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ABSTRACT delays and amplitudes. In this case without noise, perfect recovery

i . . . . is possible due to the finite dimensionality of the problem.
We develop sub-Nyquist sampling systems for signals comprised df A more general class of multipulse signals results when the pulse

several, possibly overlapping, finite duration pulses with unknown . ; .
P y bping P gapes are not known. In this scenario perfect reconstruction from

shapes and time positions. To the best of our knowledge, stable ar kinite number of samoles is impossible. as there are aenerally in-
low-rate sampling strategies for a superposition of unknown pulse nite nu ' of Samples 1S IMpossible, as there are generally In
nitely many parameters defining the signal. Nonetheless, the re-

without knowledge of the pulse locations have not been derived. W . - o .
propose a multichannel scheme based on Gabor frames that exp|oﬁ%”5tmc“°” error can be made sufficiently small with just a finite
umber of samples. Two known sampling methods when the pulse

the sparsity of signals in time and enables sampling at sub-Nyqui ocations are known are pointwise samples, or Fourier series. How-
rates. Moreover, if the signal is additionally essentially multiband, P pies, :

then the sampling scheme can be adapted to lower the sampling ratec” ?ﬁ'the: appro_at_ches can bke used to reduce the sampling rate
without knowing the band positions. Our approach is based on mogY €N e pUIS€ posItions areé unknown.

ulating the input signal in each channel with a properly chosen wave- Our contrlbutlon IS an effl_clent sampling archltectu_re for multi-
form, followed by integration. pulse essentially multiband signals, that does not require the knowl-

) _ ~ edge of the pulse shapes, their locations nor the locations of the es-
Index Terms— sub-Nyquist sampling, compressed sensing,sential bands. The only knowledge we assume is that our signal is

time-frequency analysis, Gabor frames comprised ofN pulses, each of maximal width in the interval
[—//2, 8/2], and that it is essentially concentrated $tfirequency
1. INTRODUCTION bands of width no more thafty within its essential bandwidth

[—Q/2,€/2]. Despite the complete lack of knowledge on the signal
One of the common assumptions in sampling theory suggests thabape, we achieve low sampling rate, proportional&/ x Qw S,
in order to perfectly reconstruct a bandlimited analog signal fronthat is, the actual time-frequency occupancy, whereas Nyquist sam-
its samples, it must be sampled at the Nyquist rate, that is twic@ling suggests taking approximatef2 samples. We achieve this
its highest frequency. In practice, however, all real life signals argate reduction by combining the well established theory of Gabor
necessarily of finite duration, and consequently cannot be perfectiffames [3] with the recently proposed Xampling paradigm [4] which
bandlimited, due to the uncertainty principle. The Nyquist rate igis a framework for sub-Nyquist sampling of analog signals.
therefore dictated by the essential bandwidth of the signal, that is The paper is organized as follows. In Section 2 we introduce
by the desired accuracy of the approximation: the higher the ratéjotation and define our problem. In Section 3 we derive the multi-
meaning the more samples are taken, the better the reconstructiorchannel scheme for multipulse signals, and provide error bounds on

In this paper we are interested in sampling a special class dhe reconstruction. Section 5 relates our sampling scheme to other
time limited signals: signals consisting of a stream of short pulsessampling schemes that fall into the Xampling paradigm. Finally, in
referred to as multipulse signals. Since the pulses occupy only §ection 6, we present simulation results.
small portion of the signal support, intuitively less samples, then
those dictated by the essential bandwidth, should suffice to recon- 2. PROBLEM FORMULATION
struct the signal. Our main goal is to design a minimal rate sampling
and reconstruction scheme for multipulse signals that exploits the ir2.1. Notation and Definitions
herent structure of these signals, without knowing the pulse shapes . .
and their locations. We show that when signals additionally exhibit/é denote byL»(R) the HllberIQSpace of complex square in-
certain sparsity in the frequency domain, in particular radar signaldegrable functions, with nomif|z = (f,f), where(f,g) =
then the sampling rate can be further reduced. JZo, f(t)g(t) dt, andg(t) denotes the complex conjugate gt ).

A special case was considered in [1] in which the signal is com-The Fourier transform of (¢) is defined as?(w) = ffooo f(t)e 2™t gt
posed of shifts of a single known pulse shape. Such signals are d&wo important operators that play a central role in Gabor theory, are
fined by a finite number of parameters, and fall under the class ahe translation and modulation operators definedzfar € R as
finite rate of innovation (FRI) signals introduced in [2]. The sam-T, f(¢) := f(t — x) and M,, f(t) := *™“' f(t), respectively. A
pling scheme proposed in [1] operates at the minimal sampling ratinction g € Lo(R), together with parameters b > 0 forms a
required for such signals, which equals the number of unknown timeabor frame if there exist constaritsc A; < A < oo such that

*The first author performed the work while at Technion-Israstitute of Adlf15 < Z |(f, My Targ)|* < Al fI3
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forall f € L2(R), [3]. suffices to approximate-45/2, 8/2] time limited and—2/2, 2/2]
We denote matrices by boldface capital letters, for exarihle essentially bandlimited signals.

D, and vectors by boldface low case letters, sucKaZ. For signals fromMP(N, W, 3; S, Qw, 2) many Gabor coeffi-
cients in the series (2) are zero. Indeed, if the suppogi{bf- ak)
2.2 Problem Formulation does not overlap any active region §f¢), thenz,,; = 0 for all

I € Z. Since at mosf2;~'] shifts of g(t) by ak = pWk over-
We consider signals that are a sum of short, finite duration pulses: lap one pulse off(¢), and there are altogethé¥ pulses present,
the number of nonzero coefficients with respect to the inklex
at most[2u~']N. Hence, a finite numbef2y~"|NL with L =
2Lo + 1, of Gabor coefficients suffices to approximate aghyc
MP(N, W, B; S, Qw, ) with desired accuracy. If(t) is addition-
The number of pulsed’ and their maximal widtiV" are assumed ally essentially multiband, then this number can be further reduced.
known, and the pulses may overlap in time. We assumeftftatis Indeed, if the essential support@fw — bl) does not ovgrlap any es-
supported on an interval-5/2, 3/2] with NW < 8. Our goal is ~ sential band off (t), then|zx,i| = |V, f(ak, bl)| = [V5f(bl, —ak)|
to recoverf (¢) from the minimal number of samples possible. is small for all =Ko < k < Ko. At most[(Qw + B)W shifts
Due to the uncertainty principle, finite duration functions cannotof essential bandwidtf-B/2, B/2] of g(w) by bl = /W overlap
be perfectly bandlimited. However, in practice the main frequencyone essential band ¢f(t), and there are altogethsrbands present.
content is typically confined to some finite intenfal2/2,Q/2],  Therefore the number of dominant coefficients with respect to the in-

with the energy off (w) outside that interval being less thaw|f|. ~ d€x¢is atmost(Qw + B)WS, and the rll{mber of samples neces-
for someen < 1. A special subclass of such signals are thosesary foragood reconstruction beconjes™ " | x [(Q2w +B)WS.
whose frequency content is concentrated on only a few bands within ~ In the next section we introduce a sampling scheme that samples
[—Q/2,Q/2]. We refer to such signals as essentially multiband andnultipulse signals at the minimal rate which still allows to obtain the
denote them byMP(N, W, 3; S, Qw, Q) if there are at moss necessary dominant Gabor coefficients.
bands, each of width no more thexy .
We aim at designing a sampling system for signals from
MP(N, W, B; 5, Qw,Q) that satisfies the following properties: 3. SAMPLING OF MULTIPULSE SIGNALS
(i) the system has no prior knowledge on the locations or shapes of
the pulses nor the bands; (ii) the number of samples should be &1. Sampling System
low as possible; (iii) the reconstruction from the samples should be o ) ) . .
simple; (iv) the reconstructed signal should be close to the originaPUr Systém, shown in Fig. 1, exploits the sparsity of multipulse sig-
signal. nals, MP(N, W, B; S, Qw, Q), in time and frequency. The signal
To achieve these goals we combine the well established the(r)j((t) entersJM channels simultaneously. In thg, m)th channel,
of Gabor frames [3] with the recently proposed Xampling paradigm/ () IS multiplied by a mixing function; .. (¢), followed by an inte-
[4] which is a framework for sub-Nyquist sampling of analog sig- grator. T_he _role of the mixing fgnct_lons is to gather together all the
nals. By choosing a proper frame, a multipulse essentially muitiinformation in f(¢) over the entire interval—3/2, 5/2]. Namely,

band signal admits a sparse representation in that frame. Moreover(?) i windowed with shifts of some compactly supported function,

we show that sampling and reconstruction can be made simple [3]_anc_1 all the _vvindowed versions are summed together_with_different
weights. Simultaneously, the frequency contentf¢f) is shifted

and filtered with some essentially low-pass filter, and all the filtered

shifts are summed together with different weights.

We consider Gabor frames whose windows are elements of the

spaceSy. A window g € Lo(R) belongs toSy if ||glls, := w00

SN, MuTo) | da dw < oo, wheredp(t) is a Gaussian.
LetG(g,a,b) = {My T, g} be a Gabor frame [3] with € Sy

N
f(t)=> ha(t), where max|supph,|<W. (1)
n=1

2.3. Gabor Frames

Yo,0

compactly supported on an intenfat W/2, W/2], a = pW and .
b = 1/W for somep € (0,1). Procedures for constructing such .
frames are presented in [5]. Given such a frame, every fungtion @i () .

time limited to[—//2, 3/2] admits a decomposition [3] 0

t) ——»t
Ko

f= Z sz,szz Tak v, (2 :
k=—Kq IEZ qr-1.a-1(t) °

where~(t) is a dual window ands, denotes the smallest integer
such that the sum in (2) contains all possible non-zero coefficients
zkg = (f, My Targ). Moreover, if f(t) is essentially bandlimited
and the windowy(¢) possesses good decay in the frequency domain,
then the signaf (¢) can be well approximated by a truncated Gabor
series [6]. The number of frequency samplés< L, is dictated The functionsg;,(t) are constructed from the Gabor frame.
by the desired accuracy of the approximation and depends on theet G(g, a,b) be a Gabor frame with window(¢) supported on
essential bandwidths of the signal and the Gabor window. Thereforghe interval—W/2, W/2], essentially bandlimited to- B/2, B/2],
atotal of KL, with K = 2K, +1andL = 2Ly + 1, Gabor samples and with sampling parametetss= pW andb = 1/W for some

fj,f/z() dt ———» Yi-1m-1

Fig. 1: An efficient sampling system for multipulse signals.



0 < pu < 1. Theng;m(t) = w;(t)sm(t) where Theorem 3.1([7]). Letf € MP(N,W,;S, Qw, Q) be sampled
using the sampling scheme of Fig. 1 with the following parameters:

Lo Ko
wit)= D dipe” ™M sw(®) = D cmug(t - ak) 1) Ko = [(B+W)/@Ww)] - 1;
I=—Lg k=—Ko

) 2) Lo=[(Q+B)W/2] -1,
with j = 0,...,J -1, m = 0,....M — 1, Ko = [(8 +

W)/(2Wu)] —1andLo = [((2 4+ B)W)/2] — 1. To specify 3) ¢jm(t) = w;(t)sm(t) wherem = 0,...,M —1andj =
gj,m(t) completely, it remains to choose the coefficiedts and 0,....,J -1,
Cm k- TO dp so, we flrst. analyze thg effect of the sampler on the H M > ’—2u—1]N for non-blind reconstruction oV >
unknown signal and derive the relation between the samples -1 P
. 2[2p~ "N for blind;
and the signaf ().
Consider thgj, m)th channel: 5) J > [(Qw + B)W']S for non-blind reconstruction o >

2[(Qw + B)W] S for blind.

B8/2 Lo Ko
Yjm :/ FOgGm®)dt=">" djs > cmrzes, () If the matrixD has RIP constants of order 2[(Qw + B)W1S
o I==Lo  k=-Ko such that§ < /2 — 1 and every set o2[2u~ ] N columns ofC
wherezy,; = (f, My Turg). The above relation ties the known,, are linearly independent, then (4) has a unique sparse sol@ion

to the unknown Gabor coefficients §tt) with respect t@ (g, a, b). Moreover, the functiorf = ZkK:‘LKO ZZL:[LO Zie, 1 My Tary, with

This relation is key to the recovery ¢{t). As can be seen, the goal ~ € S, denoting the dual atom af(t), reconstructed from the ob-
of the modulatog; ., (¢) is to create mixtures of the unknown Gabor tained coefficients satisfies
coefficientsz, ;. These mixtures, when chosen appropriately, will

allow to recovery,; from a small numbeyg M measurements by ex- Lo
ploiting the sparsity of these coefficients in time and/or in frequency, If— fHQ < 50(69 +e8)|Ifll2 + Cy Z Hzm _ Zcm H . (5)
and relying on ideas of compressed sensing. If we were to collect =L 2

pure Gabor coefficients then we would have to té#ké& measure-
ments, more then necessary as many of them are zero or negligilw1ere Go and Gy

; are constants depending on the chosen Gabor
for a good reconstruction.

frame, andCy additionally on the RIP constait The matrixz® is

the best (©2 B)W'S—term approximation o¥.
3.2. Signal Recovery {(Qw + B)W] PP

It is convenient to write (3) in matrix form as In the case of known positions of the pulses and bands, referred
T to as non-blind, the minimal sampling rate for the desired accuracy
Y =D(CZ)", (4)  of the approximation and a given frame is wheh = [2,~'|N

andJ = [(Qw + B)WS. In the blind setting, when the locations
of the pulses and the bands are unknown, the sampling rate increases
by a factor of four (a factor of two in each domain). Note, that the

whereY is a matrix of sizeV x J with m;jth element equaj;, m,
forj=0,...,J —1landm = 0,..., M — 1. The unknown Ga-
bor coefficients are gathered in tthé x L matrix Z with columns

Z[ = [z ) axoalT = —L Lo. TheJ x L ma- scheme is efficient only when the pulses occupy less then half of the

trix D cor;tgiorisy iﬁgcg}f’ﬁcién@ | 7Od’f l' ’L O]'. -0 o1 overall support of the signal in time and it is concentrated on less
J,t — Mt —Los — Yy ’ . .

[ =0,...,2L0, and theM x K matrix C contains the coefficients then half of its bandwidth. )

Cok = Cmbtcgm=0,....M—1,k=0,...,2Ko. As we have seen, the matri that we would like to recover

The choice of a fram& (g, a, b) guarantees that for ever from the measurementé is both row sparse and columr_1 compress-
the column vector<Z[l] have only[2,~']N out of X nonzero ible. Thejtlacovery oz is performgd in two stages. .Flrst,Twe re-
entries, and the nonzero entries correspond to the locations of tf@ver [2u~ | N—row sparse matri@U from the relationY” =
pulses, as discussed in Subsection 2.3. We conclude that eafhU- This problem is referred to as a multiple measurement vec-
Z[l] is [2~']N—sparse and alZ[]] have nonzero entries on (©OF (MMV) problem. Several algorithms have been geyeloped that
the same rows due to the structure fit). Moreover, if the sig- exploit this structure to recoved efficiently from Y* in poly-

nal is known to be essentially multiband, then the rows vector§lomial time when} is increased beyond/ = 2[2p~ 1N [8],
Z[k] = [2k—Ly,--.,2k.0,] have only[(Qw + B)W]S out of  [9] Therefore,U can be recovered using any one of these known

L dominant entries, and the dominant entries correspond to th_@’Eth(’TdS and, since the solution is unique, it eq@Zals" . Know-
locations of the essential bands pft). Therefore, eactz[k] is N9 U" = DZ", we solve another MMV problem for a unique
[(Qw + B)W1S—dominant and alf[k] have dominant entries on  [(€2w + B)WS—column sparse matriX. This time we obtain an
the same columns due to the structuref6f) in the frequency do- approximation ofZ, asZ itself is not strictly column sparse. This
main. TheK x L matrix Z° with all but [(Qw 4+ B)W]S nonzero ~ approximation is proportional to the bggf2w + B)W|.S—column
columns corresponding to tHéQw + B)W 1S greatest columns, ~approximation ofZ [9].
with respect t&? —norm, is referred to as the b€ty + B)WS When no information about the frequency sparsity of the signal
column approximation oZ.. is known, we take the matrifd to be left invertible, a necessary
The following theorem states the conditions under which onecondition beingJ > L. The relation (4) then reduces 'y =
can reconstruct the Gabor coefficients, |k| < Ko and|l| < Lo, (CZ)T and, with the assumptions on the matéix we are able to
from the outputsy; ... Let us fixu € (0,1) and a Gabor frame retrieveZ.
G(g,a,b), witha = Wu, b = 1/W, andg € S, compactly sup-
ported on[—W/2, W/2] and eg—bandlimited to[—B/2, B/2] in D has a RIP constant of ordérif (1 — d)||z|2 < ||[Dz||2 < (1 +
the Sp norm. 8)||=||3 for all S—sparse vecors.




4. WAVEFORM DESIGN into account we nee& L = 5084, with K = 124 andL = 41,
Gabor coefficients to obtain the relative eripf — f||/||f]|2 of
The functionss,, (t) are pulse sequence modulations, and therefor®.006. The same error can be achieved if we rediice= 124
simple to implement. The sequences are chosen such that they fotm A/ = 30, achieving fivefold improvement. On the other hand,
a valid CS matrix. An example of a valid CS matrix is a matrix when multibandedness of the signal is additionally taken into ac-
whose entries arg:1 drawn independently and with equal probabil- count, thenL. = 41 can be reduced td = 19 achieving overall
ity. The waveformsu; (¢) are created frorh/b—periodic waveforms  tenfold improvement with respect t L. The relative error in this

by low-pass filtering. More precisely, let case increases, 06, as Theorem 3.1 suggests.
) ) Fig. 2 compares the performance of our sampling system for
;i (t) = oyli] Lt t1 (6)  different number of channels with respect to sparsity in tifhg) (
b bl and sparsity in frequency/]. The results are averaged ovii0
trials.

whereq;[i] = £1 andi = 0,...,I — 1. The filteru(¢) is designed
so thatju(w)| = 1 for w = bl and|l| < Lo, |u(w)| = 0 forw = bl
and|l| > Lo and taking arbitrary values otherwise. Depending on .., |
the application, we choose appropriate starting wavefam@).
For the matrixD to be left invertible a necessary condition is that ..
J > 1 > L and the sequences;[i] are chosen such that the ma-  :*=
trix A, whosejith element isv;[¢], has full column rank [1]. For
example, ifJ = I = L, then the rows ofA can be created from o0 |
cyclic shifts of one basic sequence. On the other hand, foramatriy [ . oo |
D to be a valid CS matrix, meaning to have RIP property with high !
probability, the valuesy;[i{] = +1 are chosen independently with
equal probability and > L > J [10]. Fig. 22 Comparison of the relative error with respect to the number
of channels. Dotted line represents the error whenidllGabor
coefficients are used in the reconstruction.
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