
Learning via Gaussian Herding

Koby Crammer
Department of Electrical Enginering

The Technion
Haifa, 32000 Israel

koby@ee.technion.ac.il

Daniel D. Lee
Dept. of Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, PA 19104

ddlee@seas.upenn.edu

Abstract

We introduce a new family of online learning algorithms based upon constraining
the velocity flow over a distribution of weight vectors. In particular, we show how
to effectively herd a Gaussian weight vector distribution by trading off velocity
constraints with a loss function. By uniformly bounding this loss function, we
demonstrate how to solve the resulting optimization analytically. We compare the
resulting algorithms on a variety of real world datasets, and demonstrate how these
algorithms achieve state-of-the-art robust performance, especially with high label
noise in the training data.

1 Introduction

Online learning algorithms are simple, fast, and require less memory compared to batch learning
algorithms. Recent work has shown that they can also perform nearly as well as batch algorithms in
many settings, making them quite attractive for a number of large scale learning problems [3]. The
success of an online learning algorithm depends critically upon a tradeoff between fitting the current
data example and regularizing the solution based upon some memory of prior hypotheses. In this
work, we show how to incorporate regularization in an online learning algorithm by constraining the
motion of weight vectors in the hypothesis space. In particular, we demonstrate how to use simple
constraints on the velocity flow field of Gaussian-distributed weight vectors to regularize online
learning algorithms. This process results in herding the motion of the Gaussian weight vectors to
yield algorithms that are particularly robust to noisy input data.

Recent work has demonstrated how parametric information about the weight vector distribution can
be used to guide online learning [1]. For example, confidence weighted (CW) learning maintains a
Gaussian distribution over linear classifier hypotheses and uses it to control the direction and scale
of parameter updates [9]. CW learning has formal guarantees in the mistake-bound model [7];
however, it can over-fit in certain situations due to its aggressive update rules based upon a separable
data assumption. A newer online algorithm, Adaptive Regularization of Weights (AROW) relaxes
this separable assumption, resulting in an adaptive regularization for each training example based
upon its current confidence [8]. This regularization comes in the form of minimizing a bound on the
Kullback-Leibler divergence between Gaussian distributed weight vectors.

Here we take a different microscopic view of the online learning process. Instead of reweighting and
diffusing the weight vectors in hypothesis space, we model them as flowing under a velocity field
given by each data observation. We show that for linear velocity fields, a Gaussian weight vector
distribution will maintain its Gaussianity, with corresponding updates for its mean and covariance.
The advantage of this approach is that we can incorporate different constraints and regularization
on the resulting velocity fields to yield more robust online learning algorithms. In the remainder
of this paper, we elucidate the details of our approach and compare its performance on a variety of
experimental data.

1

These algorithms maintain a Gaussian distribution over possible weight vectors in hypothesis space.
In traditional stochastic filtering, weight vectors are first reweighted according to how accurately
they describe the current data observation. The remaining distribution is then subjected to random
diffusion, resulting in a new distribution. When the reweighting factor depends linearly upon the
weight vector in combination with a Gaussian diffusion model, a weight vector distribution will
maintain its Gaussianity under such a transformation. The Kalman filter equations then yield the
resulting change in the mean and covariance of the new distribution. Our approach, on the other
hand, updates the weight vector distribution with each observation by herding the weight vectors
using a velocity field. The differences between these two processes are shown in Fig. 1.

2 Background

(a)

(b)

Figure 1: (a) Traditional stochastic filter-
ing: weight vectors in the hypothesis space are
reweighted according to the new observation and
undergo diffusion resulting in a new weight vec-
tor distribution. (b) Herding via a velocity field:
weights vectors flow in hypothesis space accord-
ing to a constrained velocity field, resulting in a
new weight vector distribution.

Consider the following online binary classification
problem, that proceeds in rounds. On the ith round
the online algorithm receives an input xi ∈ Rd and
applies its current prediction rule to make a predic-
tion ŷi ∈ Y , for the binary set Y = {−1,+1}. It
then receives the correct label yi ∈ Y and suffers a
loss `(yi, ŷi). At this point, the algorithm updates its
prediction rule with the pair (xi, yi) and proceeds to
the next round. A summary of online algorithms can
be found in [2].

An initial description for possible online algorithms
is provided by the family of passive-aggressive (PA)
algorithms for linear classifiers [5]. The weight vec-
tor wi at each round is updated with the current in-
put xi and label yi, by optimizing:

wi+1 = arg min
w

1
2
‖w−wi‖2 + C` ((xi, yi),w) ,

(1)
where ` ((xi, yi),w) is the squared- or hinge-loss
function and C > 0 controls the tradeoff between
optimizing the current loss and being close to the

old weight vector. Eq. (1) can also be expressed in dual form, yielding the PA-II update equation:

wi+1 =wi+ αiyixi , αi =
(
max{0, 1− yi(w>

i xi)}
)
/

(
‖xi‖2 + 1/C

)
. (2)

The theoretical properties of this algorithm was analyzed by [5], and it was demonstrated on a variety
of tasks (e.g. [3]).

Online confidence-weighted (CW) learning [9, 7], generalized the PA update principle to multivari-
ate Gaussian distributions over the weight vectors N (µ,Σ) for binary classification. The mean
µ ∈ Rd contains the current estimate for the best weight vector, whereas the Gaussian covariance
matrix Σ ∈ Rd×d captures the confidence in this estimate.

CW classifiers are trained according to a PA rule that is modified to track differences in Gaus-
sian distributions. At each round, the new mean and covariance of the weight vector distribu-
tion is chosen by optimizing: (µi+1,Σi+1) = arg minµ,Σ DKL (N (µ,Σ) ‖N (µi,Σi)) such that
Prw∼N (µ,Σ) [yi (w · xi) ≥ 0] ≥ η.

This particular CW rule may over-fit since it guarantees a correct prediction with likelihood η > 0.5
at every round. A more recent alternative scheme called AROW (adaptive regularization of weight-
vectors) [8] replaces the guaranteed prediction at each round with the following loss function:(
µi+1,Σi+1

)
= arg minµ,Σ DKL (N (µ,Σ) ‖N (µi,Σi)) + λ1`h2 (yi,µ · xi) + λ2x

>
i Σxi ,where

`h2 (yi,µ · xi) = (max{0, 1− yi(µ · xi)})2 is the squared-hinge loss suffered using the weight
vector µ and λ1, λ2 ≥ 0 are two tradeoff hyperparameters. AROW [8] has been shown to perform
well in practice, especially for noisy data where CW severely overfits.

In this work, we take the view that the Gaussian distribution over weight vectors is modified by
herding according to a velocity flow field. First we show that any change in a Gaussian distributed
random variable can be related to a linear velocity field:

2

Theorem 1 Assume that the random variable (r.v.) W is distributed according to a Gaussian dis-
tribution, W ∼ N (µ,Σ) ,

1. The r.v. U = AW + b also has a Gaussian distribution, U ∼ N
(
b + Aµ, AΣA>)

.

2. Assume that a r.v. U is distributed according to a Gaussian distribution, U ∼ N
(
µ̃, Σ̃

)
.

Then there exists A and b such that the following linear relation holds, U = AW + b .

3. Let Υ be any orthogonal matrix Υ> = Υ−1 and define U = Σ
1
2 ΥΣ−

1
2 (W − µ) + µ,

then both U and W have the same distribution.

Proof: The first property follows easily from linear systems theory. The second property is easily
shown by taking: A = Σ̃

1
2 Σ−

1
2 and b = µ̃− Σ̃

1
2 Σ−

1
2 µ . Similarly, for the third property, it suffices

to show that E [U] = Σ
1
2 ΥΣ−

1
2 (E [W]− µ)+µ = µ , and Cov (U) = E

[
(U− µ) (U− µ)>

]
=

Σ
1
2 ΥΣ−

1
2 E

[
(W − µ) (W − µ)>

]
Σ−

1
2 Υ>Σ

1
2 = Σ

1
2 ΥΣ−

1
2 ΣΣ−

1
2 Υ>Σ

1
2 = Σ

1
2 ΥΥ>Σ

1
2 =

Σ
1
2 Σ

1
2 = Σ .

Thus, the transformation U = AW+b can be viewed as a velocity flow resulting in a change of the
underlying Gaussian distribution of weight vectors. On the other hand, this microscopic view of the
underlying velocity field contains more information than merely tracking the mean and covariance
of the Gaussian. This can be seen since many different velocity fields result in the same overall mean
and covariance. In the next section, we show how we can define new online learning algorithms by
considering various constraints on the overall velocity field. These new algorithms optimize a loss
function by constraining the parameters of this velocity field.

3 Algorithms

Our algorithms maintain a distribution, or infinite collection of weight vectors {Wi} for each round
i. Given an instance xi it outputs a prediction based upon the majority of these weight vectors. Each
weight vector Wi is then individually updated to Wi+1 according to a generalized PA rule,

Wi+1=arg min
W
Ci (W) where Ci (W)=

1
2

(W−Wi)
>Σ−1

i (W−Wi)+C` ((xi, yi) ,W) , (3)

and Σi is a PSD matrix that will be defined shortly. In fact, we assume that Σi is invertible and thus
PD.

Clearly, it is impossible to maintain and update an infinite set of vectors, and thus we employ a
parametric density fi(Wi; θi) to weight each vector. In general, updating each individual weight-
vector using some rule (such as the PA update) will modify the parametric family. We thus employ
a Gaussian parametric density with W ∼ N (µi,Σi), and update the distribution collectively,

Wi+1 = AiWi + bi ,

where Ai ∈ Rd×d represents stretching and rotating the distribution, and the bi ∈ Rd is an overall
translation. Incorporating this linear transformation, we minimize the average of Eq. (3) with respect
to the current distribution,

(Ai, bi) = arg min
A,b

EWi∼N (µi,Σi) [Ci (AWi + b)] . (4)

We derive the algorithm by computing the expectation Eq. (4) starting with the first regularization
term of Eq. (3). After some algebraic manipulations and using the first property of Theorem 1 to
write µ = Aµi + bi we get the expected value for the first term of Eq. (3) in terms of µ and A,

1
2

(µ− µi)
> Σ−1

i (µ− µi) +
1
2
Tr

(
(A− I)>Σ−1

i (A− I)Σi

)
. (5)

Next, we focus on the expectation of the loss function in their second term of Eq. (3).

3.1 Expectation of the Loss Function

We consider the expectation,

EWi∼N (µi,Σi) [` ((xi, yi) , AWi + b)] (6)

3

In general, there is no closed form solution for this expectation, and instead we seek for an appro-
priate approximation or bound. For simplicity we consider binary classification, denote the signed
margin by M = yi(W>x) and write ` ((x, y),W) = `(M) .

If the loss is relatively concentrated about its mean, then the loss of the expected weight-vector µ is
a good proxy for Eq. (6). Formally, we can define

Definition 1 Let F = {f(M ; θ) : θ ∈ Θ} be a family of density functions. A loss function is
uniformly λ-bounded in expectation with respect to F if there exists λ > 0 such that for all θ ∈ Θ
we have that, E [` (M)] ≤ ` (E [M]) + λ

2 E
[
(M − E [M])2

]
, where all expectations are with

respect M ∼ f(M ; θ).

We note in passing that if the loss function ` is convex with respect to W we always have that,
E [` (M)] ≥ ` (E [M]). For Gaussian distributions we have that Θ = {µ,Σ} and a loss function
` is uniformly λ-bounded in expectation if there exists a λ such that, EN (µ,Σ) [` ((x, y),W)] ≤
` ((x, y),E [W]) + λ

2 x>Σx . We now enumerate some particular cases where losses are uniformly
λ-bounded.

Proposition 2 Assume that the loss function `(M) has a bounded second derivative, `′′(M) ≤ λ
then ` is uniformly λ-bounded in expectation.

Proof: Applying the Taylor expansion about M = E [M] we get, ` (M) = ` (E [M]) +
(M − E [M]) `′ (E [M]) + 1

2 (M − E [M])2 `′′ (ξ) ,for some ξ ∈ [M,E [M]]. Taking the expecta-
tion of both sides and bounding `′′(ξ) ≤ λ concludes the proof.
For example, the squared loss 1

2

(
y −M>x

)2
is uniformly (λ =)1-bounded in expectation since

its second derivative is bounded by unity (1). Another example is the log-loss, log(1 + exp(−M)),
being uniformly 1/4-bounded in expectation. Note that the popular hinge and squared-hinge loss
are not even differentiable at M = 1. Nevertheless, we can show explicitly that indeed both are
uniformly λ-bounded, though the proof is omitted here due to space considerations. To conclude,
for uniformly λ-bounded loss functions, we bound Eq. (6) with ` ((xi, yi),µ) + λ

2 x>i AΣiA
>xi .

Thus, our online algorithm minimizes the following bound on Eq. (4), with a change of variables
from the pair (A, b) to the pair (A,µ), where µ is the mean of the new distribution,

(Ai,µi+1) = arg min
A,µ

1
2

(µ− µi)
> Σ−1

i (µ− µi) + C` ((xi, yi),µ) + (7)

1
2
Tr

(
(A− I)>Σ−1

i (A− I)Σi

)
+

Cλ

2
x>i AΣiA

>xi (8)

In the next section we derive an analytic solution for the last problem. We note that, similar to
AROW, it is decomposed into two additive terms: Eq. (7) which depends only on µ and Eq. (8)
which depends only on A.

4 Solving the Optimization Problem

We consider here the squared-hinge loss, ` ((x, y),µ) =
(
max{0, 1− y(µ>x)}

)2
, reducing Eq. (7)

to a generalization of PA-II in Mahalanobis distances (see Eq. (2)),

µi+1 = µi + αiyixi , αi =
(
max{0, 1− yi(µ>i xi)}

)
/

(
x>i Σixi + 1/C

)
, (9)

We now focus on minimizing the second term (Eq. (8)) which depends solely on Ai. For simplicity
we assume λ = 1 and consider two cases.

4.1 Diagonal Covariance Matrix

We first assume that both Σi and A are diagonal, and thus also Σi+1 is diagonal, and thus Σi,Σi+1

and A commute with each other. Eq. (8) then becomes, 1
2Tr

(
(A− I)>(A− I)

)
+ C

2 x>i AΣiA
>xi .

Denote the rth diagonal element of Σi by (Σi)r,r and the rth diagonal element of A by (A)r,r. The

4

last equation becomes,
∑

r
1
2 ((A)r,r − 1)2 + C

2

∑
r x2

i,r (A)2r,r (Σi)r,r Taking the derivative with
respect to (A)r,r we get,

(Ai)r,r = 1/
(
1 + Cx2

i,r (Σi)r,r

)
⇒ (Σi+1)r,r = (Σi)r,r/

(
1 + Cx2

i,r (Σi)r,r

)2

. (10)

The last equation is well-defined since the denominator is always greater than or equal to 1.

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

before
NHERD_P
NHERD_E
NHERD_D
AROW_P
AROW_D

Figure 2: Top and center panels:
an illustration of the algorithm’s
update (see text). Bottom panel:
an illustration of a single update
for the five algorithms. The cyan
ellipse represents the weight vec-
tor distribution before the example
is observed. The red-square rep-
resents the mean of the updated
distribution and the five ellipses
represents the covariance of each
of the algorithm after given the
data example ((1, 2), +1). The
ordering of the area of the five el-
lipses correlates well with the per-
formance of the algorithms.

4.2 Full Covariance Matrix

Expanding Eq. (8) we get 1
2

(
Tr

(
A>Σ−1

i AΣi

)
− Tr

(
Σ−1

i AΣi

)
+Tr

(
Σ−1

i Σi

)
− Tr

(
A>Σ−1

i Σi

))
+ C

2 x>i AΣiA
>xi. Setting the

derivative of the last equation with respect to A we get, Σ−1
i AΣi−

I + Cxix
>
i AΣi = 0 . We multiply both terms by Σ−1

i (right) and
combine terms,

(
Σ−1

i + Cxix
>
i

)
A = Σ−1

i , Yielding,

Ai =
(
Σ−1

i + Cxix
>
i

)−1
Σ−1

i . (11)

To get Σi+1 we first compute its inverse, Σ−1
i+1 =(

AΣiA
>)−1

. Substituting Eq. (11) in the last equation we
get,

Σ−1
i+1 =

(
AΣiA

>)−1
= Σ−1

i +
(
2C+C2x>i Σixi

)
xix

>
i (12)

Finally, using the Woodbury identity [12] to compute to updated
covariance matrix,

Σi+1 = Σi − Σixix
>
i Σi

(
C2xiΣix

>
i + 2C

)
/

(
(1 + Cx>i Σixi)2

)
.

(13)

We call the above algorithms NHERD for Normal (Gaussian)
Herd. A pseudocode of the algorithm appears in Alg. 3.

4.3 Discussion

Both our update of Σi+1 in Eq. (12) and the update of AROW (see
eq. (8) of [8]) have the same structure of adding γixix

>
i to Σi.

AROW sets γi = C while our update sets γi = 2C+C2xiΣix
>
i .

In this aspect, the NHERD update is more aggressive as it in-
creases the eigenvalues of Σ−1

i at a faster rate. Furthermore, its
update rate is not constant and depends linearly on the current vari-
ance of the margin x>i Σixi; the higher the variance, the faster the
eigenvalues of Σi decrease. Lastly, we note that the update ma-
trix Ai can be written as a product of two terms, one depends on
the covariance matrix before the update and the other on the co-
variance matrix after an AROW update. Formally, let Σ̃i+1 be
the covariance matrix after updated using the AROW rule, that is,
Σ̃i+1 =

(
Σ−1

i + Cxix
>
i

)
(see eq. (8) of [8]). From Eq. (11) we

observe that Ai = Σ̃−1
i+1Σi, which means that NHERD modifies

Σi if and only if AROW modifies Σi.

The diagonal updates of AROW and NHERD share similar
properties. [8] did not specify the specific update for this
case, yet using a similar derivation of Sec. 4.1 we get that
the AROW update for diagonal matrices Σ̃i+1 is

(
Σ̃i+1

)
r,r

=

(Σi)r,r/
(
1 + Cx2

i,r (Σi)r,r

)
. Taking the ratio between the rth

element of Eq. (10) and the last equation we get,
(
Σ̃i+1

)
r,r

/(Σi+1)r,r = 1 + Cx2
i,r (Σi)r,r ≥ 1 .

5

To conclude, the update of NHERD for diagonal covariance matrices is also more aggressive than
AROW as it increases the (diagonal) elements of its inverse faster than AROW.

An illustration of the two updates appears in Fig. 2 for a problem in a planar 2-dimensional space.
The Gaussian distribution before the update is isotropic with mean µ = (0, 0) and Σ = I2. Given
the input example x = (1, 2), y = 1 we computed both A and b for both the full (top panel)
and diagonal (center panel) update. The plot illustrates the update of the mean vector (red square),
weight vectors with unit norm ‖w‖ = 1 (blue), and weight vectors with norm of 2, ‖w‖ = 2 (green).

Parameter: C > 0
Initialize: µ1 = 0 , Σ1 = I
for i = 1, . . . ,m do

Get input example xi ∈ Rd

Predict ŷi = sign(µ>i xi)
Get true label yi and suffer loss 1 if ŷi 6= yi

if yi(µ>i xi) ≤ 1 then
Set µi+1=µi+yi

max{0,1−yi(µ
>
i xi)}

x>i Σixi+
1
C

Σixi (Eq. (9))
Full Covariance:

Set Σi+1=Σi−Σixix
>
i Σi

C2xiΣix
>
i +2C

(1+CxiΣix>i)2
(Eq. (13))

Diagonal Covariance:
Set (Σi+1)r,r for r = 1 . . . d using Eq. (14)

end if
end for
Return: µm+1 , Σm+1

Figure 3: Normal Herd (NHERD)

The ellipses with dashed lines il-
lustrate the weights before the
update, and ellipses with solid
lines illustrate the weight-vectors
after the update. All the weight
vectors above the black dotted
line classify the example cor-
rectly and the ones above the
dashed lines classify the exam-
ple with margin of at least unit 1.
The arrows connecting weight-
vectors from the dashed ellipses
to solid ellipses illustrate the up-
date of individual weight-vectors
with the linear transformation
w ← Ai(w − µi) + µi+1.

In both updates the current mean
µi is mapped to the next mean
µi+1. The full update “shrinks”
the covariance in the direction

orthogonal to the example yixi; vectors close to the margin of unit 1 are modified less than vec-
tors far from this margin; vectors with smaller margin are updated more aggressively then vectors
with higher margin; even vectors that classify the example correctly with large margin of at least one
are updated, such that their margin is shrunk. This is a consequence of the linear transformation that
ties the update between all weight-vectors. The diagonal update, as designed, maintains a diagonal
matrix, yet shrinks the matrix more in the directions that are more “orthogonal” to the example.

We note in passing that for all previous CW algorithms [7] and AROW [8], a closed form solution
for diagonal matrices was not provided. Instead these papers proposed to diagonalize either Σi+1

(called drop) or Σ−1
i+1 (called project) which was then inverted. Together with the exact solution

of Eq. (10) we get the following three alternative solutions for diagonal matrices,

(Σi+1)r,r =

(Σi)r,r/

((
1 + Cx2

i,r (Σi)r,r

)2
)

exact

1/
(
(1/ (Σi)r,r) +

(
2C+C2x>i Σix

>
i

)
x2

i,r

)
project

(Σi)r,r −
(
(Σi)r,r xi,r

)2 (C2xiΣix
>
i +2C)

(1+CxiΣix>i)2
drop

(14)

We investigate these formulations in the next section. Finally, we note that similarly to CW and
AROW, algorithms that employ full matrices can be incorporated with Mercer kernels [11, 14],
while to the best of our knowledge, the diagonal versions can not.

5 Empirical Evaluation

We evaluate NHERD on several popular datasets for document classification, optical character
recognition (OCR), phoneme recognition, as well as on action recognition in video. We compare our
new algorithm NHERD with the AROW [8] algorithm, which was found to outperform other base-
lines [8]: the perceptron algorithm [13], Passive-Aggressive (PA) [5], confidence weighted learning
(CW) [9, 7] and second order perceptron [1] on these datasets. For both NHERD and AROW
we used the three diagonalization schemes, as mentioned in Eq. (14) in Sec. 4.3. Since AROW
Project and AROW Exact are equivalent we omit the latter, yielding a total of five algorithms:
NHERD {P,D,E} for Project,Drop,Exact and similarly AROW {P,D}.

6

NHERD_P

NHERD_E

 56%

NHERD_D

 66%

AROW_P

 54%

AROW_D

 70% 71%

 52%

 72%

 72%

 67%

 72%

NHERD_P

NHERD_E

 50%

NHERD_D

 88%

AROW_P

 76%

AROW_D

 91% 85%

 78%

 89%

 72%

 75%

 84%

NHERD_P

NHERD_E

 65%

NHERD_D

 75%

AROW_P

 73%

AROW_D

 80% 70%

 76%

 80%

 74%

 59%

 74%

Figure 4: Performance comparison between algorithms. Each algorithm is represented by a vertex. The weight
of an edge between two algorithms is the fraction of datasets in which the top algorithm achieves lower test
error than the bottom algorithm. An edge with no head indicates a fraction lower than 60% and a bold edge
indicates a fraction greater than 80%. Graphs (left to right) are for noise levels of 0%, 10%, and 30%.

Although NHERD and AROW are designed primarily for binary classification, we can modify them
for use on multi-class problems as follows. Following [4], we generalize binary classification and
assume a feature function f(x, y) ∈ Rd mapping instances x ∈ X and labels y ∈ Y into a common
space. Given a new example, the algorithm predicts ŷ = arg maxz µ · f(x, z), and suffers a loss if
y 6= ŷ. It then computes the difference vector ∆ = f(x, y)−f(x, y′) for y′ = arg maxz 6=y f(x, y′)
which replaces yx in NHERD (Alg. 3).

We conducted an empirical study using the following datasets. First are datasets from [8]: 36 binary
document classification data, and 100 binary OCR data (45 all-pairs of both USPS and MNIST and
1-vs-rest of MNIST). Secondly, we used the nine multi-category document classification datasets
used by [6]. Third, we conducted experiments on a TIMIT phoneme classification task. Here
we used an experimental setup similar to [10] and mapped the 61 phonetic labels into 48 classes.
We then picked 10 pairs of classes to construct binary classification tasks. We focused mainly on
unvoiced phonemes where there is no underlying harmonic source and whose instantiations are
noisy. The ten binary classification problems are identified by a pair of phoneme symbols (one or
two Roman letters). For each of the ten pairs we picked 1, 000 random examples from both classes
for training and 4, 000 random examples for a test set. These signals were then preprocessed by
computing mel-frequency cepstral coefficients (MFCCs) together with first and second derivatives
and second order interactions, yielding a feature vector of 902 dimensions. Lastly, we also evaluated
our algorithm on an action recognition problem in video under four different conditions. There are
about 100 samples for each of 6 actions. Each sample is represented using a set of 575 positive real
localized spectral content filters from the videos. This yields a total of 156 datasets.

Each result for the text datasets was averaged over 10-fold cross-validation, otherwise a fixed split
into training and test sets was used. Hyperparameters (C for NHERD and r for ARROW) and the
number of online iterations (up to 20) were optimized using a single randomized run. In order to
observe each algorithm’s ability to handle non-separable data, we performed each experiment using
various levels of artificial label noise, generated by independently flipping binary labels.

Results: We first summarize the results on all datasets excluding the video recognition dataset in
Fig. 4, where we computed the number of datasets for which one algorithm achieved a lower test
error than another algorithm. The results of this tournament between algorithms is presented as
a winning percentage. An edge between two algorithms shows the fraction of the 155 datasets for
which the algorithm on top had lower test error than the other algorithm. The three panels correspond
to three varying noise levels, from 0%,10% and 30%.

We observe from the figure that Project generally outperforms Exact which in turn outper-
forms Drop. Furthermore, NHERD outperforms AROW, in particular NHERD P outperforms
AROW P and NHERD D outperforms AROW D. These relations become more prominent when
labeling noise is increased in the training data. The right panel of Fig. 2 illustrates a single update of
each of the five algorithms: AROW D, AROW D, NHERD D, NHERD E, NHERD P. Each of the
five ellipses represents the Gaussian weight vector distribution after a single update on an example

7

by each of the five algorithms. Interestingly, the resulting volume (area) of different ellipses roughly
correspond to the overall performance of the algorithms. The best update – NHERD P – has the
smallest ellipse (with lowest-entropy), and the update with the worst performance – AROW D – has
the largest, highest-entropy ellipse.

94 95 96 97 98 99 100

94

95

96

97

98

99

100

AROW_P

N
H

E
R

D
_P

usps
mnist

60 70 80 90

60

65

70

75

80

85

90

95

AROW_P

N
H

E
R

D
_P

binary text
mc text
phoneme

86 88 90 92 94 96 98

86

88

90

92

94

96

98

AROW_P

N
H

E
R

D
_P

usps
mnist

60 70 80 90

55

60

65

70

75

80

85

90

95

AROW_P

N
H

E
R

D
_P

binary text
mc text
phoneme

50 60 70 80 90

50

55

60

65

70

75

80

85

90

95

AROW_P

N
H

E
R

D
_P

usps
mnist

60 70 80 90

55

60

65

70

75

80

85

90

AROW_P

N
H

E
R

D
_P

binary text
mc text
phoneme

b−p d−t f−th g−k jh−ch m−nm−ngn−ng s−sh v−dh

−8

−6

−4

−2

0

2

4

6

8

R
el

at
iv

e
In

cr
ea

se
 in

 A
cc

ur
ac

y

AROW_P AROW_D NHERD_ENHERD_PNHERD_D

77

78

79

80

81

82

83

84

85

86

87

A
cc

ur
ac

y

Figure 5: Three top rows: Accuracy on OCR (left) and text
and phoneme (right) classification. Plots compare performance
between NHERD P and AROW P. Markers above the line in-
dicate superior NHERD P performance and below the line su-
perior AROW P performance. Label noise increases from top
to bottom: 0%, 10% and 30%. NHERD P improves relative
to AROW P as noise increases. Bottom left: relative accuracy
improvment of NHERD P over AROW P on the ten phoneme
classification tasks. Bottom right: accuracy of five algorithms
on the video data. In both cases NHERD P is superior

More detailed results for NHERD P and
AROW P, the overall best performing
algorithms, are compared in Fig. 5.
NHERD P and AROW P are compara-
ble when there is no added noise, with
NHERD P winning a majority of the
time. As label noise increases (moving
top-to-bottom in Fig. 5) NHERD P holds
up remarkably well. In almost every high
noise evaluation, NHERD P improves
over AROW P (as well as all other base-
lines, not shown). The bottom-left panel
of Fig. 5 shows the relative improvment
in accuracy of NHERD P over AROW P
on the ten phoneme recognition tasks
with additional 30% label noise. The ten
tasks are ordered according to their sta-
tistical significance according to McNe-
mar’s test. The results for the seven right
tasks are statistically significant with a p-
value less then 0.001. NHERD P out-
performs AROW P five times and un-
derperforms twice on these seven signifi-
cant tests. Finally, the bottom-right panel
shows the 10-fold accuracy of the five
algorithms over the video data, where
clearly NHERD P outperforms all other
algorithms by a wide margin.

Conclusions: We have seen how to in-
corporate velocity constraints in an on-
line learning algorithm. In addition to
tracking the mean and covariance of a
Gaussian weight vector distribution, reg-
ularization of the linear velocity terms
are used to herd the normal distribution
in the learning process. By bounding the
loss function with a quadratic term, the
resulting optimization can be solved an-
alytically, resulting in the NHERD algo-
rithm. We empirically evaluated the per-
formance of NHERD on a variety of ex-
perimental datasets, and show that the
projected NHERD algorithm generally
outperforms all other online learning al-
gorithms on these datasets. In particular,
NHERD is very robust when random la-
beling noise is present during training.

Acknowledgments: KC is a Horev
Fellow, supported by the Taub Founda-

tions. This work was also supported by German-Israeli Foundation grant GIF-2209-1912.

8

References

[1] Nicoló Cesa-Bianchi, Alex Conconi, and Claudio Gentile. A second-order perceptron algo-
rithm. Siam Journal of Commutation, 34(3):640–668, 2005.

[2] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge Uni-
versity Press, New York, NY, USA, 2006.

[3] G. Chechik, V. Sharma, U. Shalit, and S. Bengio. An online algorithm for large scale image
similarity learning. In NIPS, 2009.

[4] Michael Collins. Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In EMNLP, 2002.

[5] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive
algorithms. JMLR, 7:551–585, 2006.

[6] K. Crammer, M. Dredze, and A. Kulesza. Multi-class confidence weighted algorithms. In
EMNLP, 2009.

[7] K. Crammer, M. Dredze, and F. Pereira. Exact confidence-weighted learning. In NIPS 22,
2008.

[8] K. Crammer, A. Kulesza, and M. Dredze. Adaptive regularization of weighted vectors. In
Advances in Neural Information Processing Systems 23, 2009.

[9] M. Dredze, K. Crammer, and F. Pereira. Confidence-weighted linear classification. In ICML,
2008.

[10] A. Gunawardana, M. Mahajan, A Acero, and Pl att J. C. Hidden conditional random fields for
phone classifi cation. In Proceedings of ICSCT, 2005.

[11] J. Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. Philos. Trans. Roy. Soc. London A, 209:415–446, 1909.

[12] K. B. Petersen and M. S. Pedersen. The matrix cookbook, 2007.
[13] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization

in the brain. Psychological Review, 65:386–407, 1958.
[14] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Ma-

chines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

9

	Introduction
	Background
	Algorithms
	Expectation of the Loss Function

	Solving the Optimization Problem
	Diagonal Covariance Matrix
	Full Covariance Matrix
	Discussion

	Empirical Evaluation

