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This short note briefly describes the usage of the functions in the sparse-simplex package

which are based on the paper

Amir Beck and Yonina C. Eldar, “Sparsity Constrained Nonlinear Optimization:

Optimality Conditions and Algorithms”

The package contains several m-files implementing method for solving the optimization prob-

lem

(P) min{f(x) : ‖x‖0 ≤ s}.

1 The IHT Method

A well-known solution method is the so-called iterative hard-thresholding (IHT) method

whose recursive update formula is

xk+1 = PCs

(
xk − 1

L
∇f(xk)

)
.

The m-file implementing the IHT method is

IHT.m

For example, suppose that f(x) = ‖Ax−b‖2 where A and b are generated by the following

commands:

randn(’seed’,314);

A=randn(10,10);

b=A*[1;-1;1;zeros(7,1)];

then obviously the optimal solution of (P) is x∗ = (1,−1, 1, 0, 0)T . The input for the IHT

function consists of the function, its gradient, s, L, an initial guess x0 and the number of

iterations. We can invoke 200 iterations of IHT with a randomly chosen initial vector by the

commands

randn(’seed’,146);

x0=randn(10,1);

v=IHT(@(x)norm(A*x-b)^2,@(x)2*A’*(A*x-b),3,2*max(eig(A’*A))+0.1,x0,200)
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Note that we have chosen L to be slightly larger than the Lipschitz constant of the gradient

of the function. The output is the expected one

v =

0.9999

-1.0000

1.0000

0

0

0

0

0

0

0

Of course, the IHT method might converge to non-optimal points. For example, starting

with another initial point we get convergence to a non-optimal point.

randn(’seed’,147);

y0=randn(10,1);

w=IHT(@(x)norm(A*x-b)^2,@(x)2*A’*(A*x-b),3,2*max(eig(A’*A))+0.1,y0,200)

w =

0

0

0

0

-0.9510

-0.5630

0

-0.1714

0

0

2 The Greedy Sparse-Simplex Method

To invoke the greedy sparse-simplex method on problem (P), two MATLAB functions should

be constructed. The first one is the objective function and the second is a function that per-

forms one-dimensional optimization with respect to each of the coordinates and outputs the

index of the variable causing the largest decrease, its optimal value and the correspond-

ing objective function value. For the least squares problem min ‖Ax − b‖2, the MALTAB

function

f_LI.m

is a simple implementation of the least squares term (with input A,b,x), for example:
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f_LI(A,b,y0)

ans =

160.8177

The second required function is

g_LI.m

The arguments for this function are (A,b,x, S). S is a subset of indices on which the search

is performed. For example:

out=g_LI(A,b,x0,1:10)

out =

-0.0318 23.3425 10.0000

This result means that if we change x10 to have value -0.038, the new objective function

value will be 23.3425. Indeed,

>> f_LI(A,b,x0)

ans =

67.6136

>> x0_new=x0;

>> x0_new(10)=out(1);

>> f_LI(A,b,x0_new)

ans =

23.3425

If we want to restrict the search for the indices set {1, 4, 7, 9}, then we can just write

>> g_LI(A,b,x0,[1,4,7,9])

ans =

-1.2412 65.8406 9.0000

and in this case it is best to optimize with respect to to x9. After having these two functions,

we can now invoke the main function

greedy_sparse_simplex.m

To employ the greedy sparse-simplex with initial vector x0 and maximum of 200 iterations

we run the command

>> X=greedy_sparse_simplex(@(x)f_LI(A,b,x),@(x,S)g_LI(A,b,x,S),3,200,x0);

iter= 1 fun_val = 13.61871 change = 1

iter= 2 fun_val = 1.54145 change = 0

iter= 3 fun_val = 1.24098 change = 0

iter= 4 fun_val = 0.84902 change = 0

iter= 5 fun_val = 0.66883 change = 0

iter= 6 fun_val = 0.49099 change = 0
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. . .

. . .

. . .

iter= 66 fun_val = 0.00000 change = 0

iter= 67 fun_val = 0.00000 change = 0

Note that the method did not require the maximum of 200 iterations, but satisfied a stopping

criteria at the end of the 67th iteration. The function greedy_sparse_simplex is not

restricted to the least squares function, but can be employed on any function, but for that

the user must satisfy an objective function, and a one-dimensional minimizer such as f_LI

and g_LI. Another example of an objective function that can be found in the package is the

function

fQU(x) =
m∑

i=1

((aT
i x)2 − ci)

2,

where ai ∈ Rn. This function is implemented in

f_QU.m

Let us consider a 20×10 example in which the optimal solution is x = (0, 0, 1, 0, 2, 0,−10, 0, 0, 0)T .

randn(’seed’,314);

A=randn(20,10);

x_real=zeros(10,1);

x_real(3)=1;

x_real(5)=2;

x_real(7)=-10;

c=(A*x_real).^2;

Obviously,

>> f_QU(A,c,x_real)

ans =

0

As before, we also have a one-dimensional minimization function

g_QU.m

This function also uses two other auxiliary functions that are responsible for solving simul-

taneously several scalar minimizations of one-dimensional quartic functions.

solve_cubic.m

solve_minimum_quartic.m

For example, the objective function value of the vector of all ones is

>> f_QU(A,c,ones(10,1))

ans =

7.4168e+005
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Invoking the function g_QU we obtain

>> out=g_QU(A,c,ones(10,1),1:10);

>> out(1)

ans =

-9.4314

>> out(2)

ans =

3.2078e+004

>> out(3)

ans =

7

This means that if we change the value of the seventh variable to be -9.4314, then the new

objective function will be 3.2078e+4 (which is btw, more than ten times lower than the

value of the function on the vector of all ones). Invoking the greedy sparse-simplex method

with initial vector (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)T results with the correct solution:

>>[X,fun_val]=greedy_sparse_simplex(@(x)f_QU(A,c,x),@(x,S)g_QU(A,c,x,S),...

p,500,[1;1;1;ones(7,1)]);

iter= 1 fun_val = 32078.43241 change = 0

iter= 2 fun_val = 20204.87905 change = 0

iter= 3 fun_val = 15330.39511 change = 0

iter= 4 fun_val = 10362.79145 change = 0

iter= 5 fun_val = 9518.23586 change = 0

iter= 6 fun_val = 8492.85147 change = 0

iter= 7 fun_val = 7577.44331 change = 0

. . .

. . .

. . .

iter=497 fun_val = 0.00008 change = 0

iter=498 fun_val = 0.00008 change = 0

iter=499 fun_val = 0.00008 change = 0

iter=500 fun_val = 0.00007 change = 0

>> X(:,end)

ans =

0.0001

0.0000

1.0000

0.0001

1.9998

-0.0001

-10.0002

0.0002
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-0.0001

0.0001

3 The Partial Sparse-Simplex Method

The partial sparse-simplex method is implemented in the m-file

partial_sparse_simplex.m

The input arguments are the same as the one of greedy_sparse_simplex expect for one

additional input argument which is the gradient function. For the function fQU, the gradient

is implemented in the m-file

gradient_QU.m

For example, invoking the partial sparse-simplex method with the same setting as the last

example (of the greedy sparse-simplex method) also results with the correct solution:

>>[X,fun_val]=partial_sparse_simplex(@(x)f_QU(A,c,x),@(x)gradient_QU(A,c,x),...

@(x,S)g_QU(A,c,x,S),p,500,[1;1;1;ones(7,1)]);

iter= 1 fun_val = 32078.43241 change = 0

iter= 2 fun_val = 20204.87905 change = 0

iter= 3 fun_val = 15330.39511 change = 0

iter= 4 fun_val = 10362.79145 change = 0

iter= 5 fun_val = 9518.23586 change = 0

iter= 6 fun_val = 8492.85147 change = 0

. . .

. . .

. . .

iter=498 fun_val = 0.00008 change = 0

iter=499 fun_val = 0.00008 change = 0

iter=500 fun_val = 0.00007 change = 0

>> X(:,end)

ans =

0.0001

0.0000

1.0000

0.0001

1.9998

-0.0001

-10.0002

0.0002

-0.0001

0.0001
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As a last example, let us invoke the partial sparse-simplex problem on linear least squares

problem (f = fLI) with an initial vector whose support is completely different than the true

support (last 10 indices instead of the first 10). The algorithm finds the correct solution.

>>randn(’seed’,314);

>>A=randn(200,100);

>>x=[ones(10,1);zeros(90,1)];

>>b=A*x;

>>x_initial=[zeros(90,1);randn(10,1)];

>>[X,fun_val]=partial_sparse_simplex(@(x)f_LI(A,b,x),@(x)2*A’*(A*x-b),...

@(x,S)g_LI(A,b,x,S),10,500,x_initial);

iter= 1 fun_val = 2531.91899 change = 1

iter= 2 fun_val = 2148.50550 change = 1

iter= 3 fun_val = 1871.38289 change = 1

iter= 4 fun_val = 1645.16590 change = 1

iter= 5 fun_val = 1410.71129 change = 0

iter= 6 fun_val = 1251.96140 change = 1

iter= 7 fun_val = 1007.72918 change = 1

iter= 8 fun_val = 820.43212 change = 1

iter= 9 fun_val = 620.07693 change = 1

iter= 10 fun_val = 461.79364 change = 0

iter= 11 fun_val = 331.87055 change = 1

iter= 12 fun_val = 248.76544 change = 0

iter= 13 fun_val = 89.85229 change = 1

iter= 14 fun_val = 56.83251 change = 0

iter= 15 fun_val = 27.64811 change = 0

iter= 16 fun_val = 19.79799 change = 0

. . .

. . .

. . .

iter= 57 fun_val = 0.00000 change = 0

iter= 58 fun_val = 0.00000 change = 0

iter= 59 fun_val = 0.00000 change = 0
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