the energy concentrated about the axis [where con-
dition (C) is valid]. Thus, to maintain a significant
amount of energy in the axial region, we require that
n — |m| = n (see Eq. (3)].

Using the relation!!

7 Ly (x /1) x"2J(2JX), (21)

where JJ, denotes a Bessel function of order a, we note
that conditions (A)—(D) with Eqgs. (2) and (11) lead to

2
limit _ _ P
Up,m () = c(n, m)eXp< —w02>

9 1/2
ool (T

X exp(im¢)exp<—i zio z) ] (22)

where c(n,m) is constant for each mode and &2 =
ni/(m2wy?). The two-dimensional Fourier transform
of Eq. (22) over the transversal coordinates (p,¢)
satisfies

Uyt (€,0) = exp[—m(wo€)} ringy, m(£,0), (23)

where * denotes convolution, (£,0) are the polar
spatial-frequency coordinates and

ringy, (¢, 0) = 8{& — [&1% + (2/AA2)NT"?Jexp(im®).
(23b)

As the Gaussian spot size increases, that is, wg — o,
the convolution kernel in Eq. (23a) becomes infinites-
imally narrow. In this limiting case the SI solutions
are in agreement with Ref. 5, and their spectrum is
concentrated about the rings described in Eq. (16).
Note that £12 can take any positive real value leading
to any positive ring radius. However, to contain fully
the solutions of Eq. (16), it should also be possible to
obtain &; = 0, corresponding to a plane wave. In this
special case, the basic Gaussian mode (n; = 0) can be
introduced and considered as a plane wave. For this
purpose we use a different limit: Condition (B) applies
only for j > 1, and condition (C) is changed to p << 1/2.
It should be pointed out that some of the condi-
tions above may not seem necessary for simulating
the infinite effective-aperture situation. For exam-
ple, Eq. (19) was chosen to fit all modes into Eq. (21).
However, here we are interested only in showing that

under sufficient conditions the solutions of Eq. (16) are
a limiting case of Egs. (10) and (11).

In contrast with previous research,’® our approach
deals with waves that are exact solutions of the
paraxial wave equation. No further approximations
are made. The GL modes fall off rapidly away from
the propagation axis and thus limit the support of
the object to an effective finite aperture. Truncation
effects can be arbitrarily reduced, producing negligible
aberrations in the results. Note that the GL modes
can be expressed as superpositions of GH modes having
ny + ny, = n and vice versa.” Thus Egs. (9) and (11)
also apply for wave representations in terms of GH
modes, with n defined in this way.

In summary, scaled SI can exist between any two
planes and with any magnification within the paraxial
regime. In an appropriate GL basis, Egs. (10) and
(11) give a necessary and sufficient condition for
SI. The phase map, scaled with the corresponding
Gaussian spot size, is also replicated with the exception
of a quadratic phase. These waves possess finite
energy and thus are physically realizable. Previously
known SI wave fields are obtained as a particular
limiting case. The theoretical results presented here
may prove useful for the analysis and synthesis of
waves.
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