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Analysis of Frequency Agile Radar
via Compressed Sensing

Tianyao Huang , Yimin Liu , Member, IEEE, Xingyu Xu , Yonina C. Eldar , Fellow, IEEE, and Xiqin Wang

Abstract—Frequency agile radar (FAR) is known to have ex-
cellent electronic counter-countermeasures performance and the
potential to realize spectrum sharing in dense electromagnetic en-
vironments. Many compressed sensing (CS) based algorithms have
been developed for joint range and Doppler estimation in FAR. This
paper considers theoretical analysis of FAR via CS algorithms. In
particular, we analyze the properties of the sensing matrix, which
is a highly structured random matrix. We then derive bounds on
the number of recoverable targets. Numerical simulations and field
experiments validate the theoretical findings and demonstrate the
effectiveness of CS approaches to FAR.

Index Terms—Frequency agile radar, compressed sensing, per-
formance guarantee, electronic counter-countermeasures.

I. INTRODUCTION

FREQUENCY agile radars (FARs) are pulse-based radars,
in which the carrier frequencies are varied in a

random/pseudo-random manner from pulse to pulse as illus-
trated in Fig. 1. Each transmission occupies a narrow band (B0).
Pulse returns of different frequencies are processed coherently
to synthesize a wider band (B > B0), which generates high
range resolution (HRR) profiles.

Since the works [2], [3], frequency agility has received in-
creasing attention [4]–[10] in the radar community due to its
multi-fold merits. First, frequency agility introduces good elec-
tronic counter-countermeasures (ECCM) performance, because
the randomly varied frequencies of the pulses are difficult to
track and predict. In addition, the flexibility of the narrow band
transmission makes it easier to avoid and reject barrage jam-
ming. Second, like stepped frequency radar, FAR can be used
for two-dimensional (2D) imaging [8], [9], while requiring only
a narrow band receiver, which significantly lowers the hardware
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Fig. 1. An example of a FAR waveform. The boxes indicate the frequency
band transmitted in the given time window.

system cost. Third, in contrast to linearly stepped frequency
radar, FAR decouples the range-Doppler parameters and pro-
duces a thumbtack ambiguity function [4]. It also mitigates
aliasing artifacts in synthetic aperture radar (SAR) [11] and ex-
tends the unambiguous Doppler window in inverse SAR (ISAR)
imaging [5]. Finally, frequency agility can be utilized to ex-
ploit vacant spectral bands [10], and shows potential to increase
spectrum efficiency and cope with spectrum sharing issues in a
contested, congested and competitive electromagnetic environ-
ment.

We consider the problem of joint HRR profile and Doppler
estimation of the target. When a traditional matched filter is used
for joint range-Doppler estimation, sidelobe pedestal problems
occur in FAR [4]. Therefore, weak targets could be masked by
the sidelobe of dominant ones, which restricts the application of
FAR in target detection and feature extraction [4]. By exploiting
target sparsity, compressed sensing (CS) techniques [12], [13]
have been applied in order to alleviate the sidelobe pedestal
problem. Liu et al. [4] propose the RV-IAP algorithm for joint
range-Doppler estimation, which is based on the Orthogonal
Matching Pursuit (OMP) method [14]. Since then, many prac-
tical CS algorithms for FAR have been developed [6], [15].

This paper focuses on the theoretical analysis of CS methods
for FAR in terms of reconstruction performance. Theoretical
conditions that guarantee perfect recovery in general CS have
been extensively studied. Randomness plays a key role in many
theoretical results, and often leads to good empirical results [12].
Near optimal conditions for Gaussian, sub-Gaussian, Bernoulli
and random Fourier matrices have been derived [16], [17] (and
references therein). However, the measurement matrix in FAR
differs from these random matrices, so that previous theoretical
results are not directly applicable.
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We start by studying the measurement matrix properties of a
FAR system. This matrix is random, due to the randomness of
the frequencies. We begin by deriving probability bounds on the
spark and coherence of the measurement matrix, extending the
results of [1]. Based on these bounds, we develop recovery guar-
antees for joint HRR profile and Doppler estimation using FAR
systems. Theoretical results show that owing to the randomness
of the carrier frequencies, with high probability, one can jointly
obtain a HRR profile and Doppler of targets while transmit-
ting narrow-band pulses. The number of recoverable targets is
proved to be N/2 using �0 minimization, or on the order of√

N
l o g (N B / B 0 ) using �1 minimization, where N is the number of

pulses.
We next perform simulations and field experiments to demon-

strate the reconstruction performance of FAR using CS methods.
We build an X-band FAR prototype with a synthetic bandwidth
of 1 GHz, and test the recovery performance in a real environ-
ment. The results show that both the HRR profiles and Doppler
of the observed target (a moving car) are reconstructed with
N = 512 and B/B0 = 32.

The rest of paper is organized as follows. Section II intro-
duces the signal model and problem formulation. In Section III,
a brief review of CS algorithms and their performance guaran-
tees is provided. We derive conditions for joint range-Doppler
recovery using FAR in Section IV. Numerical simulation and
field experiment results are shown in Section V. Section VI
concludes the paper.

Throughout the paper we use the following notation. The sets
C, R, Z, N refer to complex, real, integer, and natural numbers.
Notation | · | is used for the modulus, absolute value or cardi-
nality for a complex, real valued number, or a set, respectively,
and j :=

√−1. For x ∈ R, �x� (or �x�) is the largest (smallest)
integer less (greater) than or equal to x. Uppercase boldface
letters denote matrices (e.g., A), and lowercase boldface letters
denote vectors (e.g., a). The m,n-th element of matrix A is
written as [A]m,n , and [a]n denotes the n-th entry of a vector.
Given a matrix A ∈ CM ×N , a number n (or a set of integers,
Λ), An (AΛ ∈ CM ×|Λ |) denotes the n-th column of A (the sub-
matrix consisting of the columns of A indexed by Λ). As for
a vector a ∈ CN , aΛ ∈ C|Λ | denotes the sub-vector consisting
of the elements of a indexed by Λ. The complex conjugate op-
erator, transpose operator, and the complex conjugate-transpose
operator are ∗, T , H , respectively. We use ‖ · ‖p , p = 1, 2 as
the �p norm of an argument, and P (·) denotes the probability
of an event. Operations E[·] and D[·] represent the expectation
and variance of a random argument, respectively. The real and
imaginary part of a complex valued argument are denoted by
Re (·) and Im (·), respectively.

II. SIGNAL MODEL

A. Radar Returns Model

In this section, we introduce FAR, following the presentation
in [6]. A FAR system transmits monotone pulses, where the n-th
transmitted pulse is written as

Tx(n, t) := rect
(

t − nTr

Tp

)
ej2πfn (t−nTr ) , (1)

n = 0, 1, . . . , N − 1, where Tr and Tp are the pulse repetition
interval and pulse duration, respectively, Tr > Tp , and rect(·)
represents the rectangular envelope of the pulse

rect(x) :=

{
1, 0 ≤ x ≤ 1,

0, otherwise.
(2)

The frequency of the n-th pulse fn is randomly varied as
fn = fc + dnB, where fc is the initial frequency, dn is the
n-th random frequency-modulation code, 0 ≤ dn ≤ 1, and B
is the synthetic bandwidth. For a single pulse, the bandwidth
(B0 = 1/Tp ) is narrow, B0 < B, and the coarse range resolu-
tion (CRR) is Tp c

2 , where c is the speed of light. Synthesizing
echoes of different frequencies refines the range resolution to
c

2B . We denote the number of HRR bins inside a CRR bin as

M :=
⌈

Tpc

2
· 2B

c

⌉
= �TpB� ∈ N. (3)

Received echoes are assumed delays of the transmissions.
We begin by assuming that there is a single ideal scatterer with
scattering coefficient β ∈ C. The echo of the n-th pulse can
then be written as

Rx(n, t) := βTx

(
n, t − 2r(t)

c

)
, (4)

where r(t) denotes the range of the scatterer with respect to the
radar at time instant t. We assume that the scatterer is moving
along the line of sight at a constant speed v, so that r(t) =
r(0) + vt. After down conversion, the echo becomes

Rd(n, t) := Rx(n, t) · e−j2πfn (t−nTr )

= βrect

(
t − 2r(t)/c − nTr

Tp

)
ej2πfn (t−2r(t)/c−nTr )

· e−j2πfn (t−nTr )

= βrect

(
t − 2r(t)/c − nTr

Tp

)
e−j2πfn

2 r ( t )
c . (5)

Echoes are sampled at the Nyquist rate of a single pulse,
fs = 1/Tp , so that each echo pulse is sampled once. Every
sample corresponds to a CRR bin, and data from all CRR bins
are processed in the same way. Returns of N pulses from the
same CRR bin are combined to a vector

[Rd(0, t), Rd(1, Tr + t), . . . , Rd (N − 1, (N − 1)Tr + t)] ,
(6)

and processed to generate HRR profiles and Doppler estimates.
During the coherent processing interval (CPI), i.e. NTr , we
assume that the scatterer does not cross a CRR bin, which means
that

vNTr <
Tpc

2
. (7)

Without loss of generality, suppose that the l-th CRR bin
contains the scatterer, l = 0, 1, . . . , �Trfs�. The corresponding
sampling instant for the n-th pulse is t = nTr + l/fs . Substi-
tuting t = nTr + l/fs into (5), the sampled echoes are given
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by

Rd(n, nTr + l/fs) = βe−j4π (fc +dn B )(r(0)+v (nTr + l/fs ))/c

≈ βe−j4πfc
r ( 0 )+ v l / f s

c e−j4πdn Br(0)/ce−j4πfc vTr nζn /c , (8)

where the approximation holds if the term e−j4πdn Bvl/(fs c) ≈
1, which requires e−j4πBvTr /c ≈ 1. Here ζn := 1 + dnB/fc .
Generally, different carrier frequencies imply different Doppler
shifts, unless the relative bandwidth B/fc is negligible, i.e.
ζn ≈ 1. However, in a (synthetic) wideband radar, this approx-
imation does not usually hold, and could give rise to estimation
performance deterioration in practice if applied. In the simula-
tions and field experiments in Section V, the signal processing
algorithms do not adopt this assumption. However, in the mathe-
matical analysis in Section IV, we assume ζn ≈ 1 for theoretical
convenience. The impact of the relative bandwidth will be dis-
cussed in the simulations.

For brevity, we omit the notation l, and write Rd(n) :=
Rd(n, nTr + l/fs). We further introduce notations

⎧⎪⎨
⎪⎩

γ̃ := βe−j4πfc
r ( 0 )+ v l / f s

c ,

p̃ := −4πBr(0)/(Mc),

q̃ := −4πfcvTr/c.

(9)

With these definitions (8) becomes

Rd(n) ≈ γ̃ej p̃M dn +j q̃nζn . (10)

After the unknowns γ̃, p̃ and q̃ are estimated, the absolute in-
tensity |β|, HRR range r(0) and velocity v are inferred as |γ̃|,
−M cp̃

4πB and − cq̃
4πfc Tr

, respectively.
When there are K scatterers occurring inside the CRR cell,

radar returns are modeled as a combination of returns from all
scatterers,

Rd(n) =
K−1∑
k=0

γ̃k ej p̃k M dn +j q̃k nζn , (11)

where γ̃, p̃ and q̃ in (10) are replaced with γ̃k , p̃k and q̃k for the
k-th scatterer, respectively.

To avoid grating lobes in the HRR profiles (which are
also called ghost images in the literature) [18], [19], the fre-
quency codes are required to satisfy minn �=m |dn − dm | ≤
1/M , n,m = 0, 1, . . . , N − 1. When codes are discrete, we
denote by Dd the set of available frequency codes and by
M� := |Dd | the number of codes. The codes are often uniformly
spaced, e.g. dn ∈ Dd :=

{
m

M � |m = 0, 1, . . . ,M� − 1
}

. It is re-
quired that M� ≥ M and a typical choice is M� = M . When
codes belong to a continuous set Dc := [0, 1) (for some of our
theoretical results), the requirement is usually easy to satisfy
with N ≥ M . We assume that in both discrete and continuous
cases, the codes d0 , . . . dN −1 are identically, independently, and
uniformly distributed.

B. Signal Model in Matrix Form

We can rewrite (11) in matrix form as

y = Φx, (12)

where the measurement vector y ∈ CN has entries [y]n =
Rd(n). The vector x ∈ CN M corresponds to the scattering in-
tensities γ̃. The pair (p̃, q̃) defines the key target parameters,
range and Doppler, and belongs to a continuous 2D domain. The
resolutions for p̃ and q̃ are 2π

M and 2π
N , respectively. Consider the

unambiguous continuous region (p, q) ∈ [0, 2π)2 , and discretize
p and q at the Nyquist rates, 2π

M and 2π
N , respectively. Thus,

one obtains pm := 2πm
M and qn := 2πn

N , m = 0, 1, . . . ,M − 1,
n = 0, 1, . . . , N − 1. Denote the sets containing HRR grids
and Doppler grids as P := { 2πm

M

∣∣m = 0, 1, . . . ,M − 1} and
Q := { 2πn

N

∣∣n = 0, 1, . . . , N − 1}, respectively, and assume
that the targets are located precisely on the grid. Define the
matrix X ∈ CM ×N with entries

[X]m,n =

{
γ̃k , if ∃k, (p̃k , q̃k ) = (pm , qn ) ,

0, otherwise,
(13)

representing the 2D scattering coefficients in the range-Doppler
domain, m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1. We
vectorize X to obtain x := vec(XT ) with entries [x]n+mN :=
[X]m,n .

To introduce the measurement matrix Φ ∈ CN ×M N , we de-
fine the matrices R ∈ CN ×M and D ∈ CN ×N , corresponding
to HRR range and Doppler parameters, respectively, with entries

[R]n,m := ejpm M dn , (14)

[D]n,l := ejql nζn , (15)

m = 0, 1, . . . , M − 1, and l, n = 0, 1, . . . , N − 1. If ζn ≈ 1,

then D is a Fourier matrix. Define Φ :=
(
RT � DT

)T
, where

� denotes the Khatri-Rao product. Then the elements of Φ are
given by

[Φ]n,l+mN := [R]n,m [D]n,l = ejpm M dn +jql nζn , (16)

m = 0, 1, . . . , M − 1 and l, n = 0, 1, . . . , N − 1. When echoes
are corrupted by additive noise w ∈ CN , (12) becomes

y = Φx + w. (17)

The sensing matrix Φ in (17) has more columns than rows,
MN ≥ N , which shows that joint range and Doppler estimation
in FAR is naturally an under-determined problem. When x is
K-sparse, which means there are K non-zeroes in x, and K �
MN , CS algorithms can be used to solve (17). The targets’
parameters can then be recovered from the support set of x.

C. Discussion on the Signal Model

Note that when there is only one scatterer observed, the
matched filter that maximizes the signal to noise ratio (SNR)
works well in FAR. However, when there are multiple scatter-
ers, sidelobe pedestal problem occurs and weak targets can be
masked by the dominant targets’ sidelobe. The matched filter
estimates the scattering intensities by

x̂ := ΦH y = ΦH Φx + ΦH w. (18)

In such an under-determined model, ΦH Φ �= I , spurious re-
sponses emerge in x̂ even if there is no noise, i.e. w = 0. These
spurious responses are the sidelobe pedestal.
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To better interpret the sidelobe pedestal problem, we compare
the signal model of FAR with that of an instantaneous wideband
radar (IWR). In such a hypothetical radar, we assume that the
radar transmits/receives all of its M sub-bands (with Dd as the
set of frequency codes, |Dd | = M� = M ), and processes the
echoes individually for each band. In FAR, the same set Dd is
also applied with Mdn ∈ N. In analogy to (11), the return of
the m-th frequency in the n-th pulse can be written as

RIWR(m,n) :=
K−1∑
k=0

γ̃k ej p̃k m+j q̃k nηm , (19)

where ηm := 1 + mB
M fc

, m = 0, 1, . . . ,M − 1, and n = 0, 1,
. . . , N − 1. For notational brevity and simplicity, we assume
ηm ≈ 1 and ζn ≈ 1 for IWR and FAR, respectively. In this
case, (19) can be rewritten in matrix form as

Z = FXDT , (20)

where Z ∈ CM ×N has entries [Z]m,n = RIWR(m,n), and
F ∈ CM ×M is a Fourier matrix with entries [F ]l,m := ejpm l ,
m, l = 0, 1, . . . ,M − 1, n = 0, 1, . . . , N − 1. Equivalently,

z = (F ⊗ D)x, (21)

where z := vec(ZT ) ∈ CM N and ⊗ denotes the Kronecker
product. The sensing matrix in the IWR Ψ := F ⊗ D ∈
CM N ×M N is orthogonal, i.e. 1

M N ΨH Ψ = I , and the sidelobe
pedestal problem vanishes.

The measurements in FAR can be regarded as sampling1 of
the IWR measurements, i.e.

[y]n = [Z]M dn ,n , n = 0, 1, . . . , N − 1. (22)

Only one sub-band data is acquired for each pulse. Therefore
the sensing matrix of FAR consists of partial rows of that of the
IWR, i.e.,

(
ΦT
)
n

=
(
ΨT
)
n+M dn N

, n = 0, 1, . . . , N − 1, (23)

and becomes an under-determined matrix. This interpretation
suggests that the sidelobe pedestal of FAR results from the infor-
mation loss in the frequency domain. The spectral incomplete-
ness leads to an under-determined problem (12). In Section IV,
we prove that, owing to the randomness of the frequencies, the
scatterers can still be correctly reconstructed via CS methods
with high probability.

III. REVIEW OF COMPRESSED SENSING

In Section IV, we prove that using CS methods, FAR can
provably recover the HRR profiles and Doppler. Before deriving
the results, we review some basic notions of CS [13].

Consider an under-determined linear regression problem, e.g.
(12), where x is sparse. The sparsest solution can be obtained

1Since an instantaneous narrowband waveform is used in FAR, it naturally
enjoys low data rate in comparison with IWR. However, this paper does not aim
at minimizing the data rate. It may have the potential to further reduce the data
rate by combining frequency agility with approaches like sub-Nyquist sampling
in the fast-time domain [10], [20], [21], omitting some pulses or frequency
bands [22], [23].

via

min
x

‖x‖0 , s.t. y = Ax, (P0)

where ‖ · ‖0 denotes �0 “norm” of a vector, i.e. the number of
non-zeroes. This solution is the true vector, when the sensing
matrix A has the spark property.

Definition 1 (Spark, [13]): Given a matrix A, Spark(A) is
the smallest possible number such that there exists a subgroup
of columns from A that are linearly dependent.

Unique recovery of x can be ensured if the following condi-
tion is satisfied.

Theorem 2: The equation y = Ax is uniquely solved by
(P0) if and only if ‖x‖0 < Spark(A)

2 .
The above theorem provides a fundamental limit on the max-

imum sparsity that leads to successful recovery. In general, �0
optimization is NP-hard. A widely used alternative is basis pur-
suit, which solves the problem

min
x

‖x‖1 , s.t. y = Ax. (P1)

In noisy cases, variants like basis pursuit denoising, LASSO and
Dantzig selector can be applied. Many greedy methods have also
been suggested to approximate (P0).

Sufficient conditions that guarantee uniqueness using these
methods are extensively studied. Bounds on the mutual inco-
herence property (MIP) and restricted isometry property (RIP)
are widely applied conditions to ensure sparse recovery. In this
paper, we rely on the MIP. A matrix A has MIP if its coherence
is small, where coherence is defined as the maximum correlation
between two columns, i.e.

μ(A) := max
l �=k

∣∣AH
l Ak

∣∣
‖Al‖2‖Ak‖2

. (24)

Theorem 3 ([24]): If a matrix A ∈ CN ×L has coherence
μ(A) < 1

2K−1 , then for any x ∈ CL of sparsity K, x is the
unique solution to (P1).

The condition in Theorem 3 ensures recovery in the presence
of noise and also recovery using a variety of computationally
efficient methods [12].

IV. SENSING MATRIX PROPERTIES OF FAR

In this section, we analyze the spark and MIP properties of
the FAR’s sensing matrix. These results are then used together
with Theorems 2 and 3 to establish performance guarantees for
FAR. In the following derivations, we assume that ζn ≈ 1.

A. Spark Property

The following theorem proves that the sensing matrix of FAR
almost surely has the spark property.

Theorem 4: Consider Φ ∈ CN ×N M defined in (16) with dn

drawn independently from a uniform continuous distribution
over Dc = [0, 1), n = 0, 1, . . . , N − 1. Then, with probability
1, Spark(Φ) = N + 1.

Proof: See Appendix A. �
Since Φ has N rows, there must be a linearly dependent

submatrix with N + 1 columns. Owing to the randomness of
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the carrier frequencies, Theorem 4 shows that a sub-matrix built
from any N columns of Φ is of full rank almost surely. The
result is based on the assumption of a continuous distribution
on dn . An immediate consequence of Theorems 2 and 4 is the
following corollary.

Corollary 5: Consider a FAR whose frequency modulation
codes are drawn independently from a uniform continuous
distribution over Dc = [0, 1), n = 0, 1, . . . , N − 1. Then, with
probability 1, Kmax = N

2 scatterers can be exactly recovered
by (P0), where N is the number of pulses.

B. Mutual Incoherence Property

To obtain performance guarantees using �1 minimization or
greedy CS methods under noiseless/noisy environments, we
derive the MIP for FAR. We start by analyzing the asymp-
totic statistics of the FAR’s sensing matrix. Then invoking
Theorem 3, we obtain the maximum number of scatterers that
FAR guarantees to exactly reconstruct with high probability.

Assume in this subsection that dn ∼ U (Dd), |Dd | = M� =
M , and recall that the parameters p and q are on a grid, i.e. p ∈ P
and q ∈ Q. First, consider the Gram matrix ΦH Φ, which links
to the coherence. Define G ∈ RN M ×N M as the modulus matrix
of the Gram matrix, i.e.

[G]k,l =
∣∣∣[ΦH Φ

]
k,l

∣∣∣ , k, l = 0, 1, . . . , NM − 1. (25)

We then have the following results, some of which are partially
inspired by [25].

Lemma 6: The rows of the modulus matrix G are permuta-
tions of elements in its first row.

Proof: Denote by Φl1 and Φl2 , l1 , l2 = 0, 1, . . . ,MN −
1, two columns in Φ, corresponding to (pm 1 , qk1 ) and
(pm 2 , qk2 ), respectively, m1 ,m2 = 0, 1, . . . ,M − 1, k1 , k2 =
0, 1, . . . , N − 1. Then

ΦH
l1
Φl2 =

N −1∑
n=0

e−jpm 1 M dn −jqk 1 n · ejpm 2 M dn +jqk 2 n

=
N −1∑
n=0

e−j (pm 1 −pm 2 )M dn −j (qk 1 −qk 2 )n

=
N −1∑
n=0

e−j2π (m 1 −m 2 )dn −j
2 π (k 1 −k 2 )

N n . (26)

Clearly (26) depends only on the difference between grid
points, i.e. m1 − m2 ∈ {−M + 1, . . . ,M − 1} and k1 − k2 ∈
{−N + 1, . . . , N − 1}, and is independent of the particular in-
dices l1 and l2 . In addition, |ΦH

l1
Φl2 | = |ΦH

l2
Φl1 |. Therefore,

for any element in G, one can find an element in the first row of
G with the same value. �

Consider now the l-th element in the 0-th row of G, l �= 0,
which corresponds to the l-th column of Φ. Note that each
column of Φ relies on a specific parameter pair (p, q). For
notational simplicity, we drop the subscripts of (p, q) related to

Φl , and define

χl :=
1
N

ΦH
0 Φl =

1
N

N −1∑
n=0

ejpM dn +jqn , l = 1, . . . , NM − 1.

(27)
We now analyze the mutual coherence, μ = maxl �=0 |χl |. Since
dn is random, χl is also random unless p = 0, in which case χl

reduces to a constant 1
N

∑N −1
n=0 ejqn = 0 for q ∈ Q\{0}. This

constant does do not affect the value of μ and is thus ignored.
Define a set excluding these constants as

Ξ := {1, 2, . . . , NM − 1}\{1, . . . , N − 1}
= {N,N + 1, . . . , NM − 1}. (28)

Then χl is a random variable, l ∈ Ξ, and has the following
statistical characteristics.

Lemma 7: As N → ∞, the real and imaginary parts of χl ,
Re (χl) and Im (χl), l ∈ Ξ, have a joint Gaussian distribution,

[
Re (χl)

Im (χl)

]
∼ N

⎛
⎜⎝
[

0

0

]
,

⎡
⎢⎣

1
2N

0

0
1

2N

⎤
⎥⎦

⎞
⎟⎠ , (29)

except in the special case that the corresponding parameters p =
q = π. In this setting, the joint Gaussian distribution becomes

[
Re (χl)

Im (χl)

]
∼ N

⎛
⎝
[

0

0

]
,

⎡
⎣

1
N

0

0 0

⎤
⎦
⎞
⎠ . (30)

Proof: See Appendix B. �
The special case p = q = π corresponds to a specific grid

point of the (p, q) plane. Considering the generic case and this
special case separately leads to the following conclusions.

Corollary 8: When N → ∞ and l ∈ Ξ, with Nε2 > 2/π,

P (|χl | > ε) ≤ e−N ε2 /2 . (31)

Proof: Lemma 7 proves that when p and q do not equal
π simultaneously, the real and imaginary parts of χl asymp-
totically obey N (0, 1

2N ) independently. Therefore, the magni-
tude |χl | obeys a Rayleigh distribution with probability density
function f(x) = 2Nxe−N x2

, x ≥ 0, and cumulative distribu-
tion function F (x) = 1 − e−N x2

, x ≥ 0. Thus, P (|χl | > ε) =
1 − F (ε), which yields

P (|χl | > ε) = e−N ε2 ≤ e−N ε2 /2 . (32)

In the special case that p = q = π, the real part of χl asymp-
totically obeys N (0, 1

N ) independently and the imaginary part
vanishes. Then elementary estimates of the Gaussian error func-
tion yield

P (|χl | > ε) ≤
√

2
πNε2 e−N ε2 /2 , (33)

which is less than e−N ε2 /2 if 2
πN ε2 ≤ 1, i.e. Nε2 > 2

π . �
Lemma 9: The maximum μ = maxl |χl |, l ∈ Ξ, satisfies the

following as N → ∞,

P (μ > ε) ≤ (MN − N)e−N ε2 /2 . (34)
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Proof: For fixed ε > 0, we have Nε2 > 2
π as N → ∞. Ac-

cording to the union bound

P (μ > ε) ≤
∑
l∈Ξ

P (|χl | > ε)

≤ (MN − N)e−N ε2 /2 , (35)

since there are NM − N indices in Ξ. �
We next derive a condition for FAR to meet the requirement

of Theorem 3 μ(Φ) < 1
2K−1 with high probability.

Theorem 10: The coherence of Φ, defined in (16), obeys
μ(Φ) < 1

2K−1 with a probability higher than 1 − δ, when

K ≤ 1
2
√

2

√
N

log(MN − N) − log δ
+

1
2
. (36)

Proof: Let ε = 1
2K−1 . From (36), we have that

Nε2 ≥ 2 (log(MN − N) − log δ) . (37)

Assume that 0 < δ < 1 and MN − N = N(M − 1) ≥ 2. Then

Nε2 ≥ 2 log 2 >
2
π

. (38)

Using (34) and (37), we finally obtain

P (μ ≤ ε) > 1 − (MN − N)e−N ε2 /2 ≥ 1 − δ, (39)

completing the proof. �
Theorem 10 shows that the sensing matrix of FAR has the

MIP; thus, according to Theorem 3, HRR range-Doppler re-
construction is guaranteed if the number of targets satisfies
K = O(

√
N

l o g M N ), where N in the numerator represents the
number of measurements, and MN in the denominator links
to the number of grid points. The work [25] for direction of
arrival estimation using random array MIMO radar also pro-
poses a bound based on MIP, which guarantees recovery of a
number of targets on the order of K = O(

√
L

l o g G ), where L and G
are the number of measurements and grid points, respectively.
In [25], a bound for non-uniform recovery based on RIPless
theory is also provided, and K is relaxed to K = O( L

l o g 2 G
).

However, RIPless is not directly applicable to FAR, because
for each row of Φ, i.e. a =

(
ΦT
)
n
∈ CM N , E[aaH ] is rank

deficient and the isotropy property E[aaH ] = I does not hold.
Dorsch and Rauhut [26] analyze the joint angle-delay-Doppler
recovery performance using MIMO based on RIP. They assume
a periodic random probing signal with Nt independent samples.
In this case the recoverable number of scatterers is on the order
of K = O( N t

l o g 2 G
). Though the RIP leads to a tighter bound than

MIP, the RIP of the FAR system matrix is still an open question.
Sufficient conditions that guarantee uniform recovery are usu-

ally pessimistic. It is well known that CS algorithms often out-
perform the theoretical uniform recovery guarantees. In the next
section, we evaluate the practical performance of FAR using CS
methods.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, simulations and field experiments are executed
to demonstrate the properties of the sensing matrix of FAR and

Fig. 2. Histogram of σN (normalized by
√

N ), the minimum singular value
of each N × N sub-matrix. The histogram is obtained using 2000 Monte-Carlo
trials and

(
N M
N

)
sub-matrices in each Monte-Carlo trial.

the effectiveness of CS algorithms to reconstruct the targets’
HRR range and Doppler.

A. Spark Property

First, the spark property of the sensing matrix Φ ∈ CN ×N M

is discussed. We construct a sub-matrix ΦΩ ∈ CN ×N of Φ,
where the set Ω ⊂ {0, 1, . . . , NM − 1} and |Ω| = N , and cal-
culate the minimum singular value of ΦΩ . We check whether
it is equal to zero (rank deficient). Concretely, we set N = 6
and M = 3, which are small to make it possible to enumer-
ate all the

(
N M
N

)
sub-matrices of Φ. We record the minimum

singular value σN (normalized by
√

N ) of each sub-matrix;
thus, we obtain

(
N M
N

)
results, among which the minimum is de-

noted as σΩ . The frequency codes dn are distributed uniformly
on a continuous set. We further assume the relative bandwidth
satisfies B/fc ≈ 0. We perform 2000 Monte-Carlo trials. The
histograms of σN and σΩ are depicted in Fig. 2 and Fig. 3,
respectively. The minimum of σN and σΩ is 1.28 × 10−6 > 0.
The results indicate that a continuous distribution of codes re-
sults in good properties of the sensing matrix. For comparison,
we also perform simulations with codes distributed on the dis-
crete set Dd , and count the number of minimum singular val-
ues σN, i.e. σΩ , less than εSVD = 1 × 10−15 , which leads to
Pr(σΩ < εSVD) ≈ 0.358. Therefore, a continuous distribution
leads to better spark performance than a discrete distribution.

B. MIP

Next, we consider the MIP of the sensing matrix. The param-
eters are set to N = 64 and M = 16. The frequency codes are
uniformly distributed over the discrete setDd . The relative band-
widths are set to B/fc = {0, 0.1, 0.5}, where B/fc = 0 means
that the assumption ζn ≈ 1 holds. We also simulate the contin-
uous case with dn ∼ Dc and ζn ≈ 1. Curves are obtained with
106 Monte-Carlo trials. For each trial, we calculate the mutual
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Fig. 3. Histogram of σΩ , the minimum σN among all sub-matrices of a
sensing matrix Φ. The histogram is obtained using 2000 Monte-Carlo trials.

Fig. 4. The cumulative distribution functions of the mutual coherence μ ob-
tained from 106 Monte-Carlo trials.

coherence μ of the sensing matrix and depict the corresponding
cumulative distribution function. The theoretical bound in (34)
is also displayed. The results are shown in Fig. 4. It can be
seen that the theoretical upper bound (34) is tight under the as-
sumption that the relative bandwidth is negligible (thus ζn ≈ 1
holds). When the relative bandwidth is large, the actual mutual
coherence could exceed the predicted one, e.g., in the case that
B/fc = 0.1. However, the curve of B/fc = 0.5 is under that
of B/fc = 0.1, which indicates that a larger relative bandwidth
does not necessarily result in worse mutual incoherence.

C. Recovery Performance in Noiseless Cases

In Fig. 5, we consider the recovery performance in noiseless
cases. In particular, we plot the probability of exact recovery
using the basis pursuit algorithm (P1) and matched filter (18),
where exact recovery means the support set of the unknown
vector x is exactly estimated. In the simulations, the pulse

Fig. 5. Exact support set recovery probabilities using basis pursuit (P1 ) and
matched filter (18) in noiseless cases.

number is N = 64, the number of frequencies is M = 8, and
the amplitudes of scattering coefficients are all set to 1. The
number of scatterers, K, is varied. The initial carrier frequency
is fc = 10 GHz and the bandwidth is B = 64 MHz. For each
point on the curve, we perform 200 Monte-Carlo trials, where
the frequency codes are randomly drawn obeying U(Dd), the
support set of x is random, and the phases of non-zeros in x are
i.i.d U([0, 2π]). We solve (P1) using CVX [27], [28]. In both
methods, we assume the number of scatterers, K, is known, and
the support set is obtained as the indices of the largest K magni-
tudes in x. The magnitudes are also compared with a threshold
ε = 10−2 . Those not exceeding the threshold are removed from
the support set. From Fig. 5, it is seen that CS dramatically
outperforms the traditional matched filter. When K > 5, the
support set recovery probabilities using matched filter drops
significantly, because some of the scatterers are masked by the
sidelobes. When basis pursuit is applied, the region leading to
exact support set recovery in FAR is fairly broad. However, the
theoretical bound (36) is 1.5 with δ = 0.1, and is quite pes-
simistic.

D. Recovery Performance in Noisy Cases

We next consider noisy cases, and choose the probability of
successful recovery to evaluate the performance of different CS
algorithms. A successful recovery is defined as exact recovery of
the support set. In the simulations, fc = 10 GHz, B = 64 MHz,
N = 64, M = 8 and the number of scatterers K = 3. The scat-
terers have identical amplitudes of 1 with random phases. The
noise w in (17) is assumed Gaussian white noise with a covari-
ance matrix σ2I , and σ2 varies from−15 dB to 15 dB. Subspace
pursuit [29] and Lasso are compared. In subspace pursuit, the
number of scatterers K is assumed known a priori. The Lasso
algorithm solves

min
x

1
2
‖y − Φx‖2

2 + λ‖x‖1 (40)
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Fig. 6. Probabilities of successful recovery using subspace pursuit and Lasso
algorithms.

with λ = 3σ2 , and is implemented with CVX. When the mag-
nitude of the estimate is larger than ε = 0.2, the correspond-
ing index is put into the estimated support set. The results are
shown in Fig. 6 with 200 Monte-Carlo trials. Both algorithms
have high successful recovery probabilities for an FAR in high
SNR, σ2 ≤ 0 dB. Subspace pursuit outperforms Lasso with the
genie-aided information on the cardinal number of the support
set. We also note that the selection of the parameters λ and ε has
a significant impact on the performance of Lasso.

E. Field Experiments

Next, we show field experiments from a true FAR proto-
type. We use separated antennas for transmitting and receiv-
ing, respectively, so that returns from short range objects are
not eclipsed by the transmission. The radar works at an ini-
tial frequency of fc = 9 GHz. Frequencies are varied pulse
by pulse. There are M� = 64 frequencies with a minimum
gap of 16 MHz, which results in a synthetic bandwidth of
B = 1024 MHz. In each pulse, the carrier frequency fn = fc +
dnB is randomly chosen. Specifically, dn ∈ Dd = {0,
1/M�, . . . , (M� − 1)/M�} and dn ∼ U(Dd). The HRR is
c/2B ≈ 0.15 m. We set Tr = 0.2 ms and the equivalent pulse
duration Tp = 31.25 ns. The CRR is cTp/2 ≈ 4.7 m, and the
number of HRR bins in a CRR bin is M = �TpB� = 32 < M� ,
which satisfies the condition to eliminate ghost images [18],
[19]. The number of pulses is N = 512. The moving target
does not cross a CRR bin during the CPI, which requires
v <

Tp c
2N Tr

≈ 366.2 m/s. For a slowly moving car, the velocity
is lower than 10 m/s.

Field experiments are executed to evaluate performance. The
target is a household car (see Fig. 7) with two corner reflectors
and four small metal spheres upon its roof to enhance the SNR.
When the radar is operated, the car moves in front of the radar
at a nearly constant speed along the road, surrounded by static
objects including a big stone, roadside trees and iron barriers.
Returns from all scatterers located in (0, cTr/2], i.e. (0, 30] km,

Fig. 7. Field experiment scenario.

Fig. 8. Field experiment result using a matched filter.

Fig. 9. Field experiment result using OMP.

are collected. There are �Tr/Tp� = 6400 CRR bins. We per-
form static clutter canceling [30] over all CRR bins. Then in
these CRR bins, we find the CRR bin which has the maximum
amplitude of radar echoes, and infer that the car is located in
that bin. With data in that CRR bin, we perform range-Doppler
processing of the target. We apply the matched filter (18) and the
OMP algorithm to jointly estimate the HRR profile and Doppler
of the target. In OMP, the algorithm iterates 50 times, i.e., as-
suming K = 50. The results are shown in Fig. 8 and Fig. 9,
respectively. To better demonstrate the sidelobe, we project the
three dimensional images in Fig. 8 and Fig. 9 onto amplitude-
range dimensions; see Fig. 10. In Fig. 10, only the maximum K
amplitudes in x̂ using matched filter are found and shown. In
both methods, the velocity estimation is 6.9 m/s, and the span of
the car is around 1.9 m. Comparing the recovery performance,
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Fig. 10. Field experiment results projected onto amplitude-range dimensions.

we see that the matched filter suffers from sidelobe pedestal
while OMP demonstrates a clearer reconstruction.

VI. CONCLUSION

In this paper, sparse recovery for a frequency agile radar
with random frequency codes is studied. We analyzed the spark
and mutual incoherence properties of the radar sensing matrix,
which guarantee reliable reconstruction of the targets. Using �0
minimization, FAR exactly recovers K = N

2 scatterers in noise-
less cases almost surely, where N is the number of pulses. When
we apply �1 minimization or greedy CS methods and there is
noise, the number of scatterers that is guaranteed to be reli-
ably reconstructed by FAR is on the order of K = O(

√
N

l o g M N ),
where M is the number of HRR bins in a CRR bin. Numerical
simulations and field experiments were executed to validate the
theoretical results and also demonstrate the practical recovery
performance of FAR.

APPENDIX A
PROOF OF THEOREM 4

To avoid confusion, in this appendix we will index the row
of a matrix by ξ and the column by η. We need to prove
that any N columns of Φ are almost surely linearly indepen-
dent. Following the form in (16), we first fix some N columns
Φlη +mη N , with η running through {0, 1, . . . , N − 1}. These N
columns constitute a new N × N matrix A whose elements are
[A]ξ ,η = [Φ]ξ ,lη +mη N . We need to show that A is almost surely
invertible. For brevity, we set

zξ := exp(j2πdξ ), cξ ,η := exp(j2πlη ξ/N). (41)

With the notation above, we may write [A]ξ ,η = cξ,η z
mη

ξ .
The proof follows from the following three lemmas. The first
one, being more abstract, is a strengthened version of the well-
known fact that the set of zeros of a nonzero polynomial has
measure zero.

Lemma 11: Let P ∈ C[z1 , · · · , zn ] be a nonzero complex
polynomial in n-variables. Denote by N ⊂ Cn the set of zeros
of P . Consider the n-torus Tn = S 1 ×···×S 1︸ ︷︷ ︸

n

with its obvious

embedding Tn ⊂ Cn . Let σn be the Haar measure on Tn . We
have

σn (N ∩ Tn ) = 0. (42)

Proof: The left hand side of the above equality is well-
defined, since N is closed and, consequently, N ∩ Tn is a
closed set in Tn . Note that σn coincides with the product mea-
sure σ1 ×···×σ1︸ ︷︷ ︸

n

. This enables us to prove the result by induction

via Fubini’s theorem.
For n = 1 the set N is discrete, thus the proposition is trivial.

Suppose for n = k the proposition is true. Let π : Ck+1 → C be
the projection onto the first component. We now make the natural
identification C[z1 , · · · , zk+1] ≈ (C[z2 , · · · , zk+1])[z1 ]. With
the result for n = k in hand, we can find a σk -negligible set (a
set of measure zero)O ⊂ T k such that for any (z2 , · · · , zk+1) ∈
T k \ O, the polynomial P (viewed as a polynomial in z1) has at
least one nonzero coefficient, i.e. is a nonzero polynomial in z1 .
Then by the result for n = 1, for z(k) ∈ T k \ O, the measure of
the slice

σ1

(
π
(
N ∩ T k+1 ∩

{
(z2 , · · · , zk+1) = z(k)

}))
= 0. (43)

We write this fact as σ1(π(N|z(k ) )) = 0. Bearing in mind that
σk+1 = σk × σ1 , we apply Fubini’s theorem to obtain

σk+1(N ∩ T k+1) =
∫

T k + 1
1Ndσk+1

=
∫

T k \O
dσk

∫

S 1
1N · μ(dz1)

+
∫

O
dσk

∫

S 1
1N · σ1(dz1)

=
∫

T k \O
σ1(π(N|z(k ) ))σk (dz(k)) + 0

= 0, (44)

which completes the proof. �
Lemma 12: Let {dξ} be independent random variables with

continuous distributions for ξ = 0, . . . , N − 1. Fix some com-
plex numbers cξ,η , positive real constants Aξ and nonnegative
integers mη , ξ, η = 0, . . . , N − 1. Let zξ = exp(jAξdξ ). Then
the following two statements are equivalent:

i) The N × N random matrix A with elements

[A]ξ ,η = cξ,η z
mη

ξ (45)

is almost surely invertible.
ii) There exists a vector w ∈ CN such that the N × N de-

terministic matrix A(w ) with elements[
A(w )

]
ξ ,η

= cξ,ηw
mη

ξ (46)

is invertible.
Proof: (i)⇒(ii) is obvious. We prove that (ii)⇒(i). Note

that det A is a polynomial P in N variables z0 , . . . , zN −1 .
By (ii), this polynomial is nonzero, since P (w1 , . . . , wN −1) =
det A(w ) �= 0. Let N be the set of zeros of P . Lemma
11 now implies that σN (N ∩ TN ) = 0. On the other
hand, the map φ : RN → TN defined by φ(x0 , . . . , xN −1) =
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(ej2πx0 , . . . , ej2πxN −1 ) is obviously absolutely continuous.
By the assumption that dξ are independent and abso-
lutely continuous, the map (d0 , . . . , dN −1) : Ω → RN is also
absolutely continuous. Thus the probability of the event
(d1 , . . . , dN −1)−1φ−1(N ∩ TN ) is 0, as desired. �

Lemma 13: Let lη ,mη be nonnegative integers and cξ,η =
exp(j2πlη ξ/N). Furthermore, assume that the map η �→
(exp(j2πlη /N),mη ) is injective when η takes value in
{0, . . . , N − 1}. Then the statement (ii) in Lemma 12 is true.

Proof: Choose some real number b which is not a ratio-
nal multiple of π. Take wξ = exp(jbξ). Then A(w ) becomes a
Vandermonde matrix

[
A(w )

]
ξ ,η

= ejξ(2π lη /N +bmη ) . (47)

By the determinant of a Vandermonde matrix, it suffices
to prove that η �→ exp(j(2πlη /N + bmη )) is injective. Sup-
pose to the contrary that for some η �= η′ we have (2πlη /N +
bmη ) − (2πlη ′/N + bmη ′) = 2kπ, k ∈ Z. Since b is not a
rational multiple of π, this implies mη = mη ′ , henceforth
2πlη /N − 2πlη ′/N = 2kπ. But then (exp(2πlη /N),mη ) =
(exp(2πlη ′/N),mη ′), contradicting the injectivity of η �→
(exp(j2πlη /N),mη ). This proves that

det A(w ) =
∏

0≤η<η ′<N

(
ej 2 π

N lη ′+jbmη ′ − ej 2 π
N lη +jbmη

)
�= 0.

(48)
In other words, our choice of w ∈ CN makes the matrix in (46)
invertible. �

The map η �→ (exp(j2πlη /N),mη ) is injective since
(lη ,mη ) is pairwise distinct and 0 ≤ lη < N . Then one may
apply Lemma 13 and Lemma 12 successively and, by the con-
sequence of Lemma 12, conclude the proof of Theorem 4.

We conclude with a remark on the robustness of our proof. The
approximation we take here is ζξ ≈ 1. Since ζξ is absorbed in
cξ,η , only the conclusion of Lemma 13 will be affected if ζξ �= 1.
However, from the proof of Lemma 13, for ζξ sufficiently close
to 1, its conclusion remains true, thus Theorem 4 still holds.

APPENDIX B
PROOF OF LEMMA 7

We divide the proof into two parts: in the first part, we use
Lyapunov’s condition to prove that the real and imaginary parts
of χl have a joint Gaussian distribution asymptotically; in the
second part, the expectation and variance are calculated. For
conciseness, we omit the subscript l in χl . The parameters p
and q belong to specific grids as stated in Subsection II-B,
respectively. Note that l ∈ Ξ, which means p �= 0. Also recall
the assumption that random frequency codes dn ∼ U (Dd), and
are independent from each other.

A. Asymptotic Distribution

First, consider the case p �= π. Introduce a constant λ, and
define a random variable

Xn : = Re(ejpM dn +jqn ) + λIm(ejpM dn +jqn )

= cos (pMdn + qn) + λ sin (pMdn + qn)

= Tλ cos (pMdn + qn + zλ)

= Tλ cos (pMdn + θ), (49)

where Tλ :=
√

1 + λ2 , sin zλ = − λ
Tλ

, cos zλ = 1
Tλ

and θ :=
qn + zλ. Define

YN :=
N −1∑
n=0

Xn. (50)

Note that YN = χ when λ = j. Thus, it is equivalent to prove
that for any real value λ, as N → ∞, it holds that

YN − E[YN ]
SN

∼ N (0, 1), (51)

where SN is the standard variance, obeying

S2
N = E

⎡
⎣
(

N −1∑
n=0

(Xn − E[Xn ])

)2
⎤
⎦

=
N −1∑
n=0

E
[
(Xn − E[Xn ])2] , (52)

where independence between the Xn is used. For p ∈ (0, 2π)
and M > 1, it holds that S2

N > 0.
According to Lyapunov’s central limit theorem [31], (51)

holds, if for some δ > 0,

lim
N →∞

∑N −1
n=0 E

[
|Xn − E[Xn ]|2+δ

]

S2+δ
N

= 0. (53)

We consider δ = 1. In the following, we calculate E[|Xn −
E[Xn ]|3 ] and S3

N to verify that (53) holds assuming dn ∼
U (Dd).

To calculate S3
N , derive

E[Xn ] =
Tλ

M

M −1∑
m=0

cos (pm + θ)

=
Tλ

2M sin p
2

(
sin
(

M − 1
2

p + θ

)
− sin

(
−p

2
+ θ
))

=
Tλ

M sin p
2

sin
Mp

2
cos
(

M − 1
2

p + θ

)
, (54)

where we assume p �= 0. In addition,

E[X2
n ] =

T 2
λ

M

M −1∑
m=0

cos2(pm + θ)

=
T 2

λ

2M

M −1∑
m=0

(cos (2pm + 2θ) + 1)

=
T 2

λ

2
+

T 2
λ sin ((2M − 1)p + 2θ) − sin (2θ − p)

4M sin p

=
T 2

λ

2
+

T 2
λ sin(Mp) cos ((M − 1)p + 2θ)

2M sin p
. (55)
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Therefore,

D[Xn ] = E[X2
n ] − (E[Xn ])2

=
T 2

λ

2
+

T 2
λ sin (Mp) cos ((M − 1)p + 2θ)

2M sin p

− T 2
λ sin2 M p

2 cos2 (M −1
2 p + θ)

M 2 sin2 p
2

=
T 2

λ

2
+

T 2
λ sin (Mp) cos ((M − 1)p + 2θ)

2M sin p

− T 2
λ sin2 M p

2 cos ((M − 1)p + 2θ)
2M 2 sin2 p

2

− T 2
λ sin2 M p

2

2M 2 sin2 p
2

. (56)

Applying p ∈ { 2π
M , 2π ·2

M , . . . , 2π (M −1)
M }, we have sin (Mp) =

sin2 M p
2 = 0 and sin p �= 0, sin p

2 �= 0. Then

S2
N =

N −1∑
n=0

D[Xn ] =
NT 2

λ

2
. (57)

We conclude that S2
N = O(N), and S3

N = O(N
3
2 ).

To calculate the numerator in (53), note that

|Xn | < C1 , (58)

|E [Xn ]| < C2 , (59)

where C1 and C2 are positive constants not related to N . Then,

E
[
|Xn − E[Xn ]|3

]
≤ E

[
(|Xn | + |E[Xn ]|)3

]
≤ (C1 + C2)3 .

(60)
Combing S3

N = O(N
3
2 ) and (60), we have

lim
N →∞

∑N −1
n=0 E

[
|Xn − E[Xn ]|3

]

S3
N

≤ lim
N →∞

N(C1 + C2)3

O(N
3
2 )

= 0.

(61)
Thus, (53) holds.

When p = π, ejpM dn +jqn = ejπM dn +jqn = (−1)M dn ejqn .
Define a random variable

X
′
n := Tλ(−1)M dn cos θ. (62)

Following similar steps as above, we find that (53) still hold for
X

′
n .
According to Lyapunov’s central limit theorem, as N → ∞,

Re(χ) and Im(χ) have an asymptotic joint Gaussian distribu-
tion.

B. Expectation and Variance

In this subsection, we calculate the expectations and vari-
ances of Re(χ) and Im(χ). Denote the variances of the real and
imaginary parts and the correlation coefficient as σ2

1 , σ2
2 , and

σ12 , respectively, i.e.
[

Re (χ)

Im (χ)

]
∼ N

([
Re (E[χ])

Im (E[χ])

]
,

[
σ2

1 σ12

σ12 σ2
2

])
. (63)

We start by analyzing the expectation of the complex valued
χ,

E [χ] = E

[
1
N

N −1∑
n=0

ejpM dn +jqn

]
. (64)

Since Pr(dn = m
M ) = 1

M , it holds that

E [χ] =
M −1∑
m=0

1
MN

N −1∑
n=0

ejpm+jqn . (65)

Exchanging the order of summations,

E [χ] =
N −1∑
n=0

1
MN

ejqn
M −1∑
m=0

ejpm

=
1

MN

1 − ejpM

1 − ejp

N −1∑
n=0

ejqn

= 0, (66)

where the last equality holds because p ∈ { 2π
M , 2π ·2

M , . . . ,
2π (M −1)

M }, which implies ejpM = 1 while ejp �= 1 and hence
1−ej p M

1−ej p = 0.
Next, we calculate the variances σ2

1 , σ2
2 and σ12 . According

to [32], it holds that

E
[
χ2] = σ2

1 − σ2
2 + 2jσ12 , (67)

E
[
|χ|2
]

= σ2
1 + σ2

2 . (68)

The left hand side of (67) satisfies

E
[
χ2] = E

[
1

N 2

N −1∑
n=0

ejpM dn +jqn
N −1∑
k=0

ejpM dk +jqk

]

=
1

N 2

N −1∑
n=0

N −1∑
k=0,k �=n

ejq(n+k)E
[
ejpM (dn +dk )

]

+
1

N 2

N −1∑
n=0

ej2qnE
[
ej2pM dn

]
. (69)

Applying P
(
dn = m

M

)
= 1

M and independence between dn ,

E
[
χ2] =

1
N 2

N −1∑
n=0

N −1∑
k=0,k �=n

ejq(n+k)
M −1∑
m 1 =0

M −1∑
m 2 =0

1
M 2 ejp(m 1 +m 2 )

+
1

N 2

N −1∑
n=0

ej2qn
M −1∑
m=0

1
M

ejp2m

=
1

N 2M 2

(1 − ejpM )2

(1 − ejp)2

N −1∑
n=0

N −1∑
k=0,k �=n

ejq(n+k)
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+
1

N 2M

1 − ej2pM

1 − ej2p

N −1∑
n=0

ej2qn

=
1

N 2M 2

(1 − ejpM )2

(1 − ejp)2

(
(1 − ejN q )2

(1 − ejq )2 − 1 − ej2qN

1 − ej2q

)

+
1

N 2M

1 − ej2pM

1 − ej2p

1 − ej2qN

1 − ej2q
. (70)

According to the assumption p ∈ { 2π
M , 2π ·2

M , . . . , 2π (M −1)
M }, we

have 1−ej p M

1−ej p = 0 and thus the first term in (70) equals zero.
Note that

lim
x→π

1 − ej2M x

1 − ej2x
= M. (71)

We conclude that

E
[
χ2] =

⎧⎨
⎩

1
N

, if p = q = π,

0, otherwise.
(72)

Similarly, as for the left side of (68), we have

E
[|χ|2] = E

[
1

N 2

N −1∑
n=0

ejpM dn +jqn
N −1∑
k=0

e−jpM dk −jqk

]

=
1

N 2

N −1∑
n=0

N −1∑
k=0,k �=n

ejq(n−k)E
[
ejpM (dn −dk )

]
+
∑N −1

n=0 E [1]
N 2

=
1

N 2

N −1∑
n=0

N −1∑
k=0,k �=n

ejq(n−k)
M −1∑
m 1 =0

M −1∑
m 2 =0

ejp(m 1 −m 2 )

M 2 +
1
N

=
(1 − ejpM )(1 − e−jpM )

N 2M 2(1 − ejp)(1 − e−jp)

N −1∑
n=0

N −1∑
k=0,k �=n

ejq(n−k) +
1
N

=
1

N 2M 2

∣∣1 − ejpM
∣∣2

|1 − ejp |2
(∣∣1 − ejN q

∣∣2
|1 − ejq |2 − N

)
+

1
N

=
1
N

. (73)

Substituting E
[
χ2
]

= 0 and E
[|χ|2] = 1

N into (67) and (68),
respectively, one finds that σ2

1 = σ2
2 = 1

2N and σ12 = 0. As for
the case p = q = π, E

[
χ2
]

= 1
N and E

[|χ|2] = 1
N , it holds

that σ2
1 = 1

N and σ2
2 = σ12 = 0.
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