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Abstract - Standard VLSI implementation of turbo decoding requires substantial 
memory and incurs a long latency, which cannot be tolerated in some applications. A 
novel parallel VLSI architecture for low-latency turbo decoding is described, 
comprising multiple SISO elements, operating jointly on one turbo coded block, and a 
new parallel interleaver. The design algorithm for the parallel interleaver is presented, 
enhancing the error correction performance of the parallel architecture. Latency is 
reduced up to twenty times and throughput for large blocks is increased up to five-
fold relative to sequential decoders, using the same silicon area, and achieving very 
high coding gain. The parallel architecture scales favorably — latency and throughput 
improvement with growing block size and chip area. 

 

Index Terms: maximum a posteriori (MAP) algorithm, turbo codes, parallel 
architecture, VLSI architecture, decoders, interleaver. 

1. Introduction 

Turbo-codes with performance near the Shannon capacity limit have received 
considerable attention since their introduction in 1993  [1] [2]. Optimal implementation 
approaches of turbo codes are still of high interest, particularly since turbo codes have 
become a standard for 3G. 

VLSI sequential architectures of turbo decoders consist of M Soft-Input Soft-Output 
(SISO) decoders, either connected in a pipeline, or independently processing their 
own encoded blocks  [3] [4] [5]. Both architectures process M turbo blocks 
simultaneously and are equivalent in terms of coding gain, throughput, latency and 
complexity.  

For the decoding of large block sizes, sequential architectures require large amount of 
memory per SISO for M turbo blocks storage. Hence, enhancing throughput by 
duplicating SISOs is area inefficient. In addition, latency is high due to iterative 
decoding, making the sequential architecture unsuitable for latency-sensitive 
applications such as mobile communications, interactive video and telemedicine. 

One way to lower latency is to reduce the number of required decoding iterations, but 
that may degrade the coding gain. An interesting tree-structured SISO approach  [6] 
significantly reduces the latency, at the cost of an increased area requirement. Parallel 
decoding schemes  [7] [8] perform the SISO sliding window algorithm using a number 
of sub-block SISOs in parallel, each processing one of the sliding windows. Those 
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schemes trade off the number of sub-blocks for error correction performance, and are 
reported as having increased hardware complexity relative to sequential architectures. 
The designs presented in  [9] and  [10], and the architectures presented in  [11] and  [12], 
process sub-blocks in the similar way to ours  [13], except for the definitions of the 
boundary metric values for the beginning and the end of the block, which, as we have 
shown, can be improved by use of tailbiting termination. In addition, some of them 
report increase in computational load. Interleaving approaches for parallel decoders 
were recently presented in  [14],  [15] and  [13]. 
This paper presents a complete analysis of new parallel VLSI architecture, first 
presented by us in  [13], which, unlike  [7] and  [8], and similarly to  [9] [10] [11], 
employs the sliding window approach inside each sub-block that is decoded in 
parallel. This new approach allows choosing the number of SISO decoders 
independently of desired sliding window and block size. The architecture significantly 
reduces both latency (up to twenty-fold) and hardware complexity, and improves 
decoder throughput (up to five-fold) relative to sequential decoder using the same 
chip area. No significant coding gain degradation was observed. The VLSI 
architecture was analyzed using FPGA and ASIC design tools. For ASIC the 
synthesis was performed using 0.35µ Synopsys 2000.05, Passport Libraries tools. As 
for FPGA estimations, the synthesis was performed using Synplicity tool of Synplify, 
and Xilinx tools were used for P&R and floorplanning. The paper presents a new 
algorithm for Parallel Interleaver (PI) design comprising spread optimization and the 
elimination of low-weight error patterns. We discuss the architecture, implementation 
and performance of the PI for different levels of parallelism. Performance of parallel 
and sequential architectures is compared. 

After a brief review of the decoding APP algorithm in Section  2, the sequential 
decoder architecture is discussed in Section  3. The novel parallel decoding 
architecture is presented in Section  4. Section  5 presents the Parallel Interleaver 
architecture and its design algorithm. In Section  6 the parallel architecture is 
compared with the sequential one in terms of coding gain, throughput, latency. 

2. Turbo Coding – Theory of Operation 

2.1. Encoder 

A turbo encoder consists of convolutional encoders connected either in parallel or in 
series. The parallel scheme  [2], shown in Figure 1, consists of an interleaver and two 
parallel convolutional encoders (CE1, CE2) producing redundant bits (c1, c2). One 
encoder receives the original information bits (u) while the other receives them 
interleaved. Interleaving is a crucial component of turbo coding, influencing the 
performance  [2] [16]. 
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Figure 1: Turbo encoder and decoder, I denotes interleaver 



 3  

For every new input block, the encoder starts in a known trellis state. In order to finish 
in a known trellis state, traditionally some extra input termination bits are generated. 
There are several configurations of termination  [16] for turbo coding. However, such 
terminations result in changes in the block size and in some cases at least one of the 
added terminations is not interleaved. The tailbiting termination technique  [17] for 
recursive convolutional codes keeps the block size unchanged. The technique finds a 
data-dependent initial state such that the initial and the final states of the encoder are 
identical. The parallel decoder architecture analyzed in this paper employs the 
tailbiting termination technique, but it is also applicable to the other termination 
techniques as well. 

2.2. Decoder 

The decoding is performed using the iterative decoding scheme (Figure 1): 
information from one SISO is processed by the other SISO until the desired degree of 
convergence is achieved. Each SISO produces an increasingly better correction term, 
referred to as extrinsic information, which is appropriately (de)interleaved and used as 
a-priory information by the next SISO  [2]. According to the original BCJR algorithm 
and using notations from  [3], the probability values obtained as SISO output are: 

 u 1
: ( )
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where 
1) );( IcP  is an estimation of probability of the encoder output (c) symbols 

(similarly );( IuP  used below for the input (u) symbols). 
2) );( OuP  is new refined value of the probability );( IuP . 
3) The index k indicates the time step and runs over the entire transmission 

length. 
4) The symbol s represents a code state (state in trellis). 
5) e is a generic trellis edge, while c(e) and u(e) are the output and input coder 

symbols, respectively, associated with the edge e. 
6) )(esS  and )(es E indicate the starting and ending states for the generic trellis 

edge e. 
7) uH  is a normalization constant. 
8) 1−kA and kB are probability values accumulated in the forward and backward 

directions along the trellis, according to the following updating relations: 
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In practice, expensive multiplications are avoided by working in the log domain and 
using the E-function operator  [18] [19] [20]. Introducing the following definitions, 
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the previously presented equations of forward and backward metric calculations (1)
take the form of: 
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Then, the output metric of the SISO is calculated as follows: 

 { }1: u(e) u
( ;  O) [ ( )] [ ( );  ] [ ( )]S E

k k k ke
u E s e c e I s eπ α π β−=

= + +  (4) 

The traditional decoding (Figure 2) is performed by computing first the β metrics for 
the entire block (going backwards) and storing them. Afterwards, the α values and 
output metrics O) ;(ukπ  are computed (going forward). The graphical representation 
was adopted from  [21], using the notations in Table 1. 
 

Graphical Notations 

 
Input to SISO of the intrinsic (channel) information and the extrinsic 
information from the previous decoding stage. 

 Dummy α  state metrics calculation (no storage). 

 Dummy β  state metrics calculation (no storage).  

 Valid β  state metrics calculation and storage. 

 Valid α  metrics and SISO output metrics ( ;  O)k uπ  calculation. 

Table 1: Graphical Notations 

N
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Execution Time of Block

Place Inside Block
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Figure 2: Standard SISO Algorithm 

Latency and memory size are significantly reduced when the sliding window approach 
is used  [3] [22] [23]. The backward (and/or forward) metrics are initialized at an 
intermediate point instead of the end of the block (or at the beginning, for forward 
metrics). The degradation due to this optimization is negligible when an appropriate 
intermediate point (sufficient window size) is used  [3] [22]. 
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Figure 3: Sliding Window SISO Algorithm 

Decoding with the sliding window (Figure 3) is performed as follows. The block is 
divided into windows of size WL. For each window, initial values of α and β are 
calculated. The initial α values are the last values of α of the previous window, and 
the initial β values are calculated by dummy β metrics calculation over the next 
window (initial values of β for the dummy β calculation are arbitrary). Dummy and 
valid β metrics are computed using separate hardware  [3]. Note that the initial values 
of α could in principle be calculated by dummy α metrics calculation over the 
previous window.  

When tailbiting termination is employed, the last WL bits of the block (tail window) 
are sent to the SISO prior to the entire block send. The SISO performs dummy α 
calculation over this window in order to get initial α values for the first window of the 
block. The initial β values for the last window are calculated and stored during the 
valid β state metrics calculation over the first window. Note that the cost of using 
tailbiting is additional latency of WL cycles per decoding iteration. The decoding with 
sliding window and tailbiting is shown in Figure 4. 

Tail
Window

N

1

{

 Time

Place Inside Block

Execution Time of Block  

Figure 4: Sliding Window with Tailbiting SISO Algorithm 

2.3. Interleaver 

2.3.1. Interleaver Parameters 

The interleaver size and structure considerably affect the turbo code error 
performance. The purpose of the interleaver in turbo codes is to ensure that the 
information patterns, which cause low-weight words for the first encoder, are not 
interleaved to similar patterns for the second encoder, thus improving the weight 
spectrum of the code. 

The interleaver spread is one of the main interleaver parameters. Spread optimization 
is desirable for both fast convergence and good distance properties of the code. Large 
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distance leads to lowering the point at which the BER curve flattens (“error floor”) 
and for increasing the slope of the BER. 

When J is the one-sided span of the output indices, and I(i), I(j) are the locations of 
the interleaver outputs i and j at the input of the interleaver, the spread definition, 
usually defined for the S-random interleaver  [24] is: 

''( , , ) ( ) ( ) ,     S J i j I i I j for i j J= − − <  

The minimal spread associated with index i is then defined as: 

[ ]'( , ) min ''( , , )
j

S J i S J i j=  

The minimal spread, S(J) associated with the entire interleaver is: 

 [ ]( ) min '( , )
i

S J S J i=  (5) 

The pair (S, J) is called also the spreading factors of an interleaver  [25]. Another 
alternative description of the spreading factors is described in terms of the 
displacement vector: 

 ( )( , )  ,  ( ) ( ) ,      X Y j i I j I i i j∆ ∆ = − − <  (6) 

A new and more effective definition of the interleaver spread was introduced in  [24] 
and was adopted in this work. The spread definition associated with two output 
indices i and j is defined as: 

// ( , ) ( ) ( )HSS i j I i I j i j= − + −  

The minimal spread associated with index i is then defined as: 
/ //( ) min ( , )HS HSj

S i S i j =    

The minimal “High-Spread”, HSS , associated with the entire interleaver is: 

 [ ]min '( )HS i
S S i=  (7) 

When tailbiting termination is used, the distance calculations, like ji −  above, are 
performed considering the tailbiting cyclic trellis feature, thus the tailbiting distance 
for two indices i and j is defined as follows (N is the interleaver size): 

 ( , , ) min      ,         TailD i j N i - j N - i - j=     (8) 

The “randomness” of the interleaver also is of high influence on the performance. 
Interleavers having regular structure, such as classical block interleavers, perform 
poorly for turbo codes. The set of displacement vectors of the interleaver can be used 
to study the “randomness”  [25]: 

 ( ) 2( ) { , | , ( ) ( ),  0 }X Y X YD I Z j i I j I i i j N= ∆ ∆ ∈ ∆ = − ∆ = − ≤ < <  (9) 

The largest set of displacement vectors occurs for Costas permutation  [25] [26]. In this 
case the number of displacement vectors is 2/)1( −⋅ NN . The normalized 
dispersion, γ, is defined then as follows:  
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where )(ID  is the size of the set of the displacement vectors D(I). 

In this work, that definition of dispersion could not be used, due to the use of 
tailbiting. Therefore, we consider the ratio of the number of parallel interleaver 
displacement vectors (|D(IPI)|, as proposed in this paper) to the dispersion of a random 
interleaver: 

 
( )

( )
PI

Random

D I
D I

Γ =  (11) 

  

2.3.2. Error Patterns 

With recursive systematic codes, single 1’s yield codewords of semi-infinite weight, 
and low-weight words appear with patterns of 2, 3 and 4 errors in information bits  
[27]. While for a single convolutional code a 3-bit error pattern may cause an error 
event, it rarely happens in turbo codes, thanks to interleaving. The low-weight 
patterns elimination contributes drastically to the code performance at the error floor 
region  [27]. In this work the proposed algorithm eliminates 2- and 4-bit error patterns. 
The structure of the error patterns and the corresponding search algorithm are detailed 
in Section  5.3. 

3. Sequential Decoder Architecture 

The detailed scheme of an iterative decoder is depicted in Figure 5. 

SISO2SISO1 I I-1

I

u
c1
c2 I-1

 

Figure 5: Iterative Decoder Scheme (I denotes interleaver) 

An iteration through the decoder can be divided into two stages: 

a. “Interleaving Stage”. The result of the previous iteration plus u, and c1 bits are 
processed by SISO1 and passed through interleaver I. 

b. “DeInterleaving Stage”. The extrinsic data from Interleaving Stage plus an 
interleaved version of u, and c2 are processed by SISO2 and de-interleaved. 

Both stages perform similar operations in the same order: Add, compute (SISO) and 
(de)interleave. When CE1 and CE2 are identical, SISO1 is identical to SISO2. In 
addition, the same memory unit can perform the interleaving and de-interleaving 
processes while suitable addresses are provided. Therefore, the above two stages can 
be implemented by the same hardware block, used twice for each iteration. 
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To decode a block, a decoding unit consists of a SISO, interleaver memory, adder, 
memories for channel data (u, c1, c2), interleaving address memory and control logic. 
When parallel processing of, say, n blocks is required to achieve higher data rate, the 
entire decoding unit is duplicated n times. Alternatively, a single interleaving address 
memory can be shared, using appropriate FIFOs. 

The maximal input rate, Uncoded
seqinF , , for the sequential architecture (with input double 

buffer) is: 

 , int,2
Uncoded eff

in seq seq
NDUF F

NI
= ⋅

⋅
 (12) 

 where int
int,
eff

seq
F NF

N c WL
⋅

=
+ ⋅

 (13) 

           NDU:   number of decoding units,  
           NI:       number of iterations, 

  N:        block size, 
  WL:     window length, 
   c:        SISO delay in window lengths (for the algorithm of Figure 4, c=5),  

           eff
seqFint, :  effective processing rate, and 

           intF :     internal clock rate. 
 

The N
N c WL+ ⋅

 ratio in Eq. (13) is the number of metrics processed per an internal 

clock cycle, while performing an internal iteration of the decoder. The fraction is less 
than one due to the SISO delay of c·WL cycles. The maximal possible processing rate 

intF  is degraded by this fraction. The input rate in Eq. (12) reflects NDU concurrent 
independent decoding units and 2·NI internal operations executed sequentially.  

For a given silicon area, the throughput of the decoder Uncoded
seqinF ,  depends on the number 

of decoding units that can be placed on that area. The area efficiency of sequential and 
parallel architectures is discussed below. 

Latency of the sequential architecture is that of the decoding unit: 

 
int

2 ( )
Seq

NI N c WLD
F

⋅ ⋅ + ⋅
=  (14) 

The latency consists of the delay of the practical SISO due to prior input of five 
windows (c=5 in Figure 4) in addition to processing N metrics of the block, all 
multiplied by the number of iterations. 
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4. Parallel Decoder Architecture 

The parallel decoding architecture applies m SISOs in parallel to one incoming block. 
The block is decomposed into m sub-blocks. The decomposition of processing to sub-
blocks is facilitated by applying the sliding window principle, which allows 
independent decoding of sub-blocks without degradation in error-correction 
performance  [22]. Dummy α and β metrics are calculated in order to determine the 
initial values of α and β for each sub-block i. An example of block decomposition to 
m=5 sub-blocks is shown in Figure 6.  

 

Dummy ββββ Calculation

1 N

Sub-Block

WL WL

ββββ Calculation

First Sub-Block

Tailbiting

Dummy αααα Calculation
α α α α  and P(u; O) Calculation

Dummy ββββ CalculationDummy αααα Calculation  

Figure 6: Sub-Block Decomposition Example (WL denotes Window Length) 

For each sub-block i the initial α metrics are calculated over the “tail” window of sub-
block i-1, incurring a slight increase of computational load but no increase of latency. 
For the first sub-block (i=1), the tail window is taken from sub-block m, thanks to 
tailbiting. Similarly, initial β values for the last window of sub-block i are β values 
received for the first window in sub-block i+1, incurring a slight decrease of 
computational load, which compensates for the increase, mentioned above, due to α 
dummy metrics computation. The sub-block is decoded according to the sliding 
window SISO algorithm (as in Figure 4). 

The related works  [7] and  [8] have same approach of dividing the block into sub-
blocks. However, the proposed in that works algorithms do not apply sliding window 
inside sub-blocks. In addition, proposed here technique for boundary metrics 
computation is more generic, than the techniques proposed in  [10] [11] [12], and 
causes no performance degradation or increase of computational load.  

Parallel versus sequential decoding are shown in Figure 7. At the beginning the “tail” 
windows are supplied to the SISOs.  Subsequently, the sub-block itself is sent. 
Parallel decoding significantly reduces the processing latency relative to sequential 
decoding as evident from Figure 7. The latency in this case becomes equal to the sub-
block processing latency.  
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Figure 7: Sequential and Parallel Decoding (with Tailbiting) 

Alternatively, sub-block decomposition could be performed in the encoder, encoding 
each sub-block separately with its own tailbiting termination  [28]. Thus, there would 
be no need to exchange dummy metrics between the parallel data flows in the 
decoder. Such a scheme incurs the same decoder complexity and achieves the same 
throughput and latency as the previous approach. 

The parallel processing of Figure 7 executes one SISO path, which is only one half of 
the decoding iteration (referred as an internal iteration). The results are interleaved, 
divided again into sub-blocks and then sent for the next parallel processing. Iterative 
parallel processing is executed by the architecture shown in Figure 8, as follows.  
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Figure 8: Parallel Decoder Architecture 

The incoming block is divided into m sub-blocks and each sub-block is sent to a 
separate SISO. The operations are the same as in the sequential architecture: Add, 
compute (SISO) and de/interleave. After SISO processing, the extrinsic metrics are 
sent (in sets of m metrics) to the Parallel Interleaver where they are permuted and 
stored in the interleaver memory (Interleaver / Deinterleaver Memory Block in Figure 
8). The interleaver memory and the channel data memories (U, C1, and C2 memory 
blocks) consists each of an array of m memories of depth N/m. The Parallel 
Interleaver (PI) performs interleaving according to the addressing supplied by its 
addressing memory. PI architecture is discussed in Section  5. 

The maximal input rate Uncoded
parinF ,  for the parallel architecture is: 

 , int,2
Uncoded eff

in par par
mF F
NI

= ⋅
⋅

 (15) 

 where 
int

int,
eff

par

NF
mF N c WL

m

⋅
=

+ ⋅
 (16) 
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and m is the number of SISOs, defining the parallelism level of the decoder. 
The expression for sequential effective processing rate int,

eff
seqF  (see Eq. (13)) is 

changed here to a sub-block effective processing rate int,
eff

parF , using sub-block length 
N/m instead of total block length N (Eq. (16)). Similar to Eq. (12), the decoder 
processing rate reflects performing 2·NI internal operations and processing m sub-
blocks in parallel.  

The latency also depends on m: Each SISO now operates on only N/m metrics. The 
latency consists of the delay of the practical SISO due to prior input of c windows in 
addition to processing N/m metrics of the sub-block, all multiplied by the number of 
iterations: 

 
int

2 ( )
Par

NNI c WL
mD
F

⋅ ⋅ + ⋅
=  (17) 

5. Parallel Interleaver 

5.1. Architecture 

The parallel interleaver (PI) plays a key role in the performance of the entire parallel 
decoder. Its task is to permute in parallel at least m metrics coming simultaneously 
from m SISOs and send the permuted metrics to an array of memories for storage and 
further permuting (Mem(1)-Mem(m) in Figure 9). 

1 2

Mem(1) Mem(2) Mem(m)

m

First
Interleaving

Stage

Second
Interleaving

Stage

d

k

1 1

2

d

2

d

1

2

d

 

Figure 9: The Parallel Interleaver  

The interleaving consists of two stages:  

a. First Interleaving Stage (FIS). 

b. Second Interleaving Stage (SIS). 
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The parallel interleaver architecture is parameterized by m, the number of 
inputs/outputs of the interleaver, and d, the FIS delay (Figure 9). The minimal depth 
of each storage memory in SIS is denoted by k, where: 

 /k N m=  (18) 

The incoming sets of metrics are first permuted by the First Interleaving Stage, and 
are subsequently permuted again in the target memories (Mem(1)-Mem(m)) of the 
Second Interleaving Stage. 

At each calculation cycle, m metrics (from m SISOs) enter FIS. At the beginning, FIS 
accumulates m d⋅  metrics for d cycles and then starts ejecting sets of m metrics for 
each calculation cycle. Each output set contains m out of the m d⋅ metrics. Each 
metric is identified by its SISO source index and input cycle number, as in the 
example of Table 2. FIS permutations are affected by permuting these indices, turning 
them into the memory destination index and the output cycle number.   
 

SISO Source 

Index 
Memory Destination 

Index Input   
Sets: 

1 2 3 4 

Output 
Sets: 

1 2 3 4 

2 m5 m6 m7 m8 2 m5 m7 m2 m4 Input 
Cycle 1 m1 m2 m3 m4 

 

Output 
Cycle 1 m1 m6 m8 m3 

Table 2: FIS Interleaving Example with m=4, d=2. The input on the left is permuted into the table on 
the right. 

After FIS interleaving, the data arrive in the Second Interleaving Stage (SIS), where 
intra-sub-block permutation is performed by proper addressing of each of the m 
memories. For the sake of efficient hardware implementation, maxN  and m should be 
chosen so that 0m)rem(N, =  and k is a power of two (see Eq. (18)). All k! 
permutations can be achieved on the metrics within the same SIS memory since there 
is no restriction on the order of metrics inside the memory.  

5.2. Possible Permutations 

Due to the structure of PI, the number of possible permutations is limited relative to 
the turbo interleaver used in the sequential decoder. The standard interleaver of size 
N, implemented as a memory, can perform N! permutations. We considered three 
alternative FIS architectures: A cross-bar, an infinite permutation network and a finite 
permutation network (Figure 10). Wide input and output memories are combined with 
cross-bar switches. Regardless of which FIS architecture is employed, the output is 
always directed into the SIS. 

In the crossbar architecture, a single set of m metrics is permuted by a m×m crossbar 
switch, facilitating m! possible permutations. Note that two metrics which arrive in 
the same input cycle can never end up in the same target SIS memory (Mem(i) in 
Figure 9).   
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Figure 10: Alternative FIS Architectures: (a) cross-bar (b) infinite permutation network (c) finite 
permutation network. X represents a cross-bar switch 

In the (most powerful) infinite permutation network architecture, an m×(m·d) crossbar 
spreads the incoming m metrics set into m free spaces in the m·d memory. A different 
set of m metrics is concurrently extracted from the memory and permuted by the 
second crossbar. All metrics stored in the memory are considered as one big set, out 
of which the next set of m metrics can be selected without any constraints. The total 
effect in the FIS thus consists of three permuting steps (in the two crossbar switches 
and by memory addressing). Note that any single metric may enter memory early on 
and stay there for a long time, hence the name of this architecture. Note further that, 
unlike the crossbar architecture, the entire set of d metrics (namely, metrics arriving 
simultaneously at the FIS) can be channeled into the same SIS memory.  

The finite permutation network architecture is a simpler version, employing a double-
buffered memory in lieu of the first crossbar switch. d metric sets are stored in one 
memory (during d cycles) and are permuted and extracted in full during d subsequent 
cycles, when the other memory is being filled. Thus, any single metric may be 
delayed by at most d-1 cycles, hence the name of that architecture. The full content of 
a buffer (m·d metrics) is termed a delay packet in the following. The allowed delay, d, 
impacts the total number of possible permutations. For an unlimited d value, FIS 
resolves all blocking and provides all N! permutations.  

A parallel interleaver may perform any of N! possible permutations, when FIFOs of 
an appropriate length are used. A form of parallel interleaver, which optimizes the 
FIFOs sizes, was recently proposed in  [14]. Multiple multi-input FIFO solution 
becomes very expansive with block size and parallelism level growth.  

The crossbar architecture can be considered a special case of the finite permutation 
network, whereas the latter is a special case of the infinite one. Their implementation 
is progressively more complex; we have opted for the medium complexity finite 
permutation network, and we analyze its area requirements in Section  5.4 below. We 
now consider the impact of the level of parallelism m and the FIS delay d on NPerm, 
the number of possible PI permutations.  
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Let’s assume that m·d divides N ( | 0N m d⋅ = ). The depth of the SIS memory (and the 
number of output cycles of the SISOs array) is k=N/m. In other words, k sets of m 
metrics ( /( )N m d⋅  packets) enter PI during one internal decoding iteration. 

The interleaving process is depicted in Figure 11. For each delay packet the FIS can 
perform )!( dm ⋅  permutations. However, this number includes permutations performed 
by SIS for the metrics entering the same memory, and thus for each set of d metrics 
sent by FIS to the same memory, d! permutations should be eliminated. This results in 

md
dm
)!(

)!( ⋅  permutations for a single delay packet. 

m

k

Permutation
performed by
FIS

Permutation
performed by
SIS

d

d

d

 

Figure 11: PI (Delay Packet Approach) Interleaving 

Each SIS memory can perform k! permutations. The total number of possible 
permutations for the entire PI is: 

 
/( )

( )! ( !)
( !)

N m d
m

m

m dNPerm k
d

⋅
 ⋅

= ⋅ 
 

 (19) 

FIS can perform md
dm
)!(

)!( ⋅  permutations on one delay packet, there are )/( mdN ⋅  delay 

packets, and the entire SIS can perform mk )!(  permutations. For example, 

For d=1: /( !) ( !) ( !) ( !)N m m k mNPerm m k m k= ⋅ = ⋅  (crossbar architecture). 

For m=1: 
/! ( !) ! ( / )! !

!

N ddNPerm k k N m N
d

 = ⋅ = = =  
  (one SISO, sequential 

architecture). 

Working in the log-domain, Eq. (19) takes the form of: 

 ln( ) {ln[( )!] ln[ !]} ln[ !]kNPerm m d m d m k
d

= ⋅ ⋅ − ⋅ + ⋅  (20) 

As can be seen from Eq. (19) the number of possible permutations depends on three 
parameters: N, m and d. The following charts demonstrate those dependencies. 
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Stirling’s approximation was used in the computation. In both charts (Figure 12 and 
Figure 13), ln(NPerm) is normalized by the logarithm of the maximal number of 
permutations, N!. 
Figure 12 represents the permutations attainable by finite permutation networks for 
different block sizes (N). In this example d=1 (a crossbar architecture). The decrease 
shown on the log-ratio scale actually reflects a decrease by many orders of magnitude 
in the permuting power relative to the maximum number of permutations. In general, 
as the parallelism level grows, the degradation levels off thanks to the growing size of 
the delay packet (m·d).  

 

Figure 12: Normalized Number of Permutations for Different N vs. m 

Increasing d also expands the delay packet size, resulting in a growing number of 
possible permutations. For example, Figure 13 shows the results for N=4K and for 
different delays, d. Thus d>1 compensates for most of the decrease resulting from 
partitioning.  

 

Figure 13: Normalized Number of Permutations for Different Delays vs. m 
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5.3. Parallel Interleaver Design 

5.3.1. Interleaver Design Algorithm  

Given a PI with certain N, m, d parameters and finite permutation network FIS, the 
high performance PI design algorithm (Figure 14 and Figure 15) generates the 
required permutations according to the high-spread criteria (Eq. (7)), while 
eliminating the 2- and 4-bit error patterns (Section  2.3.2) and considering the 
tailbiting restrictions of Eq. (8).  

CurIdx < N+1 ?

Generate Random Permutation
with PI restrictions

Store
generated

Permutation

N,m,d

No CurIdx < Sgoal ? No

Yes

CurIdx = 1

Set CurIdx = 1
               Set Sgoal  =

a.

2 N⋅b.

Yes

CurIdx
Spread

Validation & Optimization

CurIdx
Spread

Validation & Optimization

h.

 

Figure 14: Parallel Interleaver Design Algorithm - Main Flow 

Smin Calculation

CurIdx =
CurIdx + 1

YesCurIdx =
CurIdx + 1

NoSgoal =
Sgoal - 1

Replace Metric by Exchange

Yes

Replacement
Succeeded?

Is Sgoal
sutisfied?No

nCalculatio  S bit2
min

−

nCalculatio  S bit4
min

−

c.

c.

c.

d.e.

e.

f.

g.

 

Figure 15: PI Design Algorithm – CurIdx Spread Validation & Optimization 
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The algorithm comprises the following stages:  
a. A random permutation P[1..N] according to the N, m and d parameters is 

generated by passing an ordered sequence through the PI, using random 
addresses at the First and Second Interleaving Stages (FIS and SIS). Thus, the 
permutation is guaranteed realizable.  

b. The current spread value, Sgoal, is initialized to the maximal possible value. 
While according to  [24] 2Max

goalS N= ⋅ , in practice that bound is unreachable 
and a lower initial value results in faster convergence of the algorithm.  

c. For each permutation index CurIdx, the algorithm performs minimal spread 
(Smin) calculation according to Eq. (7). The spread is calculated for CurIdx 
(Smin) and for the two- and four-bit patterns related to the CurIdx ( 2

min
bitS −  and 

4
min

bitS − , Eq. (22) and Eq. (23) below). 

d. In order to satisfy total permutation spread, Sgoal (the minimal spreads 
computed at stage  c) should satisfy all the following inequalities: 

 
min

2
min

4
min

i.   

ii.  2

iii. 2

goal

bit
goal

bit
goal

S S

S S

S S

−

−

≥

≥ ⋅

≥ ⋅

 (21) 

e. When Eq. (21) is satisfied, the algorithm accepts CurIdx, and begins treating 
the next index, CurIdx+1. 

f. If Eq. (21) is not satisfied, P[CurIdx] is rejected and replaced as follows: 

i. The algorithm searches for a set of indices, which can be 
swapped with P[CurIdx]. The suitable indices must belong to 
the same delay packet or to the same SIS memory as CurIdx, 
and satisfy Eq. (21) after the swap. 

ii. If such a set is found, P[CurIdx] is exchanged with a randomly 
selected index from the set, and CurIdx is incremented. 
Otherwise, replacement cannot be performed. 

g. If the replacement cannot be performed, the Sgoal constraint is reduced. 

h. Due to tailbiting, when the algorithm reaches index N, the first Sgoal indices 
of the permutation should be recomputed. 

When in stage  g, there are two approaches that can be applied. The search could be 
restarted (CurIdx could be reset to 1 in stage g), or the search can be continued with 
the same CurIdx and reduced Sgoal. We have found that the latter option yields better 
results in terms of final spread and execution time. We believe that the resulting 
interleaver regularity is lower, improving the total dispersion of the permutation.  

Convergence of this algorithm was found to be fast. It converges very close to the 
highest spread value within a few dozens of search iterations.  The algorithm was 
developed based on results presented in  [16]  [24] [27]. A similar approach (for the 
design of a sequential interleaver) has recently been presented in  [29], achieving a 
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performance very close to the application of our algorithm to the sequential case 
(m=1).  

5.3.2. 2-bit Error Patterns  

A 2-bit error pattern is defined by CurIdx and three additional indices (Figure 16) that 
sustain the following conditions:  

a. An index at the input sequence (In) that sustains the tailbiting distance of 
)1( −⋅ Ln  forward or backward relative to CurIdx (L is the maximal code 

generator length).  

b. Two output indices which are the interleaving targets of CurIdx and the input 
index from  a, and for which the tailbiting distance between the output indices 
is )1( −⋅ Lm . 

In

Out

)1( −⋅ Ln

)1( −⋅ Lm

CurIdx

 

Figure 16: Two-Bit Error Pattern; n, m are integers 

According to Eq. (7), 2-bit error pattern spread, 2
min

bitS − , is: 

 2
min ( 1) ( 1)bitS n L m L− = ⋅ − + ⋅ −  (22) 

When 2
min 2bit

goalS S− ≥ ⋅ , the error event is long enough and the pattern is not eliminated.  
Otherwise, the CurIdx is exchanged with another index, such that no error patterns 
occur for either CurIdx or the other index. 

5.3.3. 4-bit Error Patterns 

For 4-bit error pattern there are two low weight error events at each component code  
[27], even though each pair exhibits a high spread separately (Figure 17). 

 

In

Out

)1(1 −⋅ Ln

)1(3 −⋅ Ln

)1(2 −⋅ Ln

)1(4 −⋅ Ln

CurIdx

 

Figure 17: Four-Bit Error Pattern; 4321 ,,, nnnn  are integers 
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As in Section  5.3.2, the distances between the indices are computed according to Eq. 
(8). The 4-bit error pattern spread, 4

min
bitS − , is: 

 
4

4
min

1

( 1)bit
i

i
S n L−

=

= ⋅ −∑  (23) 

When 4
min

bitS −  does not sustain Eq. (21), the pattern is eliminated by exchanging the 
CurIdx with other index of the permutation, according to the conditions listed in stage 
 f of the PI design algorithm. 

5.4. VLSI Implementation 

The Parallel Interleaver (PI) consists of two stages: FIS and SIS (Figure 9). SIS is 
implemented by an array of memories that perform SIS interleaving using addresses 
generated by the algorithm of Section  5.3. The following FIS implementation is 
optimized for the Finite Permutation Network architecture (Figure 10).  

FIS consists of an array of m·d memory elements (flip-flops) followed by a (m·d)×m 
crossbar switch (an interconnection matrix and selection multiplexers). The Finite 
Permutation Network comprises two memory arrays (Figure 10) in a double-buffer 
setup; only one array is shown in Figure 18. 

1 2 d 1 2 d 1 2 d

FisIn(1) FisIn(2) FisIn(m)

Counter
mod d

1
2

m
*d

1
2

m
*d

1
2

m
*d

FisOut(1)

FisOut(2)

FisOut(m)

Interleaving
Addr(1)

Interleaving
Addr(2)

Interleaving
Addr(m)

 

Figure 18: Finite Permutation Network Architecture 

The write operation is performed sequentially by rows. For each output at each read 
cycle, an address is supplied indicating from which of the m d⋅ memory elements the 
metric is taken. The two buffers are switched each time d sets are read and written. 
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Figure 19: Parallel Turbo Decoder ASIC Chip Area vs. Parallelism Level 

ASIC and FPGA FIS implementations were designed and compared for area 
requirements. An eight-bit data width was selected for inputs, outputs and the memory 
elements. The total parallel decoder chip area (for parallelism level of m) is 
approximately m times the area of a single SISO. Figure 19 shows ASIC chip area for 
d=1,2 and a baseline without a FIS. Evidently, FIS requires an insignificant silicon 
area on the parallel decoder chip. Note the highly linear growth in chip area with m; 
below we show also a linear speedup in return for this linear increase in cost.  

Figure 20 shows similar results for an FPGA implementation. In addition, it should be 
noted that at least twice lower total gate counts and FIS gate counts are achieved, 
when a shorter metric representation (thanks to SISO internal optimizations) is used.   
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Figure 20: Parallel Turbo Decoder FPGA Chip Capacity vs. Parallelism Level  
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6. Performance Analysis 

This section contains the analysis and simulation results for the parallel decoder. 

6.1. Spread and Dispersion 

The spread and dispersion performance of the algorithm for different configurations 
of parallel decoder (N, m, d) are presented in Figure 21 and Figure 22. 

0
10
20
30
40

50
60
70
80
90

100

1 2 4 8 16 32
Parallelism Level, m

Sp
re

ad
 [b

its
]

N=8192, d=1
N=8192, d=2
N=8192, d=4
N=4096, d=1
N=4096, d=2
N=4096, d=4
N=2048, d=1
N=2048, d=2
N=2048, d=4
N=1024, d=1
N=1024, d=2
N=1024, d=4
N=512, d=1
N=512, d=2
N=512, d=4  

Figure 21: PI Spread Results for Different N, m and d 

Slight spread degradation relatively to sequential interleaver (m=1, d=1) is observed 
as parallelism level, m, goes higher. A slight spread improvement is achieved when d 
(the PI delay) is increased, thanks to larger delay packets. Most of the improvement 
occurs when d is increased from d=1 to d=2. 
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Figure 22: PI Dispersion results for different N, m and d 

The interleaver dispersions (Figure 22) are very close to that of a random interleaver 
(where Γ=1). With such dispersion and high spread characteristics, the decoder 
achieves a high error correction performance, as shown in Section  6.3 below. 
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6.2. Throughput and Latency 

Parallel and sequential architectures were compared in terms of latency and 
throughput for a given silicon area. Performance is highly correlated to NDU (number 
of decoding units) and m (level of parallelism; see Eq. (12)-(17)). The higher NDU 
and m are, the more efficient the area utilization; parallel architectures are more area 
efficient thanks to the fact that, as we add more SISOs, no additional memories and 
almost no additional logic are required. When, on the other hand, we wish to add 
more SISOs to a sequential architecture, the entire decoding unit must be duplicated. 

The ratio of throughput Uncoded
inF  of the parallel architecture to that of the sequential 

one for different block sizes vs. area is shown in Figure 23. It can be seen that for 
larger chip area, the parallel architecture can handle larger blocks more efficiently, 
and higher input data rates are accommodated. 
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Figure 23: Parallel over Sequential Throughput Ratio vs. Area 

The latency reduction is summarized in Figure 24. A linear speedup with chip area 
increase is evident in the chart. Recall that the level of parallelism is also linear in 
chip area (Figure 19), thus achieving an attractive cost/performance ratio.  
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Figure 24: Sequential over Parallel Latency Ratio vs. Chip Area 
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6.3. BER Performance 

The parallel decoder was simulated over AWGN channel using BPSK modulation. 
The results refer to rate 1/3, 2/3 and 3/4 turbo code with two identical 8-state 
convolutional encoders with g0=13, g1=17 generator  [30]. The decoder performed 10 
decoding iterations, using a 32-bit sliding window. 

 

Figure 25: BER Results, N=512, CR=1/3 

 

Figure 26: BER Results, N=2048, CR=1/3 

 

Figure 27: BER Results, N=1024, CR=1/3 

 

Figure 28: BER Results, N=4096, CR=1/3 
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The results in Figure 28 refer to the code rate 1/3. “lpne” in the legend stands for last 
point number of errors, corresponding to the number of error events that occurred for 
the last computed BER point for the given (m, d) configuration. For other points the 
number of the error events is in range 10-100. The “lpne” is given in order to provide 
the reader the confidence level for the last measurements at a very low BER. 

The results show slight deviations relative to the sequential decoder (m=1, d=1). As 
evident from the results for all different block lengths and for different examined m 
values, performance is within 0.05 dB of the sequential turbo decoder. For the larger 
block lengths the small degradation is compensated by applying d=2. For some 
configurations of the decoder, the obtained results outperform marginally over the 
(m=1, d=1) configuration. This is a result of variations of the interleaver search 
algorithm. In any case, the sequential architecture, which can implement any of !N  
possible permutations, can implement the obtained (m, d) permutations as well. 

The results in Figure 29 and Figure 30 refer to the code rates 2/3 and 3/4 respectively. 
The mentioned rates were obtained by puncturing the outputs of the convolutional 
encoders (see Figure 1). The results are similar to those for code rate 1/3. 

 

Figure 29: BER Results, N=2048, CR=2/3 

 

 

Figure 30: BER Results, N=2048, CR=3/4 
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7. Conclusions  

A new parallel turbo decoder VLSI architecture was presented. The architecture of the 
parallel interleaver was detailed and a new interleaver design algorithm was 
introduced. A significant linear reduction of latency was achieved (up to a factor of 
20) in comparison with a sequential turbo decoder. In addition, it was found that for 
large blocks the parallel architecture is more area efficient, improving throughput up 
to a factor of 5 for the same chip. The error correction performance was within 0.05 
dB of that of the sequential turbo decoder. The parallel architecture and the parallel 
interleaver design algorithm achieved an attractive cost/performance ratio and an 
attractive performance in terms of BER, latency and throughput. 
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