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Abstract Enabling cognitive radio (CR) requires revisiting the traditional task of
spectrum sensing with specific and demanding requirements in terms of detection
performance, real-time processing and robustness to noise. Unfortunately, conven-
tional spectrum sensing methods do not satisfy these demands. In particular, the
Nyquist rate of signals typically sensed by a CR is prohibitively high so that sam-
pling at this rate necessitates sophisticated and expensive analog to digital convert-
ers, which lead to a torrent of samples. Over the past few years, several sampling
methods have been proposed that exploit signals’ a priori known structure to sample
them below Nyquist. In this chapter, we review some of these techniques and tie
them to the task of spectrum sensing for CRs. We then show how other spectrum
sensing challenges can be tackled in the sub-Nyquist regime. First, to cope with low
signal to noise ratios, spectrum sensing may be based on second-order statistics re-
covered from the low rate samples. In particular, cyclostationary detection allows
to differentiate between communication signals and stationary noise. Next, CR net-
works, that perform collaborative low rate spectrum sensing, have been proposed
to overcome fading and shadowing channel effects. Last, to enhance CR efficiency,
we present joint spectrum sensing and direction of arrival estimation methods from
sub-Nyquist samples. These allow to map the temporarily vacant bands both in
terms of frequency and space. Throughout this chapter, we highlight the relation
between theoretical algorithms and results and their practical implementation. We
show hardware simulations performed on a prototype built with off-the-shelf de-
vices, demonstrating the feasibility of sub-Nyquist spectrum sensing in the context
of CR.
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1 Introduction

In order to increase the chance of finding an unoccupied spectral band, Cognitive
Radios (CRs) have to sense a wide band of spectrum. Nyquist rates of wideband sig-
nals are high and can even exceed today’s best analog to digital converters (ADCs)
front-end bandwidths. In addition, such high sampling rates generate a large number
of samples to process, affecting speed and power consumption. To overcome the rate
bottleneck, several sampling methods have been proposed that leverage the a priori
known received signal’s structure, enabling sampling rate reduction [1, 2]. These
include the random demodulator [3], multi-rate sampling [4], multicoset sampling
and the modulated wideband converter (MWC) [5, 6, 7, 8].

The CR then performs spectrum sensing on the acquired samples to detect the
presence of primary users’ (PUs) transmissions. The simplest and most common
spectrum sensing approach is energy detection [9], which does not require any a
priori knowledge on the input signal. Unfortunately, energy detection is very sensi-
tive to noise and performs poorly in low signal to noise ratio (SNR) regimes. This
becomes even more critical in sub-Nyquist regimes since the sensitivity of energy
detection is amplified due to aliasing of the noise [10]. Therefore, this scheme fails
to meet CR performance requirements in low SNRs. In contrast, matched filter (MF)
detection [11, 12], which correlates a known waveform with the input signal to de-
tect the presence of a transmission, is the optimal linear filter for maximizing SNR
in the presence of additive stochastic noise. However, this technique requires per-
fect knowledge of the potential received transmission. When no a priori knowledge
is assumed on the received signals’ waveform, MF is difficult to implement. A com-
promise between both methods is cyclostationary detection [13, 14]. This strategy
is more robust to noise than energy detection but at the same time only assumes
that the signal of interest exhibits cyclostationarity, which is a typical characteris-
tic of communication signals. Consequently, cyclostationary detection is a natural
candidate for spectrum sensing from sub-Nyquist samples in low SNRs.

Besides noise, the task of spectrum sensing for CRs is further complicated due
to path loss, fading and shadowing [15]. These phenomena are due to the signal’s
propagation that can be affected by obstacles and multipath, and result in the atten-
uation of the signal’s power. To overcome these practical issues, collaborative CR
networks have been considered, where different users share their sensing results and
cooperatively decide on the licensed spectrum occupancy [15, 16, 17]. Cooperative
spectrum sensing can be classified into three categories based on the way the data is
shared by the CRs in the network: centralized, distributed and relay-assisted. In each
of these settings, two options of data fusion arise: decision fusion, or hard decision,
where the CRs only report their binary local decisions, and measurement fusion,
or soft decision, where they share their samples [15]. Cooperation has been shown
to improve detection performance and relax sensitivity requirements by exploiting
spatial diversity.

Finally, CRs may require, or at least benefit from joint spectrum sensing and di-
rection of arrival (DOA) estimation. DOA recovery can enhance CR performance by
allowing exploitation of vacant bands in space in addition to the frequency domain.
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Fig. 1 Multiband model with K = 6 bands. Each band does not exceed the bandwidth B and is
modulated by an unknown carrier frequency | fi| ≤ fNyq/2, for i = 1,2,3.

For example, a spectral band occupied by a PU situated in a certain direction with
respect to the CR, may be used by the latter for transmission to the opposite direc-
tion, where receivers do not sense the PU’s signal. In order to estimate jointly the
carrier frequencies and DOAs of the received transmissions, arrays of sensors have
been considered. DOA recovery techniques, such as MUSIC [18, 19], ESPRIT [20]
or compressed sensing (CS) [21] techniques, may then be adapted to the joint carrier
and DOA estimation problem both in Nyquist and sub-Nyquist regimes

This chapter focuses on the spectrum sensing challenges for CR outlined above.
We first review sub-Nyquist sampling methods for multiband signals and then con-
sider different aspects of spectrum sensing performed on low rate samples, including
cyclostationary detection, collaborative spectrum sensing and joint carrier frequency
and DOA estimation. Our emphasis is on practical low rate acquisition schemes
and tailored recovery that can be implemented in real CR settings. The approach
adopted here focuses on the analog to digital interface of CRs. In particular, we are
concerned with compressive spectrum sensing, including the application of CS to
analog signals. Modeling the analog to digital conversion allows demonstrating the
realization of the theoretical concepts on hardware prototypes. We focus on the im-
plementation of one sampling scheme reviewed here, the MWC, and show how the
same low rate samples can be used in the different extensions of spectrum sensing
described above.

2 Sub-Nyquist Sampling for CR

CR receivers sense signals composed of several transmissions with unknown sup-
port, spread over a wide spectrum. Such sparse wideband signals belong to the so-
called multiband model [6, 7]. An example of a multiband signal x(t) with K bands
is illustrated in Fig. 1. The bandwidth of each band is no greater than B, and is
centered around unknown carrier frequencies | fi| ≤ fNyq/2, where fNyq denotes the
signals’ Nyquist rate and i indexes the transmissions. Note that, for real-valued sig-
nals, K is an even integer due to spectral conjugate symmetry and the number of
transmissions is Nsig = K/2.

When the frequency support of x(t) is known, classic sampling methods such as
demodulation, undersampling ADCs and interleaved ADCs (see [1, 2] and refer-
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Fig. 2 Block diagram for the random demodulator, including a random number generator, a mixer,
an accumulator and a sampler [3].

ences therein) may be used to reduce the sampling rate below Nyquist. Here, since
the frequency location of the transmissions are unknown, classic processing first
samples x(t) at its Nyquist rate fNyq, which may be prohibitively high. To over-
come the sampling rate bottleneck, several blind sub-Nyquist sampling and recov-
ery schemes have been proposed that exploit the signal’s structure and in particular
its sparsity in the frequency domain, but do not require knowledge of the carrier fre-
quencies. It has been shown in [6] that the minimal sampling rate for perfect blind
recovery in multiband settings is twice the Landau rate [22], that is twice the oc-
cupied bandwidth. This rate can be orders of magnitude lower than Nyquist. In the
remainder of this section, we survey several sub-Nyquist methods, that theoretically
achieve this minimal sampling rate.

2.1 Multitone Model and the Random Demodulator

Tropp et al. [3] consider a discrete multitone model for multiband signals and sug-
gest sampling using the random demodulator, depicted in Fig. 2. Multitone functions
are composed of K active tones spread over a bandwidth W , such that

f (t) = ∑
ω∈Ω

bω e−2πiωt , t ∈ [0,1) . (1)

Here, Ω is a set of K normalized frequencies, or tones, that satisfies

Ω ⊂ {0,±1,±2, . . . ,±(W/2−1),±W/2}, (2)

and bω , for ω ∈ Ω , are a set of complex-valued amplitudes. The number of active
tones K is assumed to be much smaller than the bandwidth W . The goal is to recover
both the tones ω and the corresponding amplitudes bω .

To sample the signal f (t), it is first modulated by a high-rate sequence pc(t)
created by a pseudo-random number generator. It is then integrated and sampled
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at a low rate, as shown in Fig. 2. The random sequence used for modulation is a
square wave, which alternates between the levels ±1 with equal probability. The K
tones present in f (t) are thus aliased by the pseudo-random sequence. The resulting
modulated signal y(t) = f (t)pc(t) is integrated over a period 1/R and sampled at
the low rate R. This integrate-and-dump approach results in the following samples

ym = R
∫ (m+1)/R

m/R
y(t)dt, m = 0,1, . . . ,R−1. (3)

The samples ym acquired by the random demodulator can be written as a linear
combination of the W × 1 sparse amplitude vector b that contains the coefficients
bω at the corresponding locations ω [3]. In matrix form, we write

y = Ab, (4)

where y is the vector of size R that contains the samples ym and A is the known
sampling matrix that describes the overall action of the system on the vector of am-
plitudes b, namely modulation and filtering (see [3] for more details). Capitalizing
on the sparsity of the vector b, the amplitudes bω and their respective locations ω

can be recovered from the low rate samples y using CS [21] techniques, in turn al-
lowing for the recovery of f (t). CS provides a framework for simultaneous sensing
and compression of finite-dimensional vectors, which relies on linear dimension-
ality reduction. It provides both recovery conditions and algorithms to reconstruct
sparse vectors from low-dimensional measurement vectors, represented as linear
combinations of the former. Here, the minimal required number of samples R for
perfect recovery of f (t) in noiseless settings is 2K [21].

The random demodulator is one of the pioneer attempts to extend the inherently
discrete and finite CS theory to analog signals. However, truly analog signals, as
those we consider here, require a prohibitively large number of harmonics to ap-
proximate them well within the discrete model. When attempting to approximate
signals such as those from the multiband model, the number of tones W is on the or-
der of the Nyquist rate and the number of samples R is a multiple of KB. This in turn
renders the reconstruction computationally prohibitive and very sensitive to the grid
choice (see [1] for a detailed analysis). Furthermore, the time-domain approach pre-
cludes processing at a low rate, even for multitone inputs since interpolation to the
Nyquist rate is an essential ingredient of signal reconstruction. In terms of hardware
and practical implementation, the random demodulator requires accurate modula-
tion by a periodic square mixing sequence and accurate integration, which may be
challenging when using analog signal generators, mixers and filters.

In contrast to the random demodulator, which adopts a discrete multitone model,
the rest of the approaches we focus on treat the analog multiband model, illustrated
in Fig. 1, which is of interest to us in the context of CR.
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Fig. 3 Action of the SMRS
on a multiband signal: (a) the
input signal with K = 2 bands,
(b) signals sampled at rate F1
in channel 1, (c) signals
sampled at rate F2 in channel
2, and (d) possible support
which is the intersection of
the supports in channel 1 and
2 [4].
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2.2 Multi-Rate Sampling

An alternative sampling approach is based on the synchronous multi-rate sampling
(SMRS) [4] scheme, which has been proposed in the context of electro-optical sys-
tems to undersample multiband signals. The SMRS samples the input signal at P
different sampling rates Fi, each of which is an integer multiple of a basic sampling
rate ∆ f . This procedure aliases the signal with different aliasing intervals, as illus-
trated in Fig. 3. The Fourier transform of the undersampled signals is then related to
the original signal through an underdetermined system of linear equations,

z( f ) = Qx( f ). (5)

Here, x( f ) contains frequency slices of size ∆ f of the original signal x(t) and z( f ) is
composed of the Fourier transform of the sampled signal. Each channel contributes
Mi = Fi/∆ f equations to the system (5), which concatenates the observation vector
of all the channels. The measurement matrix Q has exactly P non-zero elements in
every column, that correspond to the locations of the spectral replica in each channel
baseband [0,Fi].

This approach assumes that either the signal or the sampling time window are
finite. The continuous variable f is then discretized to a frequency resolution of ∆ f .
Since x(t) is sparse in the frequency domain, the vector x( f ) is sparse and can be
recovered from (5) using CS techniques, for each discrete frequency f . An alterna-
tive recovery method, referred to as the reduction procedure, consists of detecting
baseband frequencies in which there is no signal, by observing the samples. These
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frequencies are assumed to account for the absence of signals of interest in all the
frequencies that are down-converted to that baseband frequency. This allows to re-
duce the number of sampling channels. This assumption does not hold in the case
where two or more frequency components cancel each other due to aliasing, which
happens with probability zero. The procedure is illustrated in Fig. 3. Once the cor-
responding components are eliminated from (5), the reduced system can be inverted
using the Moore-Penrose pseudo-inverse to recover x( f ).

There are several drawbacks to the SMRS that limit its performance and potential
implementation. First, the discretization process affects the SNR since some of the
samples are thrown out. Furthermore, spectral components down-converted to off
the grid frequencies are missed. In addition, the first recovery approach requires a
large number of sampling channels, proportional to the number of active bands K,
whereas the reduction procedure does not ensure a unique solution and the inversion
problem is ill-posed in many cases. Finally, in practice, synchronization between
channels sampling at different rates is challenging. Moreover, this scheme samples
wideband signals using low rate samplers. Practical ADCs introduce an inherent
bandwidth limitation, modeled by an anti-aliasing low pass filter (LPF) with cut-off
frequency determined by the sampling rate, which distorts the samples. To avoid
this issue, the multi-rate strategy would require low rate samplers with large analog
bandwidth.

2.3 Multicoset sampling

A popular sampling scheme for sampling wideband signals at the Nyquist rate is
multicoset or interleaved ADCs [23, 6, 1] in which several channels are used, each
operating at a lower rate. We now discuss how such systems can be used in the
sub-Nyquist regime.

Multicoset sampling may be described as the selection of certain samples from
the uniform Nyquist grid, as shown in Fig. 4, where TNyq = 1/ fNyq denotes the
Nyquist period. More precisely, the uniform grid is divided into blocks of N consec-
utive samples, from which only M < N are kept. Mathematically, the ith sampling
sequence is defined as

xci [n] =
{

x(nTNyq), n = mN + ci,m ∈ Z
0, otherwise, (6)

where the cosets ci are ordered integers so that 0 ≤ c1 < c2 < · · · < cM < N. A
possible implementation of the sampling sequences (6) is depicted in Fig. 5. The
building blocks are M uniform samplers at rate 1/NTNyq, where the ith sampler is
shifted by ciTNyq from the origin. When sampling at the Nyquist rate, M = N and
ci = (i−1).

The samples in the Fourier domain can be written as linear combinations of spec-
trum slices of x(t), such that [6]
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Fig. 5 Schematic implementation of multicoset sampling. The input signal x(t) is inserted into the
multicoset sampler that splits the signal into M branches, and delays each one by a fixed coefficient
ciTNyq. Every branch is sampled at the low rate 1/(NTNyq), and then digitally processed to perform
spectrum sensing and signal reconstruction.

z( f ) = Ax( f ), f ∈Fs. (7)

Here, Fs = [− fs/2, fs/2] with fs =
1

NTNyq
≥ B the sampling rate of each channel.

The mth row of z( f ) contains the discrete time Fourier transform of the samples
zm[n]. The N×1 vector x( f ) denotes the spectrum slices of x(t), where the ith row
of x( f ) is xi( f ) = X( f +(i−b(N+2)/2c) fp), and X( f ) is the Fourier transform of
x(t). Since x(t) is assumed to be sparse, x( f ) is sparse as well, and its support, that
is the set that contains the indices corresponding to its non zero rows, is determined
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Fig. 6 The spectrum slices of the input signal x( f ) are shown here to be multiplied by the coeffi-
cients ail of the sensing matrix A, resulting in the measurements zi for the ith channel. Note that
in multicoset sampling, only the slices’ complex phase is modified by the coefficients ail . In the
MWC sampling described below, both the phases and amplitudes are affected.

by the frequency locations of the transmissions of x(t). The M×N sampling matrix
A is a Vandermonde matrix with factors determined by the selected delays or cosets
ci. This relation is illustrated in Fig. 6. In the Nyquist regime, when M = N, A is the
Fourier matrix. The recovery processing described below is performed in the time
domain, where we have

z[n] = Ax[n], n ∈ Z. (8)

The vector z[n] collects the measurements at t = n/ fs and x[n] contains the sample
sequences corresponding to the spectrum slices of x(t). Obviously, the sparsity pat-
tern of x[n] is identical to that of x( f ) and it follows that x[n] are jointly sparse over
time.

Our goal is to recover x[n] from the samples z[n]. The system (8) is underde-
termined due to the sub-Nyquist setup and known as infinite measurement vector
(IMV) in the CS literature [21, 2]. The digital reconstruction algorithm consists of
the following three stages [6] that we explain in more detail below:

1. The continuous-to-finite (CTF) block constructs a finite frame (or basis) from the
samples.

2. The support recovery formulates an optimization problem whose solution’s sup-
port is identical to the support S of x[n], that is the active slices.

3. The signal is then digitally recovered by reducing (8) to the support of x[n].
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The recovery of x[n] for every n independently is inefficient and not robust to
noise. Instead, the CTF method, developed in [6], exploits the fact that the bands
occupy continuous spectral intervals so that x[n] are jointly sparse, that is they have
the same spectral support S over time. The CTF then produces a finite system of
equations, called multiple measurement vectors (MMV) [21, 2] from the infinite
number of linear systems described by (8). The samples are first summed as

Q = ∑
n

z[n]zH [n], (9)

and then decomposed to a frame V such that Q = VVH . Clearly, there are many
possible ways to select V. One option is to construct it by performing an eigen-
decomposition of Q and choosing V as the matrix of eigenvectors corresponding to
the non zero (or large enough) eigenvalues. The finite dimensional MMV system

V = AU, (10)

is then solved for the sparsest matrix U with minimal number of non-identically zero
rows using CS techniques [21, 2]. The key observation of this recovery strategy is
that the indices of the non zero rows of U coincide with the active spectrum slices
of z[n] [6]. These indices are referred to as the support of z[n] and are denoted by S.

Once the support S is known, x[n] is recovered by reducing the system of equa-
tions (8) to S. The resulting matrix AS, that contains the columns of A corresponding
to S, is then inverted

xS[n] = A†
Sz[n]. (11)

Here, xS[n] denotes the vector x[n] reduced to its support. The remaining entries of
x[n] are equal to zero.

The overall sampling rate of the multicoset system is

fTotal = M fs =
M
N

fNyq. (12)

The minimal number of channels is dictated by CS results [21] which imply that
M ≥ 2K with fs ≥ B per channel. The sampling rate can thus be as low as 2KB,
which is twice the Landau rate [22].

Although this sampling scheme seems relatively simple and straightforward, it
suffers from several practical drawbacks [1]. First, as in the multi-rate approach,
multicoset sampling requires low rate ADCs with large analog bandwidth. Another
issue arises from the time shift elements, since maintaining accurate time delays
between the ADCs on the order of the Nyquist interval TNyq is difficult. Last, the
number of channels M required for recovery of the active bands can be prohibitively
high. The MWC, presented in the next section, uses similar recovery techniques
while overcoming these practical sampling issues.
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2.4 MWC sampling

The MWC [7] exploits the blind recovery ideas developed in [6] and combines them
with the advantages of analog RF demodulation. To circumvent the analog band-
width issue in the ADCs, an RF front-end mixes the input signal x(t) with periodic
waveforms. This operation imitates the effect of delayed undersampling used in the
multicoset scheme and results in folding the spectrum to baseband with different
weights for each frequency interval. The MWC achieves aliasing by mixing the sig-
nal, which is filtered prior to sampling. The ADC’s input is thus a narrowband signal
in contrast with multicoset which samples a wideband signal at a low rate to create
aliasing. This characteristic of the MWC enables practical hardware implementa-
tion, which will be described in Section 3.

More specifically, the MWC is composed of M parallel channels. In each chan-
nel, x(t) is multiplied by a periodic mixing function pi(t) with period Tp = 1/ fp and
Fourier expansion

pi(t) =
∞

∑
l=−∞

aile
j 2π

Tp lt
. (13)

The mixing process aliases the spectrum, such that each band appears in baseband.
The signal then goes through a LPF with cut-off frequency fs/2 and is sampled
at rate fs ≥ fp. The analog mixture boils down to the same mathematical relation
between the samples and the N = fNyq/ fs frequency slices of x(t) as in multicoset
sampling, namely (7) in frequency and (8) in time, as shown in Fig. 6. Here, the
M×N sampling matrix A contains the Fourier coefficients ail of the periodic mixing
functions. The recovery conditions and algorithm are identical to those described for
multicoset sampling.

Choosing the channels’ sampling rate fs to be equal to the mixing rate fp results
in a similar configuration as the multicoset scheme in terms of the number of chan-
nels. In this case, the minimal number of channels required for the recovery of K
bands is 2K. The number of branches dictates the total number of hardware devices
and thus governs the level of complexity of the practical implementation. Reducing
the number of channels is a crucial challenge for practical implementation of a CR
receiver. The MWC architecture presents an interesting flexibility property that per-
mits trading channels for sampling rate, allowing to drastically reduce the number
of channels, even down to a single channel.

Consider a configuration where fs = q fp, with odd q. In this case, the ith physi-
cal channel provides q equations over Fp = [− fp/2, fp/2], as illustrated in Fig. 7.
Conceptually, M physical channels sampled at rate fs = q fp are equivalent to Mq
channels sampled at fs = fp. The number of channels is thus reduced at the expense
of higher sampling rate fs in each channel and additional digital processing. The
output of each of the M physical channels is digitally demodulated and filtered to
produce samples that would result from Mq equivalent virtual branches. This hap-
pens in the so-called expander module, directly after the sampling stage and before
the digital processing described above, in the context of multicoset sampling. At its
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(a) Spectrum of ǁ𝑧𝑖 𝑛 for 𝑓𝑠 = 5𝑓𝑝.

(b) Spectrum of 𝑧𝑖,𝑗 𝑛 after expansion.

Fig. 7 Illustration of the expander configuration for q = 5. (a) Spectrum of the output z̃i[n] of the
physical ith channel, (b) spectrum of the samples zi, j[n] of the q = 5 equivalent virtual channels,
for j = 1, . . . ,5, after digital expansion.

brink, this strategy allows to collapse a system with M channels to a single branch
with sampling rate fs = M fp (further details can be found in [7, 24, 25]).

The MWC sampling and recovery processes are illustrated in Fig. 8. This ap-
proach results in a hardware-efficient sub-Nyquist sampling method that does not
suffer from the practical limitations described in previous sections, in particular, the
analog bandwidth limitation of low rate ADCs. In addition, the number of MWC
channels can be drastically reduced below 2K to as few as one, using a higher sam-
pling rate fs in each channel and additional digital processing. This tremendously
reduces the burden on hardware implementation. However, the choice of appropriate
periodic functions pi(t) to ensure correct recovery is challenging. Some guidelines
are provided in [26, 27, 2].

2.5 Uniform Linear Array based MWC

An alternative sensing configuration, composed of a uniform linear array (ULA)
and relying on the sampling paradigm of the MWC, is presented in [28]. The sens-
ing system consists of a ULA composed of M sensors, with two adjacent sensors
separated by a distance d, such that d < c/(|cos(θ)| fNyq), where c is the speed of
light and θ is the angle representing the DOA of the signal x(t). This system, illus-
trated in Fig. 9, capitalizes on the different accumulated phases of the input signal
between sensors, given by e j2π fiτm , where
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Fig. 8 Schematic implementation of the MWC analog sampling front-end and digital signal re-
covery from low rate samples.

τm =
dm
c

cos(θ) (14)

is the delay at the mth sensor with respect to the first one. Each sensor implements
one channel of the MWC, that is the input signal is mixed with a periodic function,
low-pass filtered and then sampled at a low rate.

This configuration has three main advantages over the standard MWC. First, it
allows for a simpler design of the mixing functions which can be identical in all sen-
sors. The only requirement on p(t), besides being periodic with period Tp ≤ 1/B,
is that none of its Fourier series coefficients within the signal’s Nyquist bandwidth
is zero. Second, the ULA based system outperforms the MWC in terms of recovery
performance in low SNR regimes. Since all the MWC channels belong to the same
sensor, they are all affected by the same additive sensor noise. In the ULA archi-
tecture, each channel belongs to a different sensor with uncorrelated sensor noise
between channels. The alternative approach benefits from the same flexibility as the
standard MWC in terms of collapsing the channels, which translates into reducing
the antennas in the alternative configuration. This lead to a trade-off exists between
hardware complexity, governed by the number of antennas, and SNR. Finally, as
will be shown in Section 6.3, the modified system can be easily extended to enable
joint spectrum sensing and DOA estimation.

Similarly to the previous sampling schemes, the samples z( f ) can be expressed
as a linear transformation of the unknown vector of slices x( f ), such that

z( f ) = Ax( f ), f ∈Fs. (15)

Here, x( f ) is a non sparse vector that contains cyclic shifted, scaled and sampled
versions of the active bands, as shown in Fig. 10. In contrast to the previous methods,
in this configuration, the matrix A, defined by
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Fig. 9 ULA configuration with M sensors, with distance d between two adjacent sensors. Each
sensor includes an analog front-end composed of a mixer with the same periodic function p(t), a
LPF and a sampler, at rate fs.

Fig. 10 (a) Original source
signals at baseband (before
modulation), (b) output sig-
nals at baseband x( f ) after
modulation, mixing, filtering
and sampling.
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 , (16)

depends on the unknown carrier frequencies. As before, in the time domain

z[n] = Ax[n], n ∈ Z. (17)

Two approaches are presented in [28] to recover the carrier frequencies of the
transmissions composing the input signal. The first is based on CS algorithms and
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Fig. 11 Hardware implementation of the MWC prototype, including the RF signal generators,
analog front-end board, FPGA series generator, ADC and DSP.

assumes that the carriers lie on a predefined grid. In this case, the resulting sensing
matrix, which extends A with respect to the grid, is known and the expanded vector
x( f ) is sparse. This leads to a similar system as (7) or (8) which can be solved using
the recovery paradigm from [6], described in the context of multicoset sampling.

In the second technique, the grid assumption is dropped and ESPRIT [20] is
used to estimate the carrier frequencies. This approach first computes the sample
covariance of the measurements

R = ∑
n

z[n]zH [n], (18)

and performs a singular value decomposition (SVD). The non zero singular values
correspond to the signal’s subspace and the carrier frequencies are then estimated
from these. Once the carriers are recovered, the signal itself is reconstructed by
inverting the sampling matrix A in (17).

The minimal number of sensors required by both reconstruction methods in
noiseless settings is M = 2K, with each sensor sampling at the minimal rate of
fs = B to allow for perfect signal recovery [28]. The proposed system thus achieves
the minimal sampling rate 2KB derived in [6]. We note that the expander strategy
proposed in the context of the MWC can be applied in this configuration as well.

3 MWC Hardware

3.1 MWC Prototype

One of the main aspects that distinguish the sub-Nyquist MWC from other sampling
schemes is its practical implementation [24], proving the feasibility of sub-Nyquist
sampling even under distorting effects of analog components and physical phenom-
ena. A hardware prototype, shown in Fig.11, was developed and built according to
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Fig. 12 MWC CR system prototype: (a) vector signal generator (VSG), (b) FPGA mixing se-
quences generator, (c) MWC analog front-end board, (d) RF combiner, (e) spectrum analyzer, (f)
ADC and DSP.

the block diagram in Fig. 8. The main hardware components that were used in the
prototype can be seen in Fig. 11. In particular, the system receives an input signal
with Nyquist rate of 6GHz and spectral occupancy of up to 200MHz, and samples
at an effective rate of 480MHz, that is only 8% of the Nyquist rate and 2.4 times the
Landau rate. This rate constitutes a relatively small oversampling factor of 20% with
respect to the theoretical lower sampling bound. This section describes the differ-
ent components of the hardware prototype, shown in Fig. 12, explaining the various
considerations that were taken into account when implementing the theoretical con-
cepts on actual analog components.

At the heart of the system lies the proprietary MWC board [24] that implements
the sub-Nyquist analog front-end. The card uses a high speed 1-to-4 analog splitter
that duplicates the wideband signal to M = 4 channels, with an expansion factor of
q = 5, yielding Mq = 20 virtual channels after digital expansion. Then, an analog
preprocessing step, composed of preliminary equalization, impedance corrections
and gain adjustments, aims at maintaining the dynamic range and fidelity of the in-
put in each channel. Indeed, the signal and mixing sequences must be amplified to
specific levels before entering the analog mixers to ensure proper behavior emulat-
ing mathematical multiplication with the mixing sequences. The entire analog path
of the multiband input signal is described in Fig. 13.

The modulated signal next passes through an analog anti-aliasing LPF. The anti-
aliasing filter must be characterized by both an almost linear phase response in the
pass band, between 0 to 50MHz, and an attenuation of more than 20dB at fs/2 =
60MHz. A Chebyshev LPF of 7th order with cut-off frequency (−3dB) of 50MHz
was chosen for the implementation. After impedance and gain corrections, the signal
now has a spectral content limited to 50MHz, that contains a linear combination of
the occupied bands with different amplitudes and phases, as seen in Fig. 6. Finally
the low rate analog signal is sampled by a National Instruments c© ADC operating
at 120MHz, leading to a total sampling rate of 480MHz.
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Fig. 13 Hardware RF chain detailed schematics, including amplifiers, attenuators, filters, mixers,
samplers and synchronization signals required for precise and accurate operation. The distortions
induced by each component are indicated as well.

The mixing sequences that modulate the signal play an essential part in signal
recovery. They must have low cross-correlations with each other, while spanning a
large bandwidth determined by the Nyquist rate of the input signal, and yet be easy
enough to generate with relatively cheap, off-the-shelf hardware. The sequences
pi(t), for i = 1, . . . ,4, are chosen as truncated versions of Gold Codes [29], which
are commonly used in telecommunication (CDMA) and satellite navigation (GPS).
Mixing sequences based on Gold codes were found to give good results in the MWC
system [26], primarily due to small bounded cross-correlations within a set.

Since Gold codes are binary, the mixing sequences are restricted to alternating
±1 values. This fact allows to digitally generate the sequences on a dedicated FPGA.
Alternatively, they can be implemented on a small chip with very low power and
complexity. The added benefit of producing the mixing sequences on such a plat-
form is that the entire sampling scheme can be synchronized and triggered using
the same FPGA with minimally added phase noise and jitter, keeping a closed syn-
chronization loop with the samplers and mixers. A XiLinX VC707 FPGA acts as
the central timing unit of the entire sub-Nyquist CR setup by generating the mixing
sequences and the synchronization signals required for successful operation. It is
crucial that both the mixing period Tp = 1/ fp and the low rate samplers operating at
(q+1) fp (due to intended oversampling) are fully synchronized, in order to ensure
correct modeling of the entire system, and consequently guarantee accurate support
detection and signal reconstruction.

The digital back-end is implemented using a National Instruments c© PXIe-1065
computer with DC coupled ADC. Since the digital processing is performed at the
low rate fs, very low computational load is required in order to achieve real time
recovery. MATLAB R©and LabVIEW R© environments are used for implementing the
various digital operations and provide an easy and flexible research platform for
further experimentations, as discussed in the next sections. The sampling matrix A
is computed once off-line, using the calibration process outlined in [25].
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3.2 Support Recovery

The prototype is fed with RF signals composed of up to 5 carrier transmissions
with an unknown total bandwidth occupancy of up to 200MHz, and Nyquist rate
of 6GHz. An RF input x(t) is generated using vector signal generators (VSG), each
producing one modulated data channel with individual bandwidth of up to 20MHz.
The input transmissions then go through an RF combiner, resulting in a dynamic
multiband input signal. This allows to test the system’s ability to rapidly sense the in-
put spectrum and adapt to changes, as required by modern CR standards (e.g. IEEE
802.22). In addition, the described setup is able to simulate more complex scenar-
ios, including collaborative spectrum sensing [30, 31], joint DOA estimation [28],
cyclostationary based detection [32] and various modulation schemes such as PSK,
OFDM and more, for verifying sub-Nyquist data reconstruction capabilities.

Support recovery is digitally performed on the low rate samples, as presented
above in the context of multicoset sampling. The prototype successfully recovers the
support of the transmitted bands transmitted, when SNR levels are above 15dB, as
demonstrated in Fig. 14. Additional simulations presenting different input scenarios
can be found in [2]. More sophisticated detection schemes, such as cyclostation-
ary detection, allow to achieve perfect support recovery from the same sub-Nyquist
samples in lower SNR regimes of 0−10dB, as seen in Figs. 24 and 25, and will be
further discussed in Section 4.2.

The main advantage of the MWC is that sensing is performed in real-time for the
entire spectral range, even though the operation is performed solely on sub-Nyquist
samples, which results in substantial savings in both computational and memory
complexity. In additional tests, it is shown that the bandwidth occupied in each
band can also be very low without impeding the performance, as seen in Fig. 15,
where the support of signals with very low bandwidth (just 10% occupancy within
the 20MHz band) is correctly detected.

3.3 Signal Reconstruction

Once the support is recovered, the data is reconstructed from the sub-Nyquist sam-
ples. Reconstruction is performed by inverting the reduced sampling matrix AS in
the recovered support, applying (11). This step is performed in real-time, recon-
structing the signal bands z[n] one sample at a time, with low complexity due to
the small dimensions of the matrix-vector multiplication. We note that reconstruc-
tion does not require interpolation to the Nyquist grid. The active transmissions are
recovered at the low rate of 20MHz, corresponding to the bandwidth of the slices
z( f ).

The prototype’s digital recovery stage is further expanded to support decoding of
common communication modulations, including BPSK, QPSK, QAM and OFDM.
An example for the decoding of three QPSK modulated bands is given in Fig. 16,
where the I/Q constellations are shown after reconstructing the original transmitted
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Fig. 14 Screen-shot from the MWC recovery software: low rate samples acquired from one MWC
channel at rate 120MHz (top), digital reconstruction of the entire spectrum, performed from sub-
Nyquist samples (middle), true input signal x(t) showed using a fast spectrum analyzer (bottom).

signals xS (11), from their low-rate and aliased sampled signals zn (8). The I/Q
constellations of the baseband signals is displayed, each individually decoded using
a general QPSK decoder. In this example, the user broadcasts text strings, that are
then deciphered and displayed on screen.

There are no restrictions regarding the modulation type, bandwidth or other pa-
rameters, since the baseband information is exactly reconstructed regardless of its
respective content. Therefore, any digital modulation method, as well as analog
broadcasts, can be transmitted and deciphered without loss of information, by ap-
plying any desirable decoding scheme directly on the sub-Nyquist samples.

By combining both spectrum sensing and signal reconstruction, the MWC pro-
totype serves as two separate communication devices. The first is a state-of-the-art
CR that can perform real time spectrum sensing at sub-Nyquist rates, and the second
is a unique receiver able to decode multiple data transmissions simultaneously, re-
gardless of their carrier frequencies, while adapting to temporal spectral changes in
real time. In cases where the support of the potential active transmissions is a priori
known (e.g. potential cellular carriers), the MWC may be used as an RF demodula-
tor that efficiently acquires several frequency bands simultaneously. Other schemes
would require a dedicated demodulation channel for each potentially active band. In
this case, the mixing sequences should be designed so that their Fourier coefficients



20 Deborah Cohen, Shahar Tsiper and Yonina C. Eldar

Fig. 15 The setup is identical to Fig. 14. In this case, the individual transmissions have low band-
width, highlighting the structure of the signal when folding to baseband.

are non zero only in the bands of interest, increasing SNR, and the support recovery
stage is not needed [33].

4 Statistics Detection

In the previous sections, we reviewed recent sub-Nyquist sampling methods that re-
construct a multiband signal, such as a CR signal, from low rate samples. However,
the final goal of CRs often only requires detection of the presence or absence of
the PUs’ transmissions and not necessarily their perfect reconstruction. In this case,
several works have proposed performing detection on second-order signal statistics,
which share the same frequency support as the original signal. In particular, power
and cyclic spectra have been considered for stationary and cyclostationary [13] sig-
nals, respectively. Instead of recovering the signal from the low rate samples, its
statistics are reconstructed and the support is estimated [34, 35, 36, 37, 38, 39, 40,
32].

Recovering second-order statistics rather than the signal itself benefits from two
main advantages. First, it allows to further reduce the sampling rate, as we will dis-
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Fig. 16 Demodulation, reconstruction and detection of Nsig = 3 inputs from sub-Nyquist samples
using the MWC CR prototype. At the bottom, the signal is sampled by an external spectrum ana-
lyzer showing the entire bandwidth of 3 GHz. Sub-Nyquist samples from an MWC channel zi[n] in
the Fourier domain are displayed in the middle. The I/Q phase diagrams, showing the modulation
pattern of the transmitted bands after reconstruction from the low rate samples, are presented at
the top left. In the upper right corner, we see the information that was sent on each carrier, proving
successful reconstruction.

cuss in the remainder of this section. Intuitively, statistics have fewer degrees of
freedom than the signal itself, requiring less samples for their reconstruction. This
follows from the assumption that the signal of interest is either stationary or cyclo-
stationary. Going one step further, the sparsity constraint can even be removed in
this case and the power/cyclic spectrum of non sparse signals is recoverable from
samples obtained below the Nyquist rate [34, 37, 38, 40, 32]. This is useful for CRs
operating in less sparse environments, in which the lower bound of twice the Landau
rate may exceed the Nyquist rate. Second, the robustness to noise is increased due
to the averaging performed to estimate statistics. This is drastically improved in the
case of cyclostationary signals in the presence of stationary noise. Indeed, exploiting
cyclostationarity properties exhibited by communication signals allows to separate
them from stationary noise, leading to better detection in low SNR regimes [41]. In
this section, we first review power spectrum detection techniques in stationary set-
tings and then extend these to cyclic spectrum detection of cyclostationary signals.
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4.1 Power Spectrum Based Detection

In the statistical setting, the signal x(t) is modeled as the sum of uncorrelated wide-
sense stationary transmissions. The stationarity assumption is key to further reduc-
ing the sampling rate. In frequency, stationarity is expressed by the absence of cor-
relation between distinct frequency components. Specifically, as shown in [42], the
Fourier transform of a wide-sense stationary signal is a nonstationary white process,
such that

E[X( f1)X∗( f2)] = Sx( f1)δ ( f1− f2). (19)

Here, the power spectrum Sx( f ) of x(t) is the Fourier transform of its autocorrelation
rx(τ). Thus, obviously, the support of Sx( f ) is identical to that of X( f ). In addition,
due to (19), the autocorrelation matrix of the N spectrum frequency slices of x(t)
comprising x( f ) is diagonal, containing only N degrees of freedom, which allows
sampling rate reduction.

Another intuitive interpretation to the reduced number of degrees of freedom in
statistics recovery is given in the time domain. There, the autocorrelation of sta-
tionary signals rx(τ) = E [x(t)x(t− τ)] is only a function of the time lags τ . The
cardinality of the difference set, namely the set that contains the time lags, may be
greater than that of its associated original set, up to the order of its square, for an
appropriate choice of sampling times [35, 43]. When the sampling scheme is not
tailored to power spectrum recovery, the sampling rate can be as low as the Lan-
dau rate [38], which constitutes a worst case scenario in terms of sampling rate.
With appropriate design, the autocorrelation or power spectrum may be estimated
from samples with arbitrarily low average sampling rate [34, 35, 43, 44, 45] at the
expense of increased latency.

We first review power spectrum recovery techniques that do not exploit any spe-
cific design. We then present methods that further reduce the sampling rate by adapt-
ing the sampling scheme to the purpose of autocorrelation or power spectrum esti-
mation. Finally, we extend these results to the cyclostationary model.

4.1.1 Power Spectrum Recovery

In this section, we first focus on sampling with generic MWC or multicoset schemes
without specific design of the mixing sequences or cosets, respectively.

To recover Sx( f ) from the low rates samples z( f ), consider the correlation ma-
trix of the latter Rz( f ) = E[z( f )zH( f )] [38]. Using (7), Rz( f ) can be related to
correlations between the slices x( f ), that is Rx( f ) = E[x( f )xH( f )] as follows

Rz( f ) = ARx( f )AH , f ∈Fs. (20)

From (19), the correlation matrix Rx( f ) is diagonal and contains the power spectrum
Sx( f ) at the corresponding frequencies, as
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Rx(i,i)( f ) = Sx( f + i fs−
fNyq

2
), f ∈Fs. (21)

Recovering the power spectrum Sx( f ) is thus equivalent to recovering the matrix
Rx( f ). Exploiting the fact that Rx( f ) is diagonal and denoting by rx( f ) its diagonal,
(20) can be reduced to

rz( f ) = (Ā�A)rx( f ), (22)

where rz( f ) = vec(Rz( f )) concatenates the columns of Rz( f ). The matrix Ā is the
conjugate of A and � denotes the Khatri-Rao product [46].

Generic choices of the sampling parameters, either mixing sequences or cosets,
which are only required to ensure that A is full spark, are investigated in [38]. Then,
the Khatri-Rao product (Ā�A) is full spark as well if M > N/2, that is the number
of rows of A is at least half the number of slices N. The minimal sampling rate
to recover rx( f ), and consequently Sx( f ), from rz( f ) in (22) is thus equal to the
Landau rate KB, namely half the rate required for signal recovery [38]. The recovery
of rx( f ) is performed using the procedure presented in the context of signal recovery
on (22), that is CTF, support recovery and power spectrum reconstruction (rather
than signal reconstruction).

The same result for the minimal sampling rate is valid for non sparse signals,
for which KB is in the order of fNyq [38]. The power spectrum of such signals may
be recovered at half their Nyquist rate. This means that even without any sparsity
constraints on the signal in crowded environments, a CR can retrieve the power
spectrum of the received signal by exploiting the stationarity property of the latter.
In this case, the system (22) is overdetermined and rx( f ) is obtained by a simple
pseudo-inverse operation.

Obviously, in practice, we do not have access to Rz( f ), which thus needs to be
estimated. The overall sensing time is divided into N f frames of length Ns samples.
In [38], different choices of N f and Ns are examined for a fixed sensing time. In
order to estimate the autocorrelation matrix Rz( f ) in the frequency domain, we first
compute the estimates of zi( f ),1 ≤ i ≤M, denoted by ẑi( f ), using the fast Fourier
transform (FFT) on the samples zi[n] over a finite time window. We then estimate
the elements of Rz( f ) as

R̂z(i, j, f ) =
1

N f

N f

∑
`=1

ẑ`(i, f )ẑ`( j, f ), f ∈Fs, (23)

where ẑ`(i, f ) is the value of the FFT of the samples zi[n] from the `th frame, at
frequency f . In practice, the number of samples dictates the number of FFT coef-
ficients in the frequency domain and therefore the resolution of the reconstructed
power spectrum.

Once r̂x( f ) is reconstructed, the following test statistic,

Γi = ∑
f∈Fs

|r̂xi( f )|2, 1≤ i≤ N, (24)
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may be adopted in order to detect the occupied support. Here, r̂xi( f ) is the ith entry
of r̂x( f ) and the sum is performed over the frequency band of interest to detect
the presence of a PU. Alternatively, other detection statistics can be used on the
reconstructed power spectrum, such as eigenvalue based test statistics [47].

4.1.2 Power Spectrum Sensing: Tailored Design

Sampling approaches specifically designed for estimating the autocorrelation of sta-
tionary signals at much finer lags than the sample spacings have been studied re-
cently in detail [35, 48, 43, 44]. The key observation here is that the autocorrelation
is a function of the lags only, namely the differences between pairs of sample times.
Thus, it is estimated at all time lags contained in the difference co-array, composed
of all the differences between pairs of elements from the original sampling array.
Since the size of the difference co-array may be greater than that of the sampling
set, it is possible to sample below the Nyquist rate and estimate the correlation at
all lags on the Nyquist grid, from the low rate samples. Therefore, the sampling
times should be carefully chosen so as to maximize the cardinality of the difference
co-array.

The first approach we present adopts multicoset sampling previously reviewed,
while specifically designing the cosets to obtain a maximal number of differences.
In the previous section, the results were derived for any coset selection. Here, we
show that the sampling rate may be lower if the cosets are carefully chosen. When
using multicoset sampling, the sampling matrix A in (20) or (22), is a partial Fourier
matrix with (i,k)th element e j 2π

N cik. A typical element of (Ā�A) is then e j 2π
N (ci−c j)k.

If all cosets are distinct, then the size of the difference set over one period is greater
than or equal to 2M− 1. This bound corresponds to a worst case scenario, as dis-
cussed in the previous section and leads to a sampling rate of at least half Nyquist in
the non sparse setting and at least Landau for a sparse signal with unknown support.
This happens for example is we select the first or last M cosets or if we keep only
the even or odd cosets.

To maximize the size of the difference set and increase the rank of (Ā�A), the
cosets can be chosen [35, 48] using minimal linear and circular sparse rulers [49]. A
linear sparse ruler is a set of integers from the interval [0,N], such that the associated
difference sets contains all integers in [0,N]. Intuitively, it can be seen as a ruler
with some marks erased but still able to measure all integer distances between 0 and
its length. For example, consider the minimal sparse ruler of length N = 10. This
ruler requires M = 6 marks, as shown in Fig. 17. Obviously, all the lags 0 ≤ τ ≤
10 on the integer grid are identifiable. There is no closed form expression for the
maximum compression ratio M/N that is achievable using a sparse ruler; however,
the following bounds hold√

τ(N−1)
N

≤ M
N
≤
√

3(N−1)
N

, (25)
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Fig. 17 Minimal sparse ruler of order M = 6 and length N = 10.

where τ ≈ 2.4345 [48]. A circular or modular sparse ruler extends this idea to in-
clude periodicity. Such designs that seek minimal sparse rulers, that is rulers with
minimal number of marks M, allow to achieve compression ratios M/N on the order
of
√

N. As N increases, the compression ratio may be arbitrarily low.
Two additional sampling techniques specifically designed for autocorrelation re-

covery are nested arrays [43] and co-prime sampling [44], presented in the context
of autocorrelation estimation as well as beamforming and DOA estimation applica-
tions. In nested and co-prime structures, similarly to multicoset, the corresponding
co-arrays have more degrees of freedom than those of the original arrays, leading
to a finer grid for the time lags with respect to the sampling times. We now briefly
review both sampling structures and their corresponding difference co-arrays and
show how the autocorrelation of an arbitrary stationary signal can be recovered on
the Nyquist grid from these low rate samples.

In its simplest form, the nested array [43] structure has two levels of sampling
density. The first level samples are at the N1 locations {`TNyq}1≤`≤N1

and the second
level samples are at the N2 locations {(N1 +1)kTNyq}1≤k≤N2

. This nonuniform sam-
pling is then repeated with period (N1 +1)N2TNyq. Since there are N1 +N2 samples
in intervals of length (N1 + 1)N2TNyq, the average sampling rate of a nested array
sampling set is given by

fs =
N1 +N2

(N1 +1)N2TNyq
≡ 1

N1TNyq
+

1
N2TNyq

, (26)

which can be arbitrarily low since N1 and N2 may be as large as we choose, at the
expense of latency.

Now, consider the difference co-array which has contribution from the cross-
differences and the self-differences. The non negative cross-differences, normalized
by TNyq for clarity, are given by

n = (N1 +1)k− `, 1≤ k ≤ N2,1≤ `≤ N1. (27)

All differences in the range 1 ≤ n ≤ (N1 + 1)N2 − 1 are covered, except for the
multiples of N1 + 1. These are are precisely the self differences among the second
array. As a result, the difference co-array is a filled array represented by the set of all
integers−[(N1+1)N2−1]≤ n≤ [(N1+1)N2−1]. Going back to our autocorrelation
or power spectrum estimation problem, this result shows that by proper averaging,
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we can estimate R(τ) at any lag τ on the Nyquist grid for any stationary signal from
the nested array samples, with arbitrarily low sampling rate.

Co-prime sampling involves two uniform sampling sets with spacing N1TNyq and
N2TNyq respectively, where N1 and N2 are co-prime integers. Therefore, the average
sampling rate of such a sampling set, given by

fs =
1

N1TNyq
+

1
N2TNyq

, (28)

can be made arbitrarily small compared to the Nyquist rate 1/TNyq.
The associated difference set normalized by TNyq is composed of elements of the

form n = N1k−N2`. Since N1 and N2 are co-prime, there exist integers k and ` such
that the above difference achieves any integer value n. Therefore, the autocorrelation
can be estimated by proper averaging, as

R̂[n] =
1
Q

Q−1

∑
q=0

x(N1(k+N2q))x∗(N2(`+N1q)), (29)

where Q is the number of snapshots used for averaging. Again, the autocorrelation
of any stationary signal may be estimated over the Nyquist grid from samples with
arbitrarily low rate, and without any sparsity constraint.

The main drawback of both techniques, besides the practical issue of analog
bandwidth and channel synchronization similarly to multicoset sampling, is the
added latency required for sufficient averaging. In addition, nested array sampling
still requires one sampler operating at the Nyquist rate. Thus, there is no saving in
terms of hardware, but only in memory and computation.

4.2 Cyclostationary Detection

Communication signals typically exhibit statistical periodicity, due to modulation
schemes such as carrier modulation or periodic keying [50]. Therefore, such signals
are better modeled as cyclostationary rather than stationary processes. A character-
istic function of such processes, the cyclic spectrum Sα

x ( f ), extends the traditional
power spectrum to a two dimensional map, with respect to two frequency variables,
angular and cyclic. The cyclic spectrum exhibits spectral peaks at certain frequency
locations, the cyclic frequencies, which are determined by the signal’s parameters,
particularly the carrier frequency and symbol rate [41]. This constitutes the main
advantage of cyclostationary detection. Stationary noise and interference exhibit no
spectral correlation [41], as shown in (19), rendering such detectors highly robust
to noise. Compressive power spectrum recovery techniques have been extended to
reconstruction of the cyclic spectrum from the same compressive measurements. In
this section, we first provide some general background on cyclostationarity and then
review sub-Nyquist cyclostationary detection approaches.
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4.2.1 Cyclostationarity

A process x(t) is said to be wide-sense cyclostationary with period T0 if its mean
µx(t) = E[x(t)] and autocorrelation Rs(t,τ) = E[x(t)x(t +τ)] are both periodic with
period T0 [13], that is

µx(t +T0) = µx(t), Rx(t +T0,τ) = Rx(t,τ), (30)

for all t ∈R. Given a wide-sense cyclostationary random process, its autocorrelation
Rx(t,τ) can be expanded in a Fourier series

Rx(t,τ) = ∑
α

Rα
x (τ)e

j2παt , (31)

where the sum is over integer multiples of the fundamental frequency 1/T0 and the
Fourier coefficients, referred to as cyclic autocorrelation functions, are given by

Rα
x (τ) =

1
T0

∫ T0/2

−T0/2
Rx(t,τ)e− j2παtdt. (32)

The cyclic spectrum is the Fourier transform of (32) with respect to τ , namely

Sα
x ( f ) =

∫
∞

−∞

Rα
x (τ)e

− j2π f τ dτ, (33)

where α is referred to as the cyclic frequency and f is the angular frequency [13]. If
there is more than one fundamental frequency 1/T0, then the process x(t) is said to
be poly-cyclostationary in the wide sense. In this case, the cyclic spectrum contains
harmonics (integer multiples) of each of the fundamental cyclic frequencies [41].
These cyclic frequencies are governed by the transmissions’ carrier frequencies and
symbol rates as well as modulation types.

An alternative and more intuitive interpretation of the cyclic spectrum expresses
it as the cross-spectral density Sα

x ( f ) = Suv( f ) of two frequency-shifted versions of
x(t), u(t) and v(t), such that

u(t), x(t)e− jπαt , v(t), x(t)e+ jπαt . (34)

Then, from [42], it holds that

Sα
x ( f ) = Suv( f ) = E

[
X
(

f +
α

2

)
X∗
(

f − α

2

)]
. (35)

Thus, the cyclic spectrum Sα
x ( f ) measures correlations between different spectral

components of x(t). Stationary signals, which do not exhibit spectral correlation
between distinct frequency components, appear only at α = 0. This property is the
key to robust detection of cyclostationary signals in the presence of stationary noise,
in low SNR regimes.
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The support region in the ( f ,α) plane of the cyclic spectrum of a bandpass cyclo-
stationary signal is composed of four diamonds, as shown in Fig. 18. Therefore, the
cyclic spectrum Sα

x ( f ) of a multiband signal with K uncorrelated transmissions is
supported over 4K diamond-shaped areas. Figure 19 illustrates the cyclic spectrum
of two modulation types, AM and BPSK.

𝑓

𝛼

𝑓𝑐

2𝑓𝑐

𝐵

2𝐵

−𝑓𝑐

−2𝑓𝑐

Fig. 18 Support region of the cyclic spectrum of a bandpass cyclostationary signal with carrier
frequency fc and bandwidth B.

Fig. 19 Cyclic spectrum magnitude of signals with (a) AM and (b) BPSK modulations.

4.2.2 Cyclic Spectrum Recovery

In the previous section, we showed how the power spectrum Sx( f ) can be recon-
structed from correlations Rz( f ) between the samples obtained using the MWC
or multicoset sampling. To that end, we first related Sx( f ) to the slices’ correla-
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tion matrix Rx( f ) and then recovered the latter from Rz( f ). Here, this approach is
extended to the cyclic spectrum Sα

x ( f ). We first show how it is related to shifted
correlations between the slices, namely Ra

x( f̃ ) = E
[
x( f̃ )xH( f̃ +a)

]
, for a ∈ [0, fs]

and f̃ ∈ [0, fs − a]. Next, similarly to power spectrum recovery, Ra
x( f̃ ) is recon-

structed from shifted correlations of the samples Ra
z( f̃ ) = E

[
z( f̃ )zH( f̃ +a)

]
. Once

the cyclic spectrum Sα
x ( f ) is recovered, we estimate the transmissions’ carriers and

bandwidth by locating its peaks. Since the cyclic spectrum of stationary noise n(t)
is zero for α 6= 0, cyclostationary detection is more robust to noise than stationary
detection.

The alternative definition of the cyclic spectrum (35), implies that the elements
in the matrix Ra

x( f̃ ) are equal to Sα
x ( f ) at the corresponding α and f . Indeed, it is

easily shown [32] that
Ra

x( f̃ )(i, j) = Sα
x ( f ), (36)

for

α = ( j− i) fs +a

f = − fNyq

2
+ f̃ − fs

2
+

( j+ i) fs

2
+

a
2
. (37)

Here Ra
x( f̃ )(i, j) denotes the (i, j)th element of Ra

x( f̃ ). This means that each entry of
the cyclic spectrum Sα

x ( f ) can be mapped to an element from one of the correlation
matrices Ra

x( f̃ ), and vice versa. Using (7) and similarly to (20) in the context of
power spectrum recovery, we relate the shifted correlations matrices of x( f ) and
z( f ) as

Ra
z( f̃ ) = ARa

x( f̃ )AH , f̃ ∈ [0, fs−a] , (38)

for all a ∈ [0, fs].
Recall that, in the context of stationary signals, Rx( f ) is diagonal. Here, under-

standing the structure of Ra
x( f̃ ) is more involved. It was shown [32] that Ra

x( f̃ )
contains non zero elements on its 0, 1 and −1 diagonals and anti-diagonals. Be-
sides the non zero entries being contained only in the three main and anti-diagonals,
additional structure is exhibited, limiting to two the number of non zero elements
per row and column of the matrix Ra

x( f̃ ). The above pattern follows from two main
considerations. First, each frequency component, namely each entry of x( f ), is cor-
related to at most two frequencies from the shifted vector of slices x( f̃ + a), one
from the same frequency band and one from the symmetric band. Second, the corre-
lated component can be either in the same/symmetric slice or in one of the adjacent
slices.

Figures 21 and 22 illustrate these correlations for a = 0 and a = fs/2, respec-
tively. First, in Fig. 20, an illustration of the spectrum of x(t), namely X( f ), is pre-
sented for the case of a sparse signal buried in stationary noise. It can be seen that
frequency bands of X( f ) either appear in one fp-slice or are split between two slices
at most since fp ≥ B. The resulting vector of spectrum slices x( f ) and the correla-
tions between these slices without any shift, namely R0

x( f̃ ), are shown in Figs. 21(a)
and (b), respectively. In Fig. 21(b), we observe that self-correlations appear only
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Fig. 20 Original spectrum X( f ). The cyclostationary transmissions are shown as a triangle, trape-
zoid and rectangle shaped spectral components, buried in a flat stationary noise.

Fig. 21 (a) Spectrum slices vector x( f̃ ), (b) correlated slices of x( f̃ ) in the matrix R0
x( f̃ ).

on the main diagonal since every frequency component is correlated with itself. In
particular, the main diagonal contains the noise’s power spectrum (in green). Cross-
correlations between the yellow symmetric triangles appear in the 0-anti diagonal,
whereas those of the blue trapezes are contained in the −1 and +1 anti diagonals.
The red rectangles do not contribute any cross-correlations for a = 0.

Figures 22(a) and (b) show the vector x( f̃ ) and its shifted version x( f̃ + a) for
a = fs/2, respectively. The resulting correlation matrix Ra

x( f̃ ) appears in Fig. 22(c).
Here, the self correlations of the triangle shaped frequency component appear in the
main diagonal and that of the trapezoid shaped component in the −1 diagonal. The
cross-correlations all appear in the anti-diagonal for the shift a = fs/2. Note that
since the noise is assumed to be wide-sense stationary, from (19), a noise frequency
component is correlated only with itself. Thus, n(t) contributes non-zero elements
only on the diagonal of R0

x( f̃ ).
To recover Ra

x( f̃ ) from Ra
z( f̃ ), structured CS techniques are used in [32] that aim

at reconstructing a sparse matrix while taking into account its specific structure, as
described above. Once the cyclic spectrum is reconstructed, the number of trans-
missions and their respective carrier frequencies and bandwidths are estimated, as
discussed in the next section. The detection performed on the cyclic spectrum is
more robust to stationary noise than power spectrum based detection, at the expense
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Fig. 22 (a) Spectrum slices vector x( f̃ ), (b) spectrum slices shifted vector x( f̃ +a), for a = fs/2,
(c) correlated slices of x( f̃ ) and x( f̃ +a) in the matrix Ra

x( f̃ ), with a = fs/2.

of a slightly higher sampling rate, as shown in [32]. More precisely, in the pres-
ence of stationary noise, the cyclic spectrum may be reconstructed from samples
obtained at 4/5 of the Nyquist rate, without any sparsity assumption on the signal.
If the signal of interest is sparse, then the minimal sampling rate is further reduced
to 8/5 of the Landau rate [32].

4.2.3 Carrier frequency and bandwidth estimation

Many detection and classification algorithms based on cyclostationarity have been
proposed (see reviews [13, 14]). To assess the presence or absence of a signal, a first
group of techniques requires a priori knowledge of its parameters and particularly
of the carrier frequency, which is the information that CRs should uncover in the
first place. A second strategy focuses on a single transmission, which does not fit
the multiband model. Alternative approaches apply machine learning tools to the
modulation classification of a single signal with unknown carrier frequency and
symbol rate. Besides being only suitable for a single transmission, these methods
require a training phase, which would be a main drawback for CR purposes. In
particular, these techniques can only cope with PUs whose modulation type and
parameters were part of the training set.

For CR purposes, we need a detector designed to comply with certain require-
ments: (1) carrier frequency and bandwidth estimation rather than simple detection
of the presence or absence of a signal; (2) blind detection, namely without knowl-
edge of the carrier frequencies, bandwidths and symbol rates of the transmissions;
(3) simultaneous detection of several transmissions; (4) non-learning approach, i.e.
with no training phase. The parameter estimation algorithm, presented in [51] is a
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Fig. 23 Carrier frequency and bandwidth estimation from the cyclic spectrum: preprocessing (left),
thresholding and clustering (middle), parameter estimation (right).

simple parameter extraction method from the cyclic spectrum of multiband signals,
that answers these requirements. It allows the estimation of several carriers and sev-
eral bandwidths simultaneously, as well as the number of transmissions, namely half
the number of occupied bands K/2 for real-valued signals. The proposed parameter
estimation algorithm can be decomposed into the following four main steps: prepro-
cessing, thresholding, clustering and parameter estimation, as illustrated in Fig. 23.

The preprocessing simply aims at compensating for the presence of stationary
noise in the cyclic spectrum at the cyclic frequency α = 0, by attenuating the en-
ergy of the cyclic spectrum at this frequency. Thresholding is then applied to the
resulting cyclic spectrum in order to find its peaks. The locations and values of the
selected peaks are then clustered using k-means to find the corresponding cyclic fea-
ture, after estimating the number of clusters by applying the elbow method [52]. It
follows that, apart from the cluster present in DC, the number of real signals, namely
Nsig = K/2, is equal to half the number of clusters. Next, the carrier frequency fi,
which corresponds to the highest peak [41], is estimated for each transmission. The
bandwidth Bi is found by locating the edge of the support of the angular frequencies
at the corresponding cyclic frequency αi = 2 fi.

Results presented in [32] demonstrate that cyclostationary based detection, as
described in this section, outperforms energy detection carried on the signal’s spec-
trum or power spectrum, at the expense of increased complexity. We now show
similar results obtained from hardware simulations, performed using the prototype
from Fig. 12.

4.3 Hardware Simulations: Robustness to Noise

Cyclostationary detection has been implemented in the MWC CR prototype. The
analog front-end is identical to that of the original prototype and only the digital
recovery part is modified since the cyclic spectrum is recovered directly from the
MWC low rate samples. Preliminary testing suggests that sensing success is achiev-
able at SNRs lower by 10dB than those allowed by energy detection performed on
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(a) (b) (c)

Fig. 24 Screen shot from the MWC with cyclostationary detection. The input signal is composed
of Nsig = 3 transmissions (or K = 6 bands) with carriers f1 = 320MHz, f2 = 600MHz and f3 =
860MHz. (a) The recovered cyclic spectrum from low rate samples. (b) The cyclic spectrum profile
at the angular frequency f = 0; the cyclic peaks are clearly visible at twice the carrier frequencies.
(c) The power spectrum recovery is displayed and shown to fail in the presence of noise.

the recovered spectrum or power spectrum. Representative results shown in Figs. 24
and 25 demonstrate the advantage of cyclostationary detection over energy detection
in the presence of noise. The figures show the reconstructed cyclic spectrum from
samples of the MWC prototype, as well as cross-sections at f = 0 and α = 0, which
corresponds to the power spectrum. This increased robustness to noise comes at the
expense of more complex digital processing on the low rate samples, stemming from
the higher dimensionality involved, since we reconstruct the 2-dimensional cyclic
spectrum rather than the 1-dimensional (power) spectrum.

(a) (b) (c)

Fig. 25 The setup is identical to Fig. 24, with carrier frequencies f1 = 220MHz, f2 = 380MHz
and f3 = 720MHz.

5 Collaborative Spectrum Sensing

5.1 Collaborative Model

Until now, we assumed direct observation of the spectrum. In practice, the task
of spectrum sensing for CR is further complicated due to physical channel effects
such as path loss, fading and shadowing [15]. To overcome these practical issues,
collaborative CR networks have been considered, where different users share their
sensing results and cooperatively decide on the licensed spectrum occupancy.
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The different collaborative approaches can be distinguished according to several
criteria [15]. First, cooperation can be either centralized or distributed. In centralized
settings, the data is sent to a fusion center which combines the shared data to jointly
estimate the spectrum or determine its occupancy. In the distributed approach, the
CRs communicate among themselves and iteratively converge to a common estimate
or decision. While centralized cooperation does not require iterations and can reach
the optimal estimate based on the shared data, convergence to this estimate is not
always guaranteed in its distributed counterpart. On the other hand, the latter is
less power hungry and more robust to node and link failure, increasing the network
survivability. An additional criterion concerns the shared data type; the CRs may
share local binary decisions on the spectrum occupation (hard decision) or a portion
of their samples (soft decision).

We consider the following collaborative model. A network of Nrec CRs receives
the Nsig transmissions, such that the received signal at the jth CR is given by

x( j)(t) =
Nsig

∑
i=1

ri j(t) =
Nsig

∑
i=1

si(t)∗hi j(t). (39)

The channel response hi j(t) is determined by fading and shadowing effects. Typical
models are Rayleigh fading, or small-scale fading, and log-normal shadowing, or
large-scale fading [16, 53, 54]. In the frequency domain, the Fourier transform of
the jth received signal is given by

X ( j)( f ) =
Nsig

∑
i=1

Si( f )Hi j( f ). (40)

Therefore, the support of x( j)(t) is included in the support of the original signal x(t).
Since the transmissions are affected differently by fading and shadowing from each
transmitter to each CR, we can assume that the union of their respective supports
is equivalent to the frequency support of x(t). The goal here is therefore to assess
the support of the transmitted signal x(t) from sub-Nyquist samples of the received
x( j)(t),1≤ j ≤ Nrec, by exploiting their joint frequency sparsity.

A simple and naive approach is to perform support recovery at each CR from its
low rate samples and combine the local binary decisions, either in a fusion center for
centralized collaboration or in a distributed manner. In this hard decision strategy,
the combination can be performed using several fusion rules such as AND, OR or
majority rule. Although this method is attractive due to its simplicity and low com-
munication overhead, it typically achieves lower performance than its soft decision
counterpart. To mitigate the communication overhead, soft decision based methods
can rely on sharing observations based on the low rate samples with smaller di-
mensions, rather than the samples themselves. In the next section, we review such
techniques both in centralized and distributed contexts.
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5.2 Centralized Collaborative Support Recovery

One approach [55, 56] to centralized spectrum sensing considers a digital model
based upon a linear relation between the M sub-Nyquist samples z( j) at CR j and N
Nyquist samples x( j) obtained for a given sensing time frame, namely

z( j) = Ax( j), (41)

where A is the sampling matrix. In particular, the authors consider multicoset sam-
pling where z selects certain samples from the Nyquist grid x and A is the corre-
sponding selection matrix. The goal is to recover the power spectrum of the true sig-
nal x, assumed to be stationary. To that end, the covariance matrices of sub-Nyquist
and Nyquist samples are related by the following quadratic equation

Rz
( j) = ARx

( j)AH , (42)

where Rx
( j) is diagonal. Each CR sends its autocorrelation matrix Rz

( j) to the fusion
center. The common sparsity of the diagonal of Rx

( j) is then exploited in the fre-
quency domain across all CRs to jointly reconstruct them at the fusion center, using
a modified simultaneous orthogonal matching pursuit (SOMP) [21] algorithm.

In [55] only the autocorrelation Rz
( j) between the samples of each CR j, are

considered. This approach is extended in [56] to include cross-correlations between
measurements from different CRs,

Rz( j)z(k) = E[z( j)(z(k))
H
], (43)

where j and k are the indices of two CRs. Here, each CR sends its measurement
vector z( j) to the fusion center and the cross-correlations are then computed. The
cross-correlations are related to the common power spectrum sx = Frx by

Rz( j)z( j) = C( j)Sx(C( j))
H
, (44)

where Sx is the diagonal matrix that contains the power spectrum vector sx and
C( j) = A( j)FHH( j). The sampling matrix A( j) can be different for each CR j, F is
the N×N Fourier matrix and H( j) is a diagonal matrix that contains the frequency
channel state information (CSI). After vectorization, similarly to (42), the N2 auto
and cross-correlation measurements are concatenated and the goal is to recover sx,
that is the diagonal of Sx from these. It is shown that if the total number of sam-
ples NrecM is greater than N and these are suitably chosen to account for enough
measurement diversity, then the power spectrum sx of a non sparse signal can be
recovered from compressed samples from a sufficient number of CRs. This shows
that the minimal rate per CR is lower by a factor of Nrec with respect to that required
for an individual CR and the number of receivers may be traded for the number
of samples per CR. However, increasing the number of samples per CR does not
increase spatial diversity, as does increasing the number of receivers. A drawback
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of this technique is that CSI is traditionally unknown by the CRs and should be
estimated prior to detection.

An alternative approach [31] relies on the analog model from (7) and does not
assume any a priori knowledge on the CSI. This method considers collaborative
spectrum sensing from samples acquired via multicoset sampling or the MWC at
each CR. In this approach, the jth CR shares its observation matrix V( j), as defined
in (10), rather than the sub-Nyquist samples themselves, and its measurement ma-
trix A( j), with a fusion center. The sampling matrices are considered to be different
from one another in order to allow for more measurement diversity. However, the
same known matrix may be used to reduce the communication overhead. The un-
derlying matrices U( j) are jointly sparse since fading and shadowing do not affect
the original signal’s support. Capitalizing on the joint support of U( j), the support
of the transmitted signal x(t) can be recovered at the fusion center by solving

argmin
U( j)

⋃Nrec
i=1 ||U( j)||0 (45)

s.t. V( j) = A( j)U( j), for all 1≤ j ≤ Nrec.

To recover the joint support of U( j) from the observation matrices V( j), both
the orthogonal matching pursuit (OMP) and iterative hard thresholding (IHT) algo-
rithms, two popular CS techniques, are extended to the collaborative setting [31].
Previously we considered support recovery from an individual CR, which boils
down to an MMV system of equations (10). CS algorithms have been extended to
this case, such as SOMP from [57] and simultaneous IHT (SIHT) presented in [58].
These now need to account for the joint sparsity across the CRs.

The distributed CS-SOMP (DCS-SOMP) algorithm [59], which extends the orig-
inal SOMP to allow for different sampling matrices A( j) for each receiver is adapted
to the CR collaborative setting [31]. The main modification appears in the compu-
tation of the index that accounts for the greatest amount of residual energy. Here,
the selected index is the one that maximizes the sum of residual projections over
all the receivers. Once the shared support is updated, the residual matrices can be
computed for each CR separately. The resulting modified algorithm is referred to as
block sparse OMP (BSOMP) [31]. The sparse IHT algorithm can also be extended
to this setting by selecting the indices of the common support though averaging over
all the estimated U( j) in each iteration. Once the support is selected, the update cal-
culations are performed separately for each receiver [31]. Both methods are suitable
for centralized cooperation, in the presence of a fusion center. As in the previous
approach, if the CSI is known, then the sampling rate per CR can be reduced by a
factor of Nrec with respect to the rate required from an individual CR.
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5.3 Distributed Collaborative Support Recovery

In the distributed approach, there is no fusion center and the CRs are restricted
to communicate only with their neighbors. Both the digital and analog centralized
approaches have been extended to the distributed settings. First, in [60, 61], the
digital model (41) is used, and the low rate samples z( j) of the jth CR are expressed
with respect to the spectrum w( j) = Fx( j), such that

z( j) = A( j)FHH( j)w( j). (46)

Both unknown and known CSI cases are considered. In the first case, each CR com-
putes its local binary decision c( j) for each spectral band by recovering the sparse
spectrum using CS techniques and comparing the local spectrum estimate w( j) to a
chosen threshold. Then, an average consensus approach is adopted, with respect to
the shared hard decision. Specifically, each node j broadcasts its current decision
c( j)(t) to its neighbors N ( j) and updates itself by adding a weighted sum of the
local discrepancies, that is

c( j)(t +1) = c( j)(t)+ ∑
k∈N ( j)

α jk(c(k)(t)− c( j)(t)), (47)

where α jk is a weight associated with the edge ( j,k). If the CSI is known, then
the joint spectrum itself and not only its support can be collaboratively recovered.
Each CR iteratively solves an `1 optimization problem for the sparse spectrum w( j)

constrained to consent with one-hop neighbors. In [60], the proposed algorithm it-
erates through the following steps: local spectrum reconstruction given the support
and consensus averaging on the spectrum estimate. In [61], a distributed augmented
Lagrangian algorithm is adopted.

Another approach extends the the method presented in [31], based on the analog
model (7), to comply with distributed settings [30]. The ith CR contacts a random
neighbor j, chosen with some probability Pi j, according to the Metropolis-Hastings
scheme for random transition probabilities,

Pi j =


min{ 1

di
, 1

d j
} (i, j) ∈ E,

∑(i,k)∈E max{0, 1
di
− 1

dk
} i = j,

0 otherwise.
(48)

Here di denotes the cardinality of the neighbor set of the ith CR and E is the set of
communication links between CRs in the network.

A single vector, computed from the low rate samples (and that will be defined
below for each recovery algorithm), is passed between the CR nodes in the network,
rather than the samples themselves, effectively reducing communication overhead.
When a CR receives this vector, it performs local computation to update both the
shared vector and its own estimate of the signal support accordingly. Finally, the
vector is sent to a neighbor CR, chosen according to the random walk with prob-
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ability (48). Two distributed algorithms are presented in [30]. The first, distributed
one-step greedy algorithm (DOSGA), extends the OSGA from [59] to distributed
settings. The second method, referred to as randomized distributed IHT (RDSIHT),
adapts the centralized BSIHT [31] to the distributed case.

To describe the DOSGA algorithm, we first present its centralized counterpart
OSGA. Each CR computes the `2-norm of the projections of the observation matrix
V( j) onto the columns of the measurement matrix A( j), stored in the vector w( j) of
size N. The fusion center then averages over all receivers’ vectors, such that

ŵ =
1

Nrec

Nrec

∑
j=1

w( j), (49)

and retains the highest values of ŵ whose indices constitute the support of inter-
est. In the absence of a fusion center, finding this average is a standard distributed
average consensus problem, also referred to as distributed averaging or distributed
consensus. DOSGA [30] then uses a randomized gossip algorithm [62] for this pur-
pose, where the vectors w( j) are exchanged, with the Metropolis-Hastings transition
probabilities.

Next, we turn to the RDSIHT algorithm, which adapts the centralized BSIHT [31]
to the distributed scenario. The distributed approach from [30] was inspired by the
randomized incremental subgradient method proposed in [63], and recent work on a
stochastic version of IHT [64]. A vector w of size N, that sums the `2-norms of the
rows of the estimates of U( j) before thresholding, is shared in the network through a
random walk. The indices of its k largest values correspond to the current estimated
support. When the ith CR receives w, it locally updates it by performing a gradi-
ent step using its own objective function that is then added to w. Next, it selects a
neighbor j to send the vector to with probability Pi j (48). The joint sparsity across
the CRs is exploited by sharing one common vector w by the network. It is shown
numerically in [30] that both DOSGA and RDSIHT converge to their centralized
counterparts.

5.4 Hardware Simulations: Collaborative vs. Individual Spectrum
Sensing

Here, we would like to confirm that the collaborative algorithms for spectrum sens-
ing perform better than their individual counterparts. We demonstrate a collaborative
setting simulated on the MWC CR prototype, as can be seen in Fig. 26. During the
simulations conducted, Nrec = 5 CR receivers, spread across different locations are
emulated, denoted by white circles on the transmitter/receiver map. The transmitters
are also positioned in various locations depicted by green x-marks. The transmitter
positions and broadcasts are mimicking the effects of physical channel phenomena,
i.e. fading and shadowing. The frequency support recovered by each of the CRs is
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Fig. 26 Screen shot from the MWC CR collaborative hardware prototype. On the upper left side,
we see the spatial map of the receivers in white, and transmitters in green. On the bottom left,
the occupied band indices of the real spectral support are shown, while to the right of the trans-
mitter/receiver map, the estimated indices by each CR individually are presented. On the right, we
see the spectrum sensing results of 4 different algorithms: Hard Co-Op (hard decision collaboration
that selects the most popular frequency band indices), BSIHT, BSOMP and RDSIHT. These results
show both the superiority of collaborative spectrum sensing methods over individual detection and
that of soft decision methods compared to the plain union of all the CR results.

false, since they individually receive only a partial spectral image of their surround-
ings, as expected in a real-world scenario.

In all simulated scenarios, collaborative spectrum sensing outperforms detection
realized by individual CRs. This result is expected, since the soft collaborative meth-
ods take advantage of the spatial deployment of the receivers to reproduce the exact
spectral map of the environment. Moreover, the centralized and distributed algo-
rithms BSOMP, BSIHT and RDSIHT, based on soft decisions, showed superior re-
sults in comparison with a hard decision method. The same result can be seen in
Fig.26, where the hard decision support algorithm (Hard Co-Op) fails to recover the
entire active frequency support (depicted by red bins).

6 Joint Carrier Frequency and Direction Estimation

The final extension we consider is joint spectrum sensing and DOA estimation. In
order for CRs to map vacant bands more efficiently, spatial information about the
PUs’ locations can be of great interest. Consider the network of CRs presented in
Fig. 27 and focus on CR1. Now, picture a scenario where PU2, with DOA θ2 with
respect to CR1, is transmitting in a certain frequency band with carrier f2. Assum-
ing that CR2 does not receive PU2’s transmission, CR1 may transmit in the same
frequency band in the opposite direction of PU2 towards CR2. DOA estimation can
thus enhance CR performance by allowing exploitation of vacant bands in space in
addition to the frequency domain.
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Fig. 27 Illustration of Nsig = 3 source signals in the yz plane. Each transmission is associated with
a carrier frequency fi and DOA θi.

6.1 Model and System Description

To formulate the joint spectrum sensing and DOA estimation problem mathemati-
cally, assume that the input signal x(t) is composed of Nsig source signals si(t) with
both unknown and different carrier frequencies fi and DOAs θi. The main difference
between this scenario and the one that has been discussed in the previous sections is
the additional unknown DOAs θi. Figure 27 illustrates this signal model. To recover
the unknown DOAs, an array of sensors is required. A similar problem thoroughly
treated in the literature, is the 2D-DOA recovery problem, where two angles are
traditionally recovered and paired. In our case, the second variable is the signal’s
carrier frequency instead of an additional angle.

6.2 Multicoset Approach

A few works have recently considered joint DOA and spectrum sensing of multi-
band signals from sub-Nyquist samples. In [65] and [66], the low rate samples are
obtained using multicoset sampling. In [65], which considers the digital model (41),
both time and spatial compression are applied by selecting samples from the Nyquist
grid and receivers from a uniform linear array (ULA), such that

Z[n] = CsX[n]Ct . (50)

Here, X[n] is the matrix of Nyquist samples from all receivers in the ULA, the se-
lection matrices Cs and Ct operate on the spatial and time domain, respectively to
form the matrix of compressed samples Z[n]. The 2D power spectrum matrix of the
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underlying signal is then reconstructed from the samples, where every row gives the
power spectrum in the frequency domain for a given DOA and every column pro-
vides the power spectrum information in the angular domain for a given frequency.

In [66], an L-shaped array with two interleaved, or multicoset, channels, with
a fixed delay between the two, τTNyq with τ ∈ [0,1], samples the signal below the
Nyquist rate. The delayed path signal received at the mth sensor is approximated by

xd
m(t) =

K

∑
i=1

si(t)e j2π fi(t−τTNyq+τm(θi)), (51)

using the narrowband assumption on the envelope si(t). Here, K denotes the number
of transmissions, fi and θi are the carrier and DOAs of transmission i and τm(θi) is
the time difference between the mth element to the reference point for a plane wave
arriving from the source i in direction θi. The samples of both paths is then written
in frequency as

Z = AX, Zd = ADX, (52)

where Z and Zd concatenate all samples for each sensor of the direct and delayed
path, respectively. Here, A is the unknown steering matrix that depends on fi and
θi, X is the unknown matrix that contains frequency slices of the signal and

D , diag
[
e j2π f1τTNyq · · · e j2π fKτTNyq

]
. (53)

Exploiting correlations between samples from the direct path and its delayed ver-
sion, the frequencies and their corresponding DOAs are estimated using MU-
SIC [18, 19]. However, the pairing issue between the two, that is matching each
frequency with its corresponding angle, is not discussed.

In the next section, we describe the compressed carrier and DOA estimation
(CaSCADE) system, presented in [28], that utilizes the sampling principles of the
MWC. This technique addresses the pairing problem and avoids the hardware issues
involved in multicoset sampling.

6.3 The CaSCADE System

The CaSCADE system implements the modified, or ULA based, MWC over an
L-shaped array with 2M− 1 sensors (M sensors along the y axis and M sensors
along the z axis including a common sensor at the origin) in the yz plane. Each
transmission si (t) impinges on the array with its corresponding DOA θi, as shown in
Fig. 28. The array sensors have the same sampling pattern as the alternative MWC.
Each sensor is composed of an analog mixing front-end, implementing one physical
branch of the MWC, that includes a mixer, a LPF and a sampler.

By treating the L-shaped array as two orthogonal ULAs, one along the y axis and
the other along the z axis, two systems of equations similar to (15) can be derived.
For the ULA along the y axis, we obtain
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Fig. 28 CaSCADE system:
L-shaped array with M sen-
sors along the y axis and
M sensors along the z axis
including a common sensor
at the origin. The sub-arrays
y1 and y2 (and similarly z1
and z2) are defined in the
derivation of the 2D-ESPRIT
algorithm.

d
y

z

y1 y2 y3 yM−1 yM

z1

z2

z3

zM−1

zM

(fj, θj) (fi, θi)

θj θi
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sub-array y1

y( f ) = Ayx( f ), f ∈Fs, (54)

where

Ay =


e j2π f1τ

y
1(θ1) · · · e j2π fKτ

y
1(θK)

...
...

e j2π f1τ
y
M(θ1) · · · e j2π fKτ

y
M(θK)

 . (55)

Similarly, along the z axis, we get

z( f ) = Azx( f ), f ∈Fs, (56)

where Az is defined accordingly. Here,

τ
y
m (θ) =

dm
c

cos(θ) , τ
z
m (θ) =

dm
c

sin(θ) (57)

denote the delays at the mth sensors in the y and z axis respectively, with respect to
the first sensor. The matrices Ay and Az thus depend on both the unknown carrier
frequencies and DOAs. In the time domain,

y[n] = Ayx[n], n ∈ Z (58)
z[n] = Azx[n], n ∈ Z. (59)
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Two joint recovery approaches for the carrier frequencies and DOAs of the trans-
missions are proposed in [28]. Note that once the carriers and DOAs are estimated,
the signals can be reconstructed, as shown for the alternative MWC. For the sake of
simplicity, a statistical model where x(t) is wide-sense stationary is considered. The
first recovery approach is based on CS techniques and allows recovery of both pa-
rameters assuming the electronic angles fi cosθi and fi sinθi lie on a predefined grid.
The CS problem is formulated in such a way that no pairing issue arises between
the carrier frequencies and their corresponding DOAs. To that end, the samples from
both ULAs are concatenated into one vector v[n] =

[
yT [n]zT [n]

]T , whose correla-
tion matrix,

R = E
[
v[n]vH [n]

]
= ARxAH , (60)

is computed. Here, A = [AT
y AT

z ]
T and the autocorrelation matrix Rx =E

[
x[k]xH [k]

]
is sparse and diagonal, from the stationarity of x(t). From the grid assumption, (60)
may be discretized with respect to the possible values taken by the electronic an-
gles. The resulting sparse matrix derived from Rx is diagonal as well, and its sparse
diagonal is recovered using traditional CS techniques, similarly to (22).

The second recovery approach, inspired by [67], extends the ESPRIT algorithm
to the joint estimation of carriers and DOAs, while overcoming the pairing issue.
The 2D-ESPRIT algorithm presented in [28] is directly applied to the sub-Nyquist
samples, by considering cross-correlation matrices between the sub-arrays of both
axis. Dropping the time variable n for clarity, the samples from the sub-arrays can
be written as

y1 = Ay1x, y2 = Ay2x
z1 = Az1x, z2 = Az2x, (61)

where y1, y2, z1, z2 are samples from the sub-arrays shown in Fig. 28. The matrices
Ay1 and Ay2 are the first and last M−1 rows of Ay, respectively and Az1 and Az2 are
similarly defined. Each couple of sub-array matrices along the same axis are related
by

Ay2 = Ay1Dφ

Az2 = Az1Dψ , (62)

where

Dφ , diag
[
e j2π f1τ

y
1(θ1) · · · e j2π fKτ

y
1(θK)

]
Dψ , diag

[
e j2π f1τ

z
1(θ1) · · · e j2π fKτ

z
1(θK)

]
. (63)

We can see from (63) that the carrier frequencies fi and DOAs θi are embedded
in the diagonal matrices Dφ and Dψ . Applying the ESPRIT framework on cross-
correlations matrices between the subarrays of both axis, allows to jointly recover
Dφ and Dψ [28]. This leads to proper pairing of the corresponding elements fiτ

y
1(θi)

and fiτ
z
1(θi). The DOAs θi and carrier frequencies fi are then given by
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θi = tan−1
(
∠(Dψ)ii
∠(Dφ )ii

)
fi =

∠(Dφ )ii

2π
d
c cos(θi)

. (64)

It is proven in [28] that the minimal number of sensors required for perfect recovery
is 2K + 1. This leads to a minimal sampling rate of (2K + 1)B, which is slightly
higher than the minimal rate 2KB required for spectrum sensing in the absence of
DOA recovery. These ideas can also be extended to jointly recover the transmis-
sions’ carrier frequencies, azimuth and elevation angles in a 3D framework.

7 Summary

In this chapter, we reviewed several challenges imposed on the traditional task of
spectrum sensing by the new application of CR. We first investigated sub-Nyquist
sampling schemes, enabling sampling and processing of wideband signals at low
rate, by exploiting their a priori known structure. A possible extension of these
works is to include adaptive updating of the detected support, triggered by a change
in a PU’s activity, either starting a transmission in a previously vacant band or with-
drawing from an active band. To increase efficiency, this should be performed by
taking the current detected support as a prior and updating it with respect to the
newly acquired samples, without going through the entire support recovery process
from scratch. Additional preliminary assumptions on the structure or statistical be-
havior of the potentially active signals, such as statistics on channel occupancy, can
be exploited as well.

We then considered detection challenges in the presence of noise, where second-
order statistics recovery, and in particular cyclostationary detection, are shown to
perform better than simple energy detection. Next, fading and shadowing channel
effects were overcome by collaborative CR networks. We then addressed the joint
spectrum sensing and DOA estimation problem, allowing for better exploitation of
frequency vacant bands by exploiting spatial sparsity as well. All these methods
should next be combined in order to map the occupied spectrum, in frequency, time
and space, thus maximizing the CR network’s throughput. This would require an
adequate spectrum access protocol as well, that translates the data acquired by spec-
trum sensing into transmission opportunities for the CRs.

An essential part of the approach adopted in this survey is the relation between
the theoretical algorithms and practical implementation, demonstrating real-time
spectrum sensing from low rate samples using off-the-shelf hardware components.
Indeed, we believe that prototype development is an important component to en-
abling sub-Nyquist sampling as a solution to the task of spectrum sensing in CR
platforms.
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