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Abstract

We present a method to recover scenes deteriorated by
superposition of transparent and semi-reflected contribu-
tions, as appear in reflections off windows. Separating the
superimposed contributions from the images in which ei-
ther contribution is in focus is based on mutual blurring
and subtraction of the perturbing components. This proce-
dure requires the defocus blur kernels to be known. The use
of uncalibrated kernels had previously led to contaminated
results. We propose a method for self calibration of the blur
kernels from the raw images themselves. The kernels are
sought to minimize the mutual information of the recovered
layers. This relaxes the need for prior knowledge on the op-
tical transfer function. Experimental results are presented.

1 Introduction

This work treats the common situation in which several
(typically two) linearly superimposed contributions exist in
a scene. For example [10], looking through a window, the
object behind the window (real object [10, 11]) is disturbed
by a semi-reflection of another object (virtual object). This
situation was described using the term transparent layers
[2, 20]. Treatment has been based mainly on motion [2, 5,
7, 11, 18, 19] and stereo [3, 18]. Monocular methods were
based on polarization [6, 10, 15, 16, 17] or on focus [14].

The focus cue is based on the limited depth of field of the
imaging system, and is useful also for separating and recov-
ering three dimensional volumetric specimens acquired by
microscopy (as in [1, 8, 9, 12]) or by tomography, where the
superposition of transparent layers is inherent. The focus
cue can be utilized in common systems with no need for a
polarizer. However, the recovery of the layers, as presented
in [14], requires the defocus blur kernels to be known. Us-
ing inaccurate kernels may leave each of the recovered lay-

ers significantly contaminated by its complementary. Evi-
dence to that are seen in the experiment described in [14],
where the kernels were assumed but unknown.

This paper presents a method to separate transparent
layers without a-priori knowledge of the blur kernels. It
presents a method to self-calibrate the defocus point spread
function (PSF) given the raw images of the transparent
scene. This relieves the need for knowledge of the imaging
system properties and their changes during focusing. The
method is based on seeking the minimum of the mutual in-
formation between the recovered layers. Experimental sep-
aration results demonstrate the success of the method.

2 Recovery given the blur kernels

Consider a two-layered scene. Suppose that either man-
ually or by some automatic procedure (as discussed in
Ref. [14]), we acquire two images, such that in each im-
age one of the layers is in focus. Let layer f1 be superim-
posed on layer f2. We consider only the slices ga and gb, in
which either layer f1 or layer f2, respectively, is in focus.
The other layer is blurred. Modeling the blur as convolution
with blur kernels,

ga = f1 + f2 � h2a gb = f2 + f1 � h1b : (1)

In the frequency domain Eqs. (1) take the form

Ga = F1 +H2aF2 Gb = F2 +H1bF1 : (2)

The inverse filtering solution to the problem is

bF1 = B(Ga � GbH2a) bF2 = B(Gb � GaH1b) (3)

where B = (1�H1bH2a)
�1 . As H1bH2a ! 1, B ! 1

hence the solution is inherently unstable in the low frequen-
cies and the recovery of its DC component is ill posed [14].
For H1bH2a < 1, the solution can be approximated as a



geometric series:

bF1m = bBm (Ga �GbH2a) bF2m = bBm (Gb � GaH1b)

(4)
where bBm =

P
m

k=1
(H1bH2a)

k�1. We define the basic so-
lution as the result of using m = 1. The basic solution has
high-pass characteristics. The recovered layers are those
given by the basic solution, filtered by bBm. Using larger
m’s improves the balance between the low frequency com-
ponents to the high ones.

Consider the simulated scene that consists of the image
of Lena, as the close object, seen reflected through a win-
dow out of which Mt. Shuksan1 is seen. While any of the
layers is focused, the other is blurred by a Gaussian ker-
nel with standard deviation (STD) of 2.5 pixels. The slices
in which each of the layers is focused appear in the top of
Fig. 1 (all the images in this work are presented contrast-
stretched). The basic solution (m = 1), shown at the middle
row of Fig. 1, removes the crosstalk between the images, but
lacks contrast due to the attenuation of the low frequencies
(better contrast can be obtained by using a larger m).

Effect of error in the PSF

The method computes bF1m = bBm[Ga � GbH2a]. We
normally assume (Eq. (2)) that Ga = F1 + H2aF2 and
Gb = F2 +H1bF1. If the assumption holds,

bF1m = F1(1�H1bH2a) bBm : (5)

Note that, regardless of the precise form of the PSFs, had
the imaging PSFs and the PSFs used in the recovery been
equal, the reconstruction would have converged to F1 as
m ! 1 when jH1bj; jH2aj < 1. In practice, the imaging
PSFs are slightly different, i.e., Ga = F1 + eH2aF2 and
Gb = F2 + eH1bF1 where

eH1b = H1b � E1b ; eH2a = H2a � E2a ; (6)

and E1b; E2a are some functions of the spatial frequency.
This difference may be due to inaccurate prior modeling of
the imaging PSFs or due to errors in depth estimation. The
reconstruction process leads to

eF1 = [F1 (1�H1bH2a) +E1bH2aF1 �E2aF2] bBm (7)

= bF1m + bBm (E1bH2aF1 � E2aF2) :

A similar relation is obtained for the other layer.
An error in the PSF leads to contamination of the re-

covered layer by its complementary. The larger B̂m is,
the stronger is the amplification of this disturbance. B̂m

monotonically increases with m, within the support of the
blur transfer function if H1bH2a > 0, as is the case when
the recovery PSFs are Gaussians. Note that usually in

1Courtesy of Bonnie Lorimer
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Figure 1. [Top] Simulated focused slices. The defo-
cused layer is blurred by a kernel with STD of 2.5 pixels.
[2nd row] Positive traces in the basic solution, if STD=5 is
(wrongly) used in the recovery. [3rd row] The basic solution
with the correct kernel removes the crosstalk. [4th row] Neg-
ative traces if STD=1.25 is (wrongly) used in the recov-
ery. [Bottom] The contamination has increased withm (even
though the balance between the low and high frequency com-
ponents has improved).

the low frequencies (which is the regime of the crosstalk)
H1b;H2a > 0. Thus, we may expect that the best sense of
separation will be achieved using a small m. Actually, the
basic solution should provide the least contamination. This
is so although the uncontaminated solution obeys F̂ ! F
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as m increases. In other words, decreasing the reconstruc-
tion error does not necessarily lead to less crosstalk.

These effects are seen in Fig. 1. When the PSF used
in the reconstruction has STD of 5 pixels (instead of the
2.5 pixels used in the image formation), positive traces re-
main (i.e., brighter areas in one image appear brighter in the
other). When the PSF used in the reconstruction has STD
of 1.25 pixels, negative traces remain (i.e., brighter areas in
one image appear as darker areas in the other). The contam-
ination is slight in the basic solution, but is more noticeable
with larger m’s, that is, when B̂ ! B. So, the separation
seems worse, even though each of the images has a better
balance (due to the enhancement of the low frequencies).

3 Seeking the blur kernels

The kernels are usually unknown. Even a-priori knowl-
edge (if the system is of our design or calibrated) is some-
times inaccurate. We thus wish to achieve self-calibration,
i.e., to estimate the kernels out of the images themselves.
This will enable blind separation and layers restoration.

To do that, we need a criterion for layer separation. As-
sume that the statistical dependence of the real and virtual
layers is small (even zero). This is reasonable since they
usually originate from unrelated scenes. The Kullback-
Leibler distance measures how far the images are from sta-
tistical independence, indicating their mutual information
[4]. Let the probabilities for certain values �f1 and �f2 be
P ( �f1) and P ( �f2), respectively. In practice these probabil-
ities are estimated by the histograms of the recovered im-
ages. The joint probability is P ( �f1; �f2). It is estimated by
the joint histogram of the images, that is, the relative num-
ber of pixels in which ~f1 has a certain value �f1 and ~f2 has a
certain value �f2 at corresponding pixels. The mutual infor-
mation is then

I( ~f1; ~f2) =
X
�f1;

�f2

P ( �f1; �f2) log
P ( �f1; �f2)

P ( �f1) P ( �f2)
: (8)

In this approach we assume that if the layers are correctly
separated, each of their estimates contains minimum infor-
mation about the other [17]. However, the distance (Eq. 8)
depends on the quantization of ~f1 and ~f2, and on their dy-
namic range, which in turn depends on the brightness of
the individual layers f1 and f2. To decrease the depen-
dence on these parameters, we performed two normaliza-
tions. First, each estimated layer was contrast-stretched to
a standard dynamic range. Then, I was normalized by the
mean entropy of the estimated layers, when treated as indi-
vidual images. The self information [4] (entropy) of ~f1 is
H( ~f1) = �

P
�f1
P ( �f1) logP ( �f1), and the expression for

~f2 is similar. The measure we used is

In( ~f1; ~f2) =
I( ~f1; ~f2)

[H( ~f1) +H( ~f2)]=2
; (9)

indicating the ratio of mutual information to the self infor-
mation of a layer.

The recovered layers depend on the kernels
used. Therefore, the problem of seeking the ker-
nels can be stated as a minimization problem:
[ĥ1b; ĥ2a] = arg minh1b;h2a In(

~f1; ~f2). As discussed
in Section 2, errors in the kernels lead to crosstalk (con-
tamination) of the estimated layers, which is expected to
increase their mutual information.

There are generally many degrees of freedom in the form
of the kernels. On the other hand, the kernels are con-
strained: they are non-negative, they conserve energy etc.
To simplify the problem, the kernels can be assumed to be
Gaussians. Then, the kernels are parameterized only by
their standard deviations. This limitation may lead to a so-
lution that is suboptimal but easier to obtain.

Another possible criterion for separation is decorrela-
tion. It was used for the recovery of semi-reflected layers
by independent components analysis in [6], and by polar-
ization analysis in [16]. However, requiring decorrelation
between the estimated layers is based on the assumption
that the original layers are decorrelated: that assumption
is usually only an approximation. Actually, Ref. [17] gives
examples for which polarization based separation is better
if mutual information is used instead of decorrelation.

To illustrate the use of these criteria, we search for the
optimal blur kernels to separate the layers that are superim-
posed in the images shown in the top row of Fig. 1. Here we
simplified the calculations by restricting both kernels to be
isotropic Gaussians of the same STD, as these were indeed
the kernels used in the synthesis. Hence, the correlation
and mutual information are functions of a single variable.
As seen in Fig. 2, using the correct kernel (with STD of 2.5
pixels) yields decorrelated basic solutions (m = 1), with
minimal mutual information (In is plotted). The positive
correlation for larger values of assumed STD, and the neg-
ative correlation for smaller values, is consistent with the
visual appearance of positive and negative traces in Fig. 1.
As expected from the theory, in Fig. 1 the crosstalk was
stronger with a larger m (e.g., m=15). Indeed, in Fig. 2 the
absolute correlation and mutual information are greater for
m = 6 than for m = 1 when the wrong kernel is used.

In a different simulation, the focused slices were syn-
thesized using an exponential imaging kernel rather than a
Gaussian, but the STD was still 2.5. The recovery was done
with Gaussian kernels. The correlation and mutual informa-
tion curves (as a function of the assumed STD) were simi-
lar to those seen in Fig. 2. The minimal mutual information
was however at STD of 2.2 pixels. There was no visible
crosstalk in the resulting images.

The blurring along the sensor raster rows may be differ-
ent than along the columns. This is because beside the opti-
cal processes blurring is caused also by interpixel crosstalk
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Figure 2. [Solid] At the assumed kernel STD of 2.5 pixels
the basic solutions are decorrelated and have minimal mutual
information (shown normalized), in agreement with the true
STD used in Fig. 1. [Dashed] The absolute correlation and
the mutual information are larger for a large value ofm.

in the sensors, and the raster reading process in the CCD.
Moreover, the inter-pixel spacing along the sensor rows is
generally different than along the columns, thus even the
optical blur may affect them differently. We assigned a dif-
ferent kernel STD to each axis: STDrow and STDcolumn.
Since two slices are used, there are two kernels, with a
total of four parameters. Defining the parameter vector
p � (STDrow

1b
; STDcolumn

1b
; STDrow

2a
; STDcolumn

2a
), the esti-

mated vector p̂ is

p̂ = arg min
p

In[ ~f1(p); ~f2(p)] : (10)

There may be numerous parameter combinations that
lead to decorrelation in the multi-parameter case, but will
not all lead to the minimum mutual information, or to good
separation. If p isN -dimensional, the zero-correlation con-
straint defines an N � 1 dimensional hypersurface in the
parameter space. It is possible to use this criterion to ob-
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Figure 3. [Top] The slices in which either of the transparent
layers is focused. [Middle row] The basic solution (m = 1).
[Bottom row] Recovery withm = 5.

tain initial estimates of p, and search for minimal mutual
information within a lower dimensional manifold.

Experiment based on two slices

A print of the “Portrait of Doctor Gachet” (by van-Gogh)
was positioned closely behind a glass window. The window
partly reflected a more distant picture, a part of a print of
the “Parasol” (by Goya). The f# was 5.6. The two focused
slices2 are shown at the top of Fig. 3. The cross correlation
between the raw (focused) images is 0.98. The normalized
mutual information is In � 0:5 indicating that significant
separation is achieved by the focusing process, but that sub-
stantial crosstalk remains.

The optimal parameter vector p̂ in the sense of min-

2There was slight magnification with change of focus settings, which
was compensated for manually. The magnification is avoided if the imag-
ing system is telecentric [21].
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imum mutual information is [1.9, 1.5, 1.5, 1.9] pixels,
where STD1b corresponds to the blur of the close layer, and
STD2a corresponds to the blur of the far layer. With these
parameters, the basic solution (m = 1) shown at the mid-
dle row of Fig. 3 has In � 0:006 (two orders of magnitude
better than the raw images). Using m = 5 yields better bal-
ance between the low and high frequency components, but
In increased to about 0.02. We believe that this is due to
the error in the PSF model, as discussed above.

4 Using a focused slice and a pinhole image

Acquiring one image via a very small aperture (“pinhole
camera”) somewhat simplifies the algorithms. Since the two
images are taken with the same axial positions of the sys-
tem components, no geometric distortions arise [14]. As
shown below, there are also fewer parameters to estimate.
The “pinhole” image is described by

g0 = (f1 + f2)=a ; (11)

where 1=a is the attenuation of the intensity due to the
smaller aperture. This image is used in conjunction with
one of the focused slices of Eq. (1), for example ga. The
inverse filtering solution is

bF1 = S(Ga � aG0H2a) bF2 = S(aG0 �Ga) (12)

where S = (1�H2a)
�1. As in section 2, S can be approx-

imated by bSm =
P

m

k=1
Hk�1

2a
.

Suppose that, in addition to usingH2a in the reconstruc-
tion rather than the true imaging transfer function eH2a, we
inaccurately use the scalar a rather than the true value ~a

used in the imaging process. Let e denote the relative error
in this parameter, e = (a� ~a)=~a. We obtain that

eF1 = bF1m � eH2a
bSmF1 � (E2a + eH2a)bSmF2 ; (13)

eF2 = bF2m + (E2a + e)bSmF2 + ebSmF1 ; (14)

where here bF1m and bF2m are the results had the imaging
defocus kernel been the same as the one used in the recon-
struction and had a = ~a. Note the importance of the estima-
tion of a: if e = 0 then eF2 (the defocused layer) is recovered
uncontaminated by F1.

Now there is only one filter involved, H2a, since the
layer f1 is focused. There are three parameters to deter-
mine: STDrow

2a
; STDcolumn

2a
and a. The parameter a is eas-

ier to obtain as it indicates the ratio of the light energy in the
wide-aperture image relative to the pinhole image. Ideally,
it is the square of the reciprocal of the ratio of the f-numbers
of the camera, in the two states. If, however, the optical sys-
tem is not calibrated, or if there is automatic gain control in
the sensor, this ratio is not an adequate estimator of a. a can
then be estimated by the ratio of the average values of the
images, for example. Such an approximation may serve as
a starting point for better estimates.
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Figure 4. [Top left] The slice in which the far layer is fo-
cused, when viewed with the wide aperture. [Top right] The
“pinhole” image. [Bottom] The basic recovery.

Experiment based on a slice and a pinhole image

A print of the “Portrait of Armand Roulin” (by van-
Gogh) was positioned closely behind a glass window, which
semireflected a more distant picture, a print of a part of the
“Miracle of San Antonio” (by Goya). The “pinhole” image
was acquired using the state corresponding to the f# = 11

mark on the lens, while the wide aperture image was ac-
quired using the state corresponding to the f# = 4 mark.
We have not calibrated the lens, so these marks do not nec-
essarily correspond to the true values. The slice in which
the far layer is focused (using the wide aperture) is shown
in the top left of Fig. 4. In the “pinhole” image (top right),
the presence of the “Portrait” layer is more noticeable, but
still it is hardly visible in both of the raw images.

According to the ratio of the f#’s, the wide aperture
image should have been brighter than the “pinhole” image
by (11=4)2 � 7:6. However, the ratio between the mean
intensity of the wide aperture image to that of the pinhole
image was 4.17. This could be due to poor calibration of
the lens by its manufacturer, or because of some automatic
gain control in the sensor. We thus added a to the set of
parameters to be searched.

We use this case to demonstrate the minimization over a
lower dimensional manifold. For each hypothesized pair of
blur radii STDrow and STDcolumn, the parameter a that led
to decorrelation of the basic solution was sought (near the
rough estimate based on intensity ratios). Then, the mutual
information was calculated over the parameters that cause
decorrelation (a manifold of only two parameters). The blur
diameters that led to minimal mutual information at m = 1

were STDrow = STDcolumn = 11 pixels, with the best pa-
rameter a being 4.28. The reconstruction results are shown
in the bottom of Fig. 4. Their mutual information (normal-
ized) is 0.004. Using a larger m increased the mutual infor-
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mation and the visible crosstalk.

5 Conclusions

This paper presents a method based on focusing to sepa-
rate transparent layers, as appear in semi-reflected scenes.
The focus-based approach is more stable with respect to
perturbations and occlusions [13] than methods that rely on
stereo or motion. We presented a method for self calibration
of the defocus blur kernels given the raw images. It is based
on minimizing the mutual information of the recovered lay-
ers. Note that since the defocus blur has a similar origin to
motion blur [13] and stereo disparity (effectively different
mostly in the scale and dimensionality of the kernels), the
method described here may possibly be adapted to find the
motion PSFs and disparities in transparent scenes.

The PSF was assumed to be shift invariant, meaning that
the depth variations within each object are small (however,
the semireflecting surface can be inclined at any arbitrary
angle). The method can be generalized to more complicated
blurring operations by optimizing the mutual information
over a higher dimensional parametric space.

In some cases the methods presented here are also appli-
cable to multiplicative layers [19]: If the opacity variations
within the close layer are small (a “weak” object), the
transparency effect may be approximated as a linear su-
perposition of the layers, as done in microscopy [1, 8, 12].
In microscopy and in tomography, the suggested method
for self calibration of the PSF can improve the removal of
crosstalk between adjacent slices.
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