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ABSTRACT

We develop sub-Nyquist sampling systems for signals comprised of
several, possibly overlapping, finite duration pulses with unknown
shapes and time positions. To the best of our knowledge, stable and
low-rate sampling strategies for a superposition of unknown pulses
without knowledge of the pulse locations have not been derived. We
propose a multichannel scheme based on Gabor frames that exploits
the sparsity of signals in time and enables sampling at sub-Nyquist
rates. Moreover, if the signal is additionally essentially multiband,
then the sampling scheme can be adapted to lower the sampling rate
without knowing the band positions. Our approach is based on mod-
ulating the input signal in each channel with a properly chosen wave-
form, followed by integration.

Index Terms— sub-Nyquist sampling, compressed sensing,
time-frequency analysis, Gabor frames

1. INTRODUCTION

One of the common assumptions in sampling theory suggests that
in order to perfectly reconstruct a bandlimited analog signal from
its samples, it must be sampled at the Nyquist rate, that is twice
its highest frequency. In practice, however, all real life signals are
necessarily of finite duration, and consequently cannot be perfectly
bandlimited, due to the uncertainty principle. The Nyquist rate is
therefore dictated by the essential bandwidth of the signal, that is
by the desired accuracy of the approximation: the higher the rate,
meaning the more samples are taken, the better the reconstruction.

In this paper we are interested in sampling a special class of
time limited signals: signals consisting of a stream of short pulses,
referred to as multipulse signals. Since the pulses occupy only a
small portion of the signal support, intuitively less samples, then
those dictated by the essential bandwidth, should suffice to recon-
struct the signal. Our main goal is to design a minimal rate sampling
and reconstruction scheme for multipulse signals that exploits the in-
herent structure of these signals, without knowing the pulse shapes
and their locations. We show that when signals additionally exhibit
certain sparsity in the frequency domain, in particular radar signals,
then the sampling rate can be further reduced.

A special case was considered in [1] in which the signal is com-
posed of shifts of a single known pulse shape. Such signals are de-
fined by a finite number of parameters, and fall under the class of
finite rate of innovation (FRI) signals introduced in [2]. The sam-
pling scheme proposed in [1] operates at the minimal sampling rate
required for such signals, which equals the number of unknown time
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delays and amplitudes. In this case without noise, perfect recovery
is possible due to the finite dimensionality of the problem.

A more general class of multipulse signals results when the pulse
shapes are not known. In this scenario perfect reconstruction from
a finite number of samples is impossible, as there are generally in-
finitely many parameters defining the signal. Nonetheless, the re-
construction error can be made sufficiently small with just a finite
number of samples. Two known sampling methods when the pulse
locations are known are pointwise samples, or Fourier series. How-
ever, neither approaches can be used to reduce the sampling rate
when the pulse positions are unknown.

Our contribution is an efficient sampling architecture for multi-
pulse essentially multiband signals, that does not require the knowl-
edge of the pulse shapes, their locations nor the locations of the es-
sential bands. The only knowledge we assume is that our signal is
comprised ofN pulses, each of maximal widthW in the interval
[−β/2, β/2], and that it is essentially concentrated onS frequency
bands of width no more thanΩW within its essential bandwidth
[−Ω/2,Ω/2]. Despite the complete lack of knowledge on the signal
shape, we achieve low sampling rate, proportional toWN ×ΩWS,
that is, the actual time-frequency occupancy, whereas Nyquist sam-
pling suggests taking approximatelyβΩ samples. We achieve this
rate reduction by combining the well established theory of Gabor
frames [3] with the recently proposed Xampling paradigm [4] which
is a framework for sub-Nyquist sampling of analog signals.

The paper is organized as follows. In Section 2 we introduce
notation and define our problem. In Section 3 we derive the multi-
channel scheme for multipulse signals, and provide error bounds on
the reconstruction. Section 5 relates our sampling scheme to other
sampling schemes that fall into the Xampling paradigm. Finally, in
Section 6, we present simulation results.

2. PROBLEM FORMULATION

2.1. Notation and Definitions

We denote byL2(R) the Hilbert space of complex square in-
tegrable functions, with norm‖f‖22 = 〈f, f〉, where 〈f, g〉 =∫∞

−∞
f(t)g(t) dt, andg(t) denotes the complex conjugate ofg(t).

The Fourier transform off(t) is defined aŝf(ω) =
∫∞

−∞
f(t)e−2πiωt dt.

Two important operators that play a central role in Gabor theory, are
the translation and modulation operators defined forx, ω ∈ R as
Txf(t) := f(t − x) andMωf(t) := e2πiωtf(t), respectively. A
function g ∈ L2(R), together with parametersa, b > 0 forms a
Gabor frame if there exist constants0 < A1 ≤ A2 <∞ such that

A1‖f‖22 ≤
∑

k,l∈Z

|〈f,MblTakg〉|2 ≤ A2‖f‖22



for all f ∈ L2(R), [3].
We denote matrices by boldface capital letters, for exampleC,

D, and vectors by boldface low case letters, such asX, Z.

2.2. Problem Formulation

We consider signals that are a sum of short, finite duration pulses:

f(t) =
N∑

n=1

hn(t) , where max
n

|supphn| ≤W . (1)

The number of pulsesN and their maximal widthW are assumed
known, and the pulses may overlap in time. We assume thatf(t) is
supported on an interval[−β/2, β/2] with NW ≪ β. Our goal is
to recoverf(t) from the minimal number of samples possible.

Due to the uncertainty principle, finite duration functions cannot
be perfectly bandlimited. However, in practice the main frequency
content is typically confined to some finite interval[−Ω/2,Ω/2],
with the energy of̂f(ω) outside that interval being less thanǫΩ‖f‖2
for someǫΩ < 1. A special subclass of such signals are those
whose frequency content is concentrated on only a few bands within
[−Ω/2,Ω/2]. We refer to such signals as essentially multiband and
denote them byMP(N,W, β;S,ΩW ,Ω) if there are at mostS
bands, each of width no more thenΩW .

We aim at designing a sampling system for signals from
MP(N,W, β;S,ΩW ,Ω) that satisfies the following properties:
(i) the system has no prior knowledge on the locations or shapes of
the pulses nor the bands; (ii) the number of samples should be as
low as possible; (iii) the reconstruction from the samples should be
simple; (iv) the reconstructed signal should be close to the original
signal.

To achieve these goals we combine the well established theory
of Gabor frames [3] with the recently proposed Xampling paradigm
[4] which is a framework for sub-Nyquist sampling of analog sig-
nals. By choosing a proper frame, a multipulse essentially multi-
band signal admits a sparse representation in that frame. Moreover,
we show that sampling and reconstruction can be made simple [3].

2.3. Gabor Frames

We consider Gabor frames whose windows are elements of the
spaceS0. A window g ∈ L2(R) belongs toS0 if ‖g‖S0

:=∫∞

−∞
|〈f,MωTxψ〉| dx dω <∞, whereψ(t) is a Gaussian.

LetG(g, a, b) = {Mbl Tak g} be a Gabor frame [3] withg ∈ S0

compactly supported on an interval[−W/2,W/2], a = µW and
b = 1/W for someµ ∈ (0, 1). Procedures for constructing such
frames are presented in [5]. Given such a frame, every functionf(t)
time limited to[−β/2, β/2] admits a decomposition [3]

f =

K0∑

k=−K0

∑

l∈Z

zk,lMbl Tak γ , (2)

whereγ(t) is a dual window andK0 denotes the smallest integer
such that the sum in (2) contains all possible non-zero coefficients
zk,l = 〈f,Mbl Takg〉. Moreover, iff(t) is essentially bandlimited
and the windowg(t) possesses good decay in the frequency domain,
then the signalf(t) can be well approximated by a truncated Gabor
series [6]. The number of frequency samples|ℓ| ≤ L0 is dictated
by the desired accuracy of the approximation and depends on the
essential bandwidths of the signal and the Gabor window. Therefore,
a total ofKL, withK = 2K0+1 andL = 2L0+1, Gabor samples

suffices to approximate[−β/2, β/2] time limited and[−Ω/2,Ω/2]
essentially bandlimited signals.

For signals fromMP(N,W, β;S,ΩW ,Ω) many Gabor coeffi-
cients in the series (2) are zero. Indeed, if the support ofg(t − ak)
does not overlap any active region off(t), thenzk,l = 0 for all
l ∈ Z. Since at most⌈2µ−1⌉ shifts of g(t) by ak = µWk over-
lap one pulse off(t), and there are altogetherN pulses present,
the number of nonzero coefficients with respect to the indexk is
at most⌈2µ−1⌉N . Hence, a finite number,⌈2µ−1⌉NL with L =
2L0 + 1, of Gabor coefficients suffices to approximate anyf ∈
MP(N,W, β;S,ΩW ,Ω) with desired accuracy. Iff(t) is addition-
ally essentially multiband, then this number can be further reduced.
Indeed, if the essential support ofĝ(ω− bl) does not overlap any es-
sential band off(t), then|zk,l| = |Vgf(ak, bl)| = |Vĝ f̂(bl,−ak)|
is small for all−K0 ≤ k ≤ K0. At most⌈(ΩW + B)W ⌉ shifts
of essential bandwidth[−B/2, B/2] of ĝ(ω) by bl = l/W overlap
one essential band off(t), and there are altogetherS bands present.
Therefore the number of dominant coefficients with respect to the in-
dexℓ is at most⌈(ΩW +B)W ⌉S, and the number of samples neces-
sary for a good reconstruction becomes⌈2µ−1⌉×⌈(ΩW +B)W ⌉S.

In the next section we introduce a sampling scheme that samples
multipulse signals at the minimal rate which still allows to obtain the
necessary dominant Gabor coefficients.

3. SAMPLING OF MULTIPULSE SIGNALS

3.1. Sampling System

Our system, shown in Fig. 1, exploits the sparsity of multipulse sig-
nals,MP(N,W, β;S,ΩW ,Ω), in time and frequency. The signal
f(t) entersJM channels simultaneously. In the(j,m)th channel,
f(t) is multiplied by a mixing functionqj,m(t), followed by an inte-
grator. The role of the mixing functions is to gather together all the
information inf(t) over the entire interval[−β/2, β/2]. Namely,
f(t) is windowed with shifts of some compactly supported function,
and all the windowed versions are summed together with different
weights. Simultaneously, the frequency content off(t) is shifted
and filtered with some essentially low-pass filter, and all the filtered
shifts are summed together with different weights.

∫ β/2

−β/2
(·) dt

∫ β/2

−β/2
(·) dt

∫ β/2

−β/2
(·) dt

f(t)

q0,0(t)

qj,m(t)

qJ−1,M−1(t)

y0,0

yj,m

yJ−1,M−1

Fig. 1: An efficient sampling system for multipulse signals.

The functionsqj,m(t) are constructed from the Gabor frame.
Let G(g, a, b) be a Gabor frame with windowg(t) supported on
the interval[−W/2,W/2], essentially bandlimited to[−B/2, B/2],
and with sampling parametersa = µW andb = 1/W for some



0 < µ < 1. Thenqj,m(t) = wj(t)sm(t) where

wj(t) =

L0∑

l=−L0

dj,le
−2πiblt , sm(t) =

K0∑

k=−K0

cm,kg(t− ak)

with j = 0, . . . , J − 1, m = 0, . . . ,M − 1, K0 = ⌈(β +
W )/(2Wµ)⌉ − 1 andL0 = ⌈((Ω + B)W )/2⌉ − 1. To specify
qj,m(t) completely, it remains to choose the coefficientsdj,l and
cm,k. To do so, we first analyze the effect of the sampler on the
unknown signal and derive the relation between the samplesyj,m
and the signalf(t).

Consider the(j,m)th channel:

yj,m =

∫ β/2

−β/2

f(t)qj,m(t) dt =

L0∑

l=−L0

dj,l

K0∑

k=−K0

cm,kzk,l , (3)

wherezk,l = 〈f,MblTakg〉. The above relation ties the knownyj,m
to the unknown Gabor coefficients off(t) with respect toG(g, a, b).
This relation is key to the recovery off(t). As can be seen, the goal
of the modulatorqj,m(t) is to create mixtures of the unknown Gabor
coefficientszk,l. These mixtures, when chosen appropriately, will
allow to recoverzk,l from a small numberJM measurements by ex-
ploiting the sparsity of these coefficients in time and/or in frequency,
and relying on ideas of compressed sensing. If we were to collect
pure Gabor coefficients then we would have to takeKL measure-
ments, more then necessary as many of them are zero or negligible
for a good reconstruction.

3.2. Signal Recovery

It is convenient to write (3) in matrix form as

Y = D(CZ)T , (4)

whereY is a matrix of sizeM × J with mjth element equalyj,m,
for j = 0, . . . , J − 1 andm = 0, . . . ,M − 1. The unknown Ga-
bor coefficients are gathered in theK × L matrix Z with columns
Z[l] = [z−K0,l, . . . , zK0,l]

T , l = −L0, . . . , L0. TheJ × L ma-
trix D contains the coefficientsDj,l = dj,l−L0

, j = 0, . . . , J − 1,
l = 0, . . . , 2L0, and theM ×K matrixC contains the coefficients
Cm,k = cm,k−K0

,m = 0, . . . ,M − 1, k = 0, . . . , 2K0.
The choice of a frameG(g, a, b) guarantees that for everyℓ,

the column vectorsZ[l] have only⌈2µ−1⌉N out of K nonzero
entries, and the nonzero entries correspond to the locations of the
pulses, as discussed in Subsection 2.3. We conclude that each
Z[l] is ⌈2µ−1⌉N−sparse and allZ[l] have nonzero entries on
the same rows due to the structure off(t). Moreover, if the sig-
nal is known to be essentially multiband, then the rows vectors
Z[k] = [zk,−L0

, . . . , zk,L0
] have only⌈(ΩW + B)W ⌉S out of

L dominant entries, and the dominant entries correspond to the
locations of the essential bands off(t). Therefore, eachZ[k] is
⌈(ΩW +B)W ⌉S−dominant and allZ[k] have dominant entries on
the same columns due to the structure off(t) in the frequency do-
main. TheK×LmatrixZC with all but⌈(ΩW +B)W ⌉S nonzero
columns corresponding to the⌈(ΩW + B)W ⌉S greatest columns,
with respect toℓ2−norm, is referred to as the best⌈(ΩW +B)W ⌉S
column approximation ofZ.

The following theorem states the conditions under which one
can reconstruct the Gabor coefficientszk,l, |k| ≤ K0 and|l| ≤ L0,
from the outputsyj,m. Let us fixµ ∈ (0, 1) and a Gabor frame
G(g, a, b), with a = Wµ, b = 1/W , andg ∈ S0 compactly sup-
ported on[−W/2,W/2] and ǫB−bandlimited to[−B/2, B/2] in
theS0 norm.

Theorem 3.1([7]). Let f ∈ MP(N,W, β;S,ΩW ,Ω) be sampled
using the sampling scheme of Fig. 1 with the following parameters:

1) K0 = ⌈(β +W )/(2Wµ)⌉ − 1;

2) L0 = ⌈(Ω +B)W/2⌉ − 1;

3) qj,m(t) = wj(t)sm(t) wherem = 0, . . . ,M − 1 and j =
0, . . . , J − 1;

4) M ≥ ⌈2µ−1⌉N for non-blind reconstruction orM ≥
2⌈2µ−1⌉N for blind;

5) J ≥ ⌈(ΩW + B)W ⌉S for non-blind reconstruction orJ ≥
2⌈(ΩW +B)W ⌉S for blind.

If the matrixD has RIP1 constantδ of order 2⌈(ΩW + B)W ⌉S
such thatδ ≤

√
2 − 1 and every set of2⌈2µ−1⌉N columns ofC

are linearly independent, then (4) has a unique sparse solutionZ̃.
Moreover, the functioñf =

∑K0

k=−K0

∑L0

l=−L0
z̃k,lMbl Takγ, with

γ ∈ S0 denoting the dual atom ofg(t), reconstructed from the ob-
tained coefficients satisfies

‖f − f̃‖2 ≤ C̃0(ǫΩ + ǫB)‖f‖2 + C̃1

L0∑

l=−L0

∥∥∥Z[l]−Z
C [l]

∥∥∥
2

, (5)

where C̃0 and C̃1 are constants depending on the chosen Gabor
frame, andC̃1 additionally on the RIP constantδ. The matrixZC is
the best⌈(ΩW +B)W ⌉S−term approximation ofZ.

In the case of known positions of the pulses and bands, referred
to as non-blind, the minimal sampling rate for the desired accuracy
of the approximation and a given frame is whenM = ⌈2µ−1⌉N
andJ = ⌈(ΩW + B)W ⌉S. In the blind setting, when the locations
of the pulses and the bands are unknown, the sampling rate increases
by a factor of four (a factor of two in each domain). Note, that the
scheme is efficient only when the pulses occupy less then half of the
overall support of the signal in time and it is concentrated on less
then half of its bandwidth.

As we have seen, the matrixZ that we would like to recover
from the measurementsY is both row sparse and column compress-
ible. The recovery ofZ is performed in two stages. First, we re-
cover ⌈2µ−1⌉N−row sparse matrixU from the relationYT =
CU. This problem is referred to as a multiple measurement vec-
tor (MMV) problem. Several algorithms have been developed that
exploit this structure to recoverU efficiently from Y

T in poly-
nomial time whenM is increased beyondM = 2⌈2µ−1⌉N [8],
[9]. Therefore,U can be recovered using any one of these known
methods and, since the solution is unique, it equalsZD

T . Know-
ing U

T = DZ
T , we solve another MMV problem for a unique

⌈(ΩW +B)W ⌉S−column sparse matrix̃Z. This time we obtain an
approximation ofZ, asZ itself is not strictly column sparse. This
approximation is proportional to the best⌈(ΩW +B)W ⌉S−column
approximation ofZ [9].

When no information about the frequency sparsity of the signal
is known, we take the matrixD to be left invertible, a necessary
condition beingJ ≥ L. The relation (4) then reduces toD†

Y =
(CZ)T and, with the assumptions on the matrixC, we are able to
retrieveZ.

1
D̃ has a RIP constant of orderS if (1 − δ)‖x‖2

2
≤ ‖D̃x‖2

2
≤ (1 +

δ)‖x‖2
2

for all S−sparse vecorsx.



4. WAVEFORM DESIGN

The functionssm(t) are pulse sequence modulations, and therefore
simple to implement. The sequences are chosen such that they form
a valid CS matrix. An example of a valid CS matrix is a matrix
whose entries are±1 drawn independently and with equal probabil-
ity. The waveformswj(t) are created from1/b−periodic waveforms
by low-pass filtering. More precisely, let

w̃j(t) = αj [i] ,
i

bI
≤ t ≤ i+ 1

bI
(6)

whereαj [i] = ±1 andi = 0, . . . , I − 1. The filteru(t) is designed
so that|û(ω)| = 1 for ω = bl and|l| ≤ L0, |û(ω)| = 0 for ω = bl
and |l| ≥ L0 and taking arbitrary values otherwise. Depending on
the application, we choose appropriate starting waveformswj(t).
For the matrixD to be left invertible a necessary condition is that
J ≥ I ≥ L and the sequencesαj [i] are chosen such that the ma-
trix A, whosejith element isαj [i], has full column rank [1]. For
example, ifJ = I = L, then the rows ofA can be created from
cyclic shifts of one basic sequence. On the other hand, for a matrix
D to be a valid CS matrix, meaning to have RIP property with high
probability, the valuesαj [i] = ±1 are chosen independently with
equal probability andI ≥ L ≥ J [10].

5. RELATED WORK

Our sampling scheme follows the philosophy in much of the recent
work in analog compressed sensing, termed Xampling, which pro-
vides a framework for incorporating structure in analog signals to
reduce the sampling rates, without the need for discretization [4].

A pioneer sub-Nyquist system of this type is the modulated
wideband converter (MWC) introduced in [10]. This scheme tar-
gets low rate sampling of multiband signals. The MWC enables
perfect recovery of any multiband function from its samples at rates
far below Nyquist, without knowledge of the band locations. Sub-
Nyquist sampling is achieved by applying modulation waveforms to
the analog input prior to uniformly sampling at the low rate. Real
life signals are by necessity of finite duration, hence are not strictly
bandlimited, and the MWC does not provide perfect recovery in
this case. Using our approach, through Gabor frames, we are able
to compute reconstruction errors and generalize the MWC to other
then ideal low pass filters [7].

Another application of MWC, with slightly modified wave-
forms, was used recently in [1] to treat multipulse signals with a
known pulse shape. The purpose of the waveforms in that scheme
is to simplify the hardware implementation and improve robustness,
while in the MWC the waveforms are used to reduce the sampling
rate relative to the Nyquist rate. In [7] we show that with proper
choice of theqj,m(t) waveforms our scheme reduces to that of [1].

In our system, the the MWC like waveforms are the waveforms
wj(t). Their purpose is twofold: reduce the sampling rate (when the
signal in known to be sparse in frequency) and simplify the hard-
ware implementation (when no specific knowledge on the frequency
content is available).

6. SIMULATIONS

We examine the performance of our sampling scheme on a signal
comprising three pulses, that is additionally essentially multiband
with two bands. We use a tight Gabor frame with cosine window
andµ = 1/2. When sparsity in time and in frequency is not taken

into account we needKL = 5084, with K = 124 andL = 41,
Gabor coefficients to obtain the relative error‖f − f̃‖/‖f‖2 of
0.006. The same error can be achieved if we reduceK = 124
to M = 30, achieving fivefold improvement. On the other hand,
when multibandedness of the signal is additionally taken into ac-
count, thenL = 41 can be reduced toJ = 19 achieving overall
tenfold improvement with respect toKL. The relative error in this
case increases, to0.06, as Theorem 3.1 suggests.

Fig. 2 compares the performance of our sampling system for
different number of channels with respect to sparsity in time (M )
and sparsity in frequency (J). The results are averaged over100
trials.

18 20 22 24 26 28 30 32 34 36
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M

re
la

tiv
e 

er
ro

r

 

 
system samples
Gabor samples

11 12 13 14 15 16 17 18 19 20 21
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

J

re
la

tiv
e 

er
ro

r

 

 
M=25
M=18
Gabor samples

Fig. 2: Comparison of the relative error with respect to the number
of channels. Dotted line represents the error when allKl Gabor
coefficients are used in the reconstruction.
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