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Sparse Phase Retrieval from Short-Time
Fourier Measurements
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Abstract—We consider the classical 1D phase retrieval problem.
In order to overcome the difficulties associated with phase re-
trieval from measurements of the Fourier magnitude, we treat
recovery from the magnitude of the short-time Fourier trans-
form (STFT). We first show that the redundancy offered by the
STFT enables unique recovery for arbitrary nonvanishing inputs,
under mild conditions. An efficient algorithm for recovery of a
sparse input from the STFT magnitude is then suggested, based
on an adaptation of the recently proposed GESPAR algorithm.
We demonstrate through simulations that using the STFT leads
to improved performance over recovery from the oversampled
Fourier magnitude with the same number of measurements.

Index Terms—GESPAR, phase retrieval, short-time Fourier
transform, sparsity.

I. INTRODUCTION

T HE problem of phase retrieval, namely recovering a
signal from its Fourier transform magnitude, occurs in

many fields of science and engineering, including electron
microscopy, crystallography, optical imaging such as coherent
diffraction imaging (CDI), and diagnostics of ultra-short laser
pulses [21], [25], [9]. Here, we consider the 1D discrete phase
retrieval problem. It is well known that there are many 1D
signals with the same Fourier magnitude. This is true
even if we eliminate trivial equivalences, such as a global phase
shift, conjugate inversion and spatial shift, and even when the
support of the signal is bounded within a known range [10].
One approach to try and overcome the non-uniqueness, is to

exploit prior knowledge on . A popular prior that has been used
extensively in signal processing is that is sparse, i.e. it contains
only a small number of nonzero elements in an appropriate
basis, with [4]. In this case, it has been shown that
there is a unique consistent with a given Fourier transform
magnitude of length as long as and the
autocorrelation sequence of is collision free [18], . In [17]
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uniqueness is established under these conditions when is a
prime number satisfying .
Even when there is a unique solution to the phase retrieval

problem, it is not clear how to find it using efficient and ro-
bust algorithms. The most popular techniques are based on al-
ternating projections [6], [5], [1], pioneered by Gerchberg and
Saxton [6] and extended by Fienup [5]. Thesemethods generally
require precise prior information on the signal such as knowl-
edge of the support set and often converge to erroneous results.
More recently, phase retrieval has been treated using semidef-
inite programming (SDP) and low-rank matrix recovery ideas
[3], [20]. Both the SDP [20], [11], [16], [24] and Fienup re-
covery methods [13], [14] have been extended to phase retrieval
of sparse inputs. A greedy approach to phase retrieval which can
be applied in both the sparse and non-sparse setting was devel-
oped in [19] under the name of GESPAR: GrEedy Sparse PhAse
Retrieval. This method is motivated by the local search-type
techniques of [2], and was shown to lead to improved perfor-
mance over both SDP and Fienup-based algorithms, with low
computational complexity.
To allow for recovery of a broader set of inputs, here we

consider recovery from the magnitude of the short-time Fourier
transform (STFT) [15]. Phase retrieval from the STFT magni-
tude has been used in several signal processing applications, for
example in speech and audio processing [15], [7]. It has also
been applied extensively in optics. One example is in frequency
resolved optical gating (FROG) or XFROG which are used for
characterizing ultra-short laser pulses by optically producing the
STFT magnitude of the measured pulse [23], [12]. Another ex-
ample is ptychographical CDI [8]. Both Fienup-type methods
[7], [12] and SDP approaches have been extended to recovery
from the STFT magnitude [22].
Here, we first show that the redundancy offered by the STFT

enables unique recovery for arbitrary inputs that are nonvan-
ishing, under mild conditions. We then suggest an efficient algo-
rithm for recovery of a sparse input from the STFT magnitude,
based on an adaptation of GESPAR to STFT measurements. We
compare this approach to recovery from the Fourier magnitude
with oversampling such that the number of measurements is
the same in both settings. Our simulations demonstrate that ap-
plying GESPAR allows one to recover sparse signals from the
STFT magnitude even in cases where recovery from the Fourier
magnitude fails.

II. PHASE RETRIEVAL FROM STFT MEASUREMENTS

A. The STFT

Consider a length- signal defined on .
The short-time Fourier transform (STFT) of is defined as

(1)
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where is a given parameter and is an appropriate window.
The parameter denotes the separation in time between adja-
cent sections. We assume throughout that is periodically
extended over the boundaries in (1).
To invert the STFT operation we consider the inverse discrete

Fourier transform (DFT) of :

(2)

We can then obtain by

(3)

B. Phase Retrieval

Suppose now that we are given only the magnitude
of the STFT. The question we would like to

address is whether we can recover . The following theorem
provides a first step towards phase retrieval from the STFT.
We define the length of the window to be the size of the
smallest interval such that the support
of is contained in ; since is -periodic, the endpoints
and are to be interpreted modulo .
The theorem below shares some similarities with a related

result from [15]. The main difference between the two settings
is that in our definition of the STFT we consider a periodically
extended window, and a sampled Fourier transform.
Theorem 1: Let be a window of length and

consider the STFT defined by (1) with . Then
uniquely determines every with nonvanishing entries (up to
a global phase factor) provided
(i) the length- DFT of is nonvanishing,
(ii) , and
(iii) and are coprime.
In the special case in which is the -periodic extension

of , condition (i) is satisfied when and are co-
prime.

Proof: From Plancherel’s theorem we have that

(4)

(5)

where the indices in the last sum are to be interpreted
modulo . Let be the length- vector with th ele-
ment , and let be the length-
vector with th element . Let de-
note the interval of size that contains the support of .
It then follows that where is an
circulant matrix whose ( ) st row is given by

. Since circulant
matrices are diagonalized by the DFT, is invertible if and
only if the DFT of is nowhere vanishing, which is equivalent
to (i).
When is a square window, is given by . The

length- DFT will then vanish only if is zero for
some , which will not happen when and
are coprime.

At this point, we have determined from so that we know
for all . It remains to find the relative phases between

the entries of . To this end, we will use the fact that if
is a length- sequence with DFT , then is
the DFT of the circular autocorrelation:

(6)

where should be interpreted modulo . In our case,
for every we can define , and

to get

(7)

(8)

Consider . Again, let denote the interval
of size that contains the support of . Then by condition (ii),

is nonzero if and only if ,
meaning

(9)
We next divide by the known values ,

, and to isolate the phase
; this division is possible since

is nowhere vanishing and and are nonzero
by the definitions of and . Finally, assuming (iii), we can
arbitrarily set to be positive and propagate these relative
phases to determine up to a global phase.
To evaluate our theorem, we note its shortcomings. While it

ensures that almost every signal is uniquely determined
by the modulus of its STFT (with general conditions on ),
the proof makes use of the fact that . If , then
the linear system is underdetermined. To be fair,
this just establishes that our proof technique is insufficient in
the regime; since our proof only makes use of and

for defined by (6), the STFT has more redundancy
to leverage, so that one should expect phase retrieval to be ro-
bust to downsampling the STFT. We confirm this intuition with
simulations which clearly demonstrate the feasibility of phase
retrieval when . We also show in simulations that the
length of the Fourier transform in (1) can be chosen equal to the
window length.
Next, while our theorem provides a guarantee for nonvan-

ishing signals, it says nothing about sparse signals. This is an-
other artifact of our proof technique. Based on intuitions from
compressed sensing, one might expect to recover sparse signals,
perhaps with even larger downsampling rates . However, as
the following theorem establishes, there is a fundamental limit
to how sparse a signal can be in the identity basis:
Theorem 2: Consider nonoverlapping intervals

such that and
(interpreted modulo ) are both , and take

supported on and supported on . Then the
modulus squared of the STFT of and of
are equal for any .

Proof: It suffices to prove the result for . Take
and . For each , put

if the support of intersects ,
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Fig. 1. (a) Ambiguities with sparse inputs and (b) recovery of a sparse signal.

if it intersects , and if it intersects neither. De-
pending on , the following is an expression for either

or :

if
if
if

(10)

As such, for every and .
To provide some intuition to the difficulty encountered when

the sparsity is in the identity basis, we use the fact that time
shifts preserve the Fourier magnitude to construct a class of ex-
amples of sparse signals that cannot be recovered uniquely from
the STFTmagnitude. Consider, for example, a window
over its support, a signal and parameters such that
and are both multiples of . The signal has a nonzero

segment of length for some , which is po-
sitioned within an interval of the form for
some integer . This interval has at least zeros attached
to it both on the left and on the right. An example is depicted
in Fig. 1(a). Each such nonzero segment can be moved up to
indices within the interval and can be multiplied by an arbitrary
phase without affecting the STFT magnitude, as illustrated in
the figure. In this example , , and

. The figure shows two signals that differ in their first
nonzero segment. The segments are a simple shift by one tap
and negative of each other. The resulting signals have the same
STFT magnitude. The windows overlapping this segment are
also illustrated—for both signals, the Fourier transform magni-
tude of the windowed signal is the same in all cases. In contrast,
Fig. 1(b) shows a random sparse signal with 50 nonzero values
in the identity basis that is perfectly recovered using GESPAR.

C. Sparse Phase Retrieval

In practice, the performance of STFT phase retrieval can be
improved by exploiting sparsity. Specifically, suppose that
is sparse in a basis (or frame) represented by a matrix . This
means that where is the length- vector with ele-
ments and is a -sparse vector such that ,
where denotes the number of nonzero elements in . Our
goal is to recover , or equivalently , given the STFT magni-
tude of by exploiting the sparsity of .
To this end, we apply the GESPAR algorithm developed in

[19] for phase retrieval of sparse vectors from general quadratic

measurements. In our case, can be written
as a quadratic function of of the form:

(11)

where is an diagonal matrix with diagonal elements
properly positioned along the diagonal, is an

DFT matrix, and is the th column of the identity.

III. RECOVERY ALGORITHMS

As noted in the introduction, alternating projection algo-
rithms are the most popular techniques for phase retrieval.
These methods have also been applied to recovery from the
STFT magnitude leading to the well known Griffin-Lim al-
gorithm (GLA) [7], summarized as Algorithm 1. Note, that
although we assumed that the DFT length in (1) is equal to the
signal length , in practice, we can choose the DFT length,
which we denote by , to be any integer that is equal or larger
than the window length .

Algorithm 1 Griffin-Lim algorithm (GLA)

Input: Measurements and window
,

Output: Estimate of
Initialize: Choose a random input signal ,
while halting criterion false do

{compute the STFT of }

{Keep phase and update
magnitude}
Compute the inverse DFT of using (2)

{update signal estimate}

end while
return

In optics, a slight variation of GLA is used, referred to as prin-
cipal components generalized projections (PCGP) [12]. It dif-
fers fromAlgorithm 1 in the last step: Rather than computing the
inverse DFT and updating the signal according to (3), it updates
the signal by performing a rank-one approximation to an appro-
priately formed matrix. Specifically, we first form a matrix
whose th row is a circulant shift of by indices.
Next, a singular value decomposition (SVD) is performed on
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Fig. 2. Recovery probability vs sparsity for varying number of measurements
(a) 64, (b) 128, (c) 256, (d) 512.

Fig. 3. Normalized MSE vs sparsity for varying number of frequencies
using STFT GESPAR and several SNR values (in [dB]) (a) 5,

(b) 15, (c) 25, (d) 35.

. The signal is then chosen as the left singular vector
corresponding to the largest singular value.
In order to improve the recovery performance, we suggest ex-

ploiting sparsity in the signal input (when present). To this end,
we apply the GESPAR algorithm to the quadratic measurements
(11). More specifically, GESPAR is aimed at approximating the
solution to the problem

s.t. (12)

GESPAR is a 2-opt local search algorithm in which the signal
support is iteratively updated using the gradient of the objective
function. A damped Gauss Newton method is used to minimize
the objective over the support.
Below, we compare between two different applications of

GESPAR using the same number of measurements. The first,
STFT GESPAR, applies GESPAR to the squared-magnitude
of the STFT. The second, referred to as PS GESPAR, uses
GESPAR to recover from its power spectrum, namely,
the squared-magnitude of the Fourier transform. We use an

oversampled Fourier transform such that the number of mea-
surements in PS GESPAR is the same as that in STFT GESPAR,
which is equal to . Here is the number of windows
and is the DFT length of each windowed signal.

IV. SIMULATIONS

We now demonstrate the performance of STFT GESPAR via
simulations. The sparsity dictionary is chosen as a random basis
with iid standard normal variables, followed by normalization
of the columns. To generate the sparse inputs, for every spar-
sity level we choose locations for the nonzero components
uniformly at random. The signal values over the selected sup-
port are then drawn from an iid standard normal distribution.We
compute the STFT using a square window of length ,
so that over its support.
In the first simulation, we examine the performance of

GESPAR, GLA, and PCGP in recovering an unknown
vector of length in (11), as a function of for

. The number of DFT points is chosen as
. The number of measurements in the STFT

is then . STFT GESPAR is used with
a threshold and maximum number of swaps 50000;
PCGP and GLA are run using 50 random initial points with
1000 maximal iterations. For comparison with the Fourier
transform approach, we show the performance of PS GESPAR
with the same parameters and oversampling factors of 8,4,2,1.
In Fig. 2 we plot the recovery probability as a function of spar-

sity by recording the percentage of successful recoveries in 100
simulations, where success is declared if the normalized squared
error is smaller than . Note, that when there is no
redundancy in the STFT and therefore it is not surprising that
there is no advantage to the STFT method. In all other cases for
which , the STFT introduces redundancy, which leads to
improved performance over simply oversampling the DFT. It is
also evident that GESPAR outperforms both GLA and PCGP.
In Fig. 3 we consider the effect of noise and the DFT length

on the normalized mean-squared error (NMSE). All parameters
are the same as in Fig. 2 besides which is set to and
the signal length which is . The DFT length is chosen as

. When is smaller than the window length
, we use a DFT of length and choose only the first

measurements; i.e. we use only the low frequency mea-
surements. As expected, increasing the DFT length improves
the recovery ability. It is also evident that the performance im-
proves significantly when all Fourier components are measured,
namely, when .

V. CONCLUSION

In this letter we suggest to improve the performance of phase
retrieval methods by exploiting sparsity together with the STFT.
We demonstrated that for the same number of measurements,
using the STFT can lead to far better performance than using
an oversampled DFT. We also showed that GESPAR is able
to exploit both the redundancy in the measurements and the
sparsity of the input, leading to high probability of recovery as
long as sufficient redundancy is introduced into the measure-
ment process. There are many interesting theoretical directions
remained to be explored in this context. In particular, it is im-
portant to understand under what conditions on the sparsity level
and sparsity basis one can recover sparse inputs from the STFT,
and how large can be made while still ensuring recovery for
generic inputs.
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