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Abstract—Ultrafast imaging based on coherent plane-wave
compounding is one of the most important recent developments
in medical ultrasound. It significantly improves image quality
and allows for much faster image acquisition. This technique,
however, requires large computational loads motivating methods
for sampling and processing rate reduction. In this work we
extend the recently proposed frequency domain beamforming
(FDBF) framework to plane-wave imaging. Beamforming in
frequency yields the same image quality while using fewer
samples. It achieves at least 4 fold sampling and processing
rate reduction by avoiding oversampling required by standard
processing. To further reduce the rate we exploit the structure
of the beamformed signal and use compressed sensing methods
to recover the beamformed signal from its partial frequency
data obtained at a sub-Nyquist rate. Our approach obtains
10 fold rate reduction compared to standard time domain
processing. We verify performance in terms of spatial resolution
and contrast based on scans of a tissue mimicking phantom
obtained by a commercial Aixplorer system. In addition, in vivo
carotid and thyroid scans processed using standard beamforming
and FDBF are presented for qualitative evaluation and visual
comparison. Finally, we demonstrate the use of FDBF for shear-
wave elastography by generating velocity maps from beamformed
data processed at sub-Nyquist rates.

Index Terms—Plane wave, array processing, beamforming
compressed sensing, ultrasound.

I. INTRODUCTION

Ultrasound is a radiation free imaging modality with numer-
ous applications. The image is usually comprised of multiple
scanlines, obtained by sequential insonification of the medium
using focused acoustic beams. Thus, in most commercial
systems today the number of transmissions is dictated by the
number of scanlines comprising the image. As a result, the
frame rate is limited to several tens of frames per second
which is insufficient for a number of applications including
echocardiography for heart motion analysis, 3D/4D imaging
and elastography.

The key to frame rate improvement without compromising
image quality is to break the link between the number of
transmissions and the number of scanlines. An obvious way
to reduce the number of transmissions is to insonify the
entire scene with a pulsed plane-wave. The image lines are
then obtained in parallel from the acquired data by standard
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dynamic beamforming upon reception. This approach was
successfully applied by Fink and co-authors [1], [2] for real-
time elastography, namely, imaging of the propagation of shear
mechanical waves, implying ultrafast frame rates. However,
due to inherent lack of focusing upon transmission, this
method suffers from reduced contrast and resolution. One
approach to overcome this limitation is by sequential trans-
mission of several tilted plane-waves [3]. The images obtained
from each insonification are added coherently to yield a final
compounded image. The result is characterized by significantly
improved resolution and contrast since coherent compounding
effectively generates a posteriori synthetic focusing in the
transmission [3].

Coherent plane wave compounding provides a framework
for significant frame rate reduction while retaining image
quality. This method, however, is challenging due to the high
data transfer rates and large computational load. To achieve
ultrafast imaging, all image lines are computed in parallel,
typically on a software based platform. This implies that
sampled raw radio frequency signals, detected at each array
element, are directly transferred to the processing unit. Each
image line is obtained by standard time domain beamforming,
implying sampling rates that are much higher than the Nyquist
rate of the detected signals. Rates up to 4-10 times the
central frequency of the transmitted pulse are used in order
to eliminate artifacts caused by digital implementation of
beamforming in time [4]. Taking into account the number of
transducer elements, up to 107 samples need to be transferred
and digitally processed in real time to obtain an image. The
processing unit, therefore, must be powerful enough to allow
for real time beamforming.

One approach to reduce sampling rate is by quadrature
sampling [5]. Here the signals are sampled at rates dictated by
the RF (radio-frequency) Nyquist condition and then digitally
demodulated and decimated to the effective Nyquist rate
defined by the signals bandpass bandwidth. The resulting in-
phase (I) and quadrature (Q) components are then used for
further processing. Digital IQ demodulation and decimation
require multiplication by complex exponentials and low-pass
filtering of each sampled signal, thus increasing the overall
computational load. Moreover, elastography, one of the main
applications of ultrafast imaging, requires RF ultrasound data
for tissue deformation calculations [6]–[8]. Therefore, alterna-
tives for sampling and processing rate reduction are of high
interest and can lead to simpler and cheaper systems. They



0885-3010 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2018.2856301, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

2

may also serve as a potential enabler for the concept of a
wireless probe and remote processing [9].

A. Related Work

In focused mode a number of strategies exploiting signal
structure and relying on compressed sensing (CS) techniques
[10], [11] have been proposed for data rate reduction. These
methods either allow for sampling and recovery of each indi-
vidual detected signal at a low rate assuming sufficiently high
SNR [12]–[15] or deal with recovering a beamformed signal
from its low-rate samples [16]–[19]. The latter require access
to the continuous-time beamformed data while in practice the
beamformed signal is formed digitally at a high rate from
samples of each of the individual received signals.

A practical method to acquire low-rate beamformed data
from low-rate samples of the received signals in order to
visualize macroscopic perturbations in the tissue was first
suggested in [20] and was later extended to ultrafast imaging
in [21]. A significant drawback of this approach is that the
solution is approximated using orthogonal matching pursuit
which fails to restore weak reflectors and leads to loss of
speckle [22]. An improved technique, enabling sub-Nyquist
data acquisition from each transducer element and low-rate
processing, was presented in [22] to visualize all tissue com-
ponents, namely both strong reflectors and weak scattered
echoes. A generalization to 3D imaging was proposed in [23].

This sub-Nyquist approach is based on frequency domain
beamforming (FDBF) where the computations can be carried
out from less data samples. The Fourier components of the
beamformed signal are computed as a weighted average of
those of the individual detected signals. The weights are
obtained through a distortion function that transfers the non-
linear time dependent beamforming delays to the frequency
domain. Since the beam is obtained directly in frequency, its
Fourier components are computed only within its effective
bandwidth. When all the beam’s Fourier coefficients within
its bandwidth are computed, the sampling and processing
rates are equal to the effective Nyquist rate [10]. In this case
the oversampling required by time domain implementation of
digital beamforming [4] is avoided leading to 4-10 fold rate
reduction. The beam in time is then recovered by an inverse
Fourier transform.

When further rate reduction is required, only a subset of
the beam’s Fourier coefficients is obtained, implying that the
detected signals are sampled and processed at a sub-Nyquist
rate. Recovery then relies on CS methods that exploit an
appropriate model of the beam to compensate for the lack
of frequency data. Low-rate data acquisition is based on the
ideas of Xampling [12], [24], [25], which obtains the Fourier
coefficients of individual detected signals from their low-rate
samples.

B. Contributions

This work extends the FDBF framework to plane-wave
imaging, expanding on the initial results we presented in [26].
In particular, we provide a detailed theoretical derivation of
the proposed method and show experimental results including

both phantom and in vivo acquisitions. We also consider the
combination of FDBF and `1 based recovery for sub-Nyquist
processing and its use for B-mode and elastography.

Besides the adjustment to the geometry of plane-wave trans-
missions, dynamic aperture and apodization are introduced to
FDBF and implemented directly in frequency. The importance
of dynamic aperture in plane-wave imaging stems from the
fact that a relatively shallow depth is of interest. In the far
field the lateral resolution is improved as the aperture in-
creases, while under near field conditions the opposite occurs.
Dynamic focusing approximately brings far field conditions
to the near field, rendering the large aperture beneficial for
all ranges. However, at ranges smaller than the size of the
physical aperture of the transducer, which is typically the case
for plane-wave imaging, it is challenging to maintain focus
even with digital dynamic focusing. As a result, the optimal
aperture size varies and should be increased dynamically
with range [27]. Dynamic aperture ensures a constant F-
number, denoted f#, defined as the depth of focus in the
tissue divided by the aperture width. This results in a more
homogeneous beampattern throughout the entire image depth.
In this case the apodization applied to improve contrast by
reducing the side-lobes of the resulting beampattern is also
dynamic. Explicitly, the window function used for weighting
the transducer elements increases dynamically with range.

Since in Fourier domain processing we do not have access
to time samples of the detected signals, we apply dynamic
aperture and apodization on frequency samples. To this end we
first express the aperture and apodization as time-dependent
weight functions multiplying each detected signal. We then
apply them directly in frequency through appropriate mod-
ification of the distortion function. As shown in [20], [22],
an efficient implementation of FDBF is obtained through an
appropriate approximation which relies on the decay property
of the distortion function. We verify numerically that this is
retained in plane wave imaging with dynamic aperture and
apodization, and study the performance of FDBF for different
approximation levels.

Translation of beamforming into the frequency domain al-
lows sampling and processing signals at their effective Nyquist
rate, which implies a 4 fold rate reduction. We next apply
sub-Nyquist processing when only a portion of the beam’s
bandwidth is obtained by FDBF. This implies 10 fold rate
reduction compared to the minimal rate required for time
domain beamforming. To compensate for the lack of frequency
data, we rely on the assumption that a typical ultrasound image
is relatively sparse or compressible, namely, comprised of
a small number of strong reflectors and much weaker sub-
wavelength scatterers in the scanned tissue. The recovery in
this case is formulated as an `1 optimization problem that is
solved using CS methods. The performance is evaluated in
terms of contrast and spatial resolution, where we use scans
of a tissue mimicking phantom obtained by a commercial
Aixplorer scanner. The application of the proposed method
on in vivo carotid and thyroid scans allows for qualitative
evaluation and visual comparison of images obtained using
standard processing and FDBF with a 10 fold rate reduction.
Finally, we perform shear-wave elastography (SWE) [2] using
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Fig. 1: Plane-wave imaging setup: a transducer is aligned
along the x axis transmitting a propagating plane-wave with
inclination α.

the data obtained by sub-Nyquist FDBF, demonstrating the
potential for low-rate velocity estimation.

We note that CS reconstruction in time and frequency for
plane-wave imaging was recently studied by several groups to
reduce the number of transducers, the number of transmitted
plane-waves and to improve image quality. In particular, a
Fourier domain formulation of Green’s function combined
with CS recovery is presented in [28] and is shown to improve
image quality for a single plane-wave transmission. In [29]
time domain compressive beamforming is used to reconstruct
point reflectors from a reduced number of receiving elements.
In [30], Besson et al. consider limited diffraction beam theory
[31], [32] applied to plane-wave acquisition in order to com-
pute non-uniform frequency samples of an underlying image.
Image reconstruction from its non-uniform spectrum is viewed
as an ill-posed inverse problem, while solving it using CS
leads to notable improvement of image quality. In contrast
to the above works, we aim at reducing the amount of data
required to obtain a clinically meaningful image. To this end
we exploit the ability of CS to recover a signal from its low-
rate measurements.

The rest of the paper is organized as follows: in Section II
we review the processing performed in plane-wave imaging.
In Section III we derive the proposed frequency domain for-
mulation and verify its performance. Sub-Nyquist processing
and sparsity based recovery are presented in Section IV.

II. COHERENT PLANE-WAVE COMPOUNDING

In coherent plane-wave compounding, the final image is a
result of coherently adding several images obtained by trans-
mitting tilted plane-waves with different angles [3]. We begin
with a description of beamforming applied upon reception to
obtain each one of the images being compounded and then
discuss the required computational load.

A. Time Domain Processing

Assume we transmit a plane-wave with inclination α as
shown in Fig. 1. An echo reflected by a scatterer positioned

at (xf , z) arrives at a transducer element placed at xm at time

τm(z;xf , α) =
1

c

(
z cosα+ xf sinα+

√
z2 + (xm − xf )

2

)
.

(1)

Beamforming involves averaging the signals detected by M
transducer elements, {ϕαm(t)}Mm=1, while compensating for the
differences in arrival time. This results in a signal containing
the energy reflected from the point (xf , z). Using (1) and
substituting z = ct

2 , the beamformed signal, corresponding
to an image line at lateral position xf is given by

Φ(t;xf , α) =
M∑
m=1

wm(t;xf )ϕ̂m(t;xf , α), (2)

where

ϕ̂m(t;xf , α) = ϕαm(τm(t;xf , α)), (3)

τm(t;xf , α) =
1

2

(
t cosα+ 2

xf
c

sinα+
√
t2 + 4δ2fm

)
.

Here δfm = |xm − xf |/c and wm(t;xf ) is a time-dependent
weight-function multiplying each detected signal. Weight-
functions are introduced to apply dynamic aperture and
apodization as will be elaborated on further below. The final
image with improved quality is obtained by coherent summa-
tion, so that the xf -line in the final image is given by

Φ(t;xf ) =
∑
α

Φ(t;xf , α). (4)

As mentioned in the introduction, the size of the active
aperture, M(z), namely the number of elements contributing
to the beamforming summation in (2), should increase dynam-
ically with the range z. This is done in a way that the ratio
between the range and the size of the active aperture, denoted
by the F-number, f#, is constant, insuring a homogeneous
beampattern throughout the entire image depth. The value of
f# depends on the array directivity and usually varies between
1 and 2. Lower values of f# insure better focusing [33] but
limit the range where f# can be kept constant. For a chosen
value f# the size of the active aperture as a function of z
is M(z) = z

f# . Using z = ct
2 , we can rewrite M(z) as a

function of time
M(t) =

ct

2f#
. (5)

Thus, for an image line xf , the mth element is active only for

|xm − xf | ≤
M(t)

2
, (6)

i.e. at time t ≥ 4f#δfm.
To improve contrast by reducing side-lobes, the active

aperture is multiplied by an apodization window. The window
function is dynamically scaled with range to fit the size
of the active aperture. Thus, for an arbitrary apodization
function each element in the active aperture is multiplied by a
time dependent value Am(t;xf ). The overall weight function
including both dynamic aperture and apodization is given by

wm(t;xf ) = Am(t;xf )H(t− 4f#δfm), (7)
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where H(t) is a unit step function.
When expressed as a weight-function multiplying each

detected signal, the dynamic aperture and apodization can be
incorporated into FDBF and applied directly in frequency as
we will see in Section III.

B. Computational Load

The beamforming process described in (2) is carried out
digitally, rather than by manipulation of the analog signals.
The signals detected at each element must be sampled at a
sufficiently high rate to apply high-resolution time shifts. In
practice, the signal is sampled at rates significantly higher than
its Nyquist rate, in order to improve the system’s beamforming
resolution and to avoid artifacts caused by digital implemen-
tation of beamforming in time. Such a beamforming rate,
fs, usually varies from 4 to 10 times the transducer central
frequency [4], [22]. Taking into account that the effective
bandpass bandwidth in medical ultrasound is usually on the
order of the central frequency, the detected signals are 4-10
times oversampled compared to the effective Nyquist rate. To
avoid confusion, by effective Nyquist rate we mean the signal’s
effective bandpass bandwidth.

Since all the image lines are obtained in parallel, the process
described in (2) is performed hundreds of times per plane-wave
transmission. Therefore the computational load is significantly
increased compared to standard focused imaging, where each
transmission usually requires a single beamforming step. As
a result, sampling and processing rate reduction are of high
importance in plane-wave imaging.

To reduce the load and promote real-time implementation
of ultrafast imaging we adopt the ideas of beamforming in
frequency. As we show, in this domain the computations can
be carried out from less data samples.

III. FREQUENCY DOMAIN PROCESSING

To derive the expression for beamforming in frequency
using low-rate samples in plane-wave mode, we need to
account for the geometry of plane-wave transmission as well
as introduce dynamic aperture and apodization. Explicitly, we
show that despite the non-linear time-dependent nature of
beamforming delays and time dependent weights defined in (2)
and (3), the Fourier coefficients of the beam can be computed
from the Fourier transform of the detected signals’ low-rate
samples.

A. Frequency-Domain Implementation

Following [22], we assume that the support of ϕαm(t) is
contained in [0, T ) where T is defined by the transmitted pulse
penetration depth. Hence, the support of Φ(t;xf , α) is limited
to [0, TB(xf )) where TB(xf ) is defined as

TB(xf ) = min
1≤m≤M

τ−1m (T ;xf , α) (8)

with τ−1m (t;xf , α) being the inverse of τm(t;xf , α).

Denote the Fourier series coefficients of Φ(t;xf , α) with
respect to the interval [0, T ) by

cα[k] =
1

T

∫ T

0

Φ(t;xf , α)I[0,TB(xf ))(t)e
−i 2πT ktdt

=
M∑
m=1

ĉαm[k],

(9)

where I[a,b)(t) is the indicator function, taking the value 1 for
a ≤ t ≤ b and 0 otherwise. From (3), we have

ĉαm[k] =

1

T

∫ T

0

ϕαm(τm(t;xf , α))wm(t;xf )I[0,TB(xf ))(t)e
−i 2πT ktdt.

(10)

The idea of FDBF is to obtain frequency components of the
beamformed signal without access to its time domain samples
using the Fourier coefficients of non-delayed detected signals.
The latter are provided by a low-rate Xampling scheme. We
aim, therefore, to derive a relationship between the Fourier
coefficients of the beam Φ(t;xf , α) and those of the detected
signals. After algebraic manipulation on (10) similar to [20]
we obtain

ĉαm[k] =
1

T

∫ T

0

ϕαm(t)qk,m(t;xf , α)e−i
2π
T ktdt. (11)

The expression for qk,m(t;xf , α) is derived and presented in
Appendix . Note that the delays and weighting of every signal
ϕαm(t) are effectively applied through the distortion function
qk,m(t;xf , α).

We next replace ϕαm(t) by its Fourier coefficients. Denoting
the nth Fourier coefficient by cαm[n] we can rewrite (11) as

ĉαm[k] =
∑
n

cαm[n]
1

T

∫ T

0

qk,m(t;xf , α)e−i
2π
T (k−n)tdt (12)

=
∑
n

cαm[k − n]Qk,m;xf ,α[n],

where Qk,m;xf ,α[n] are the Fourier coefficients of the distor-
tion function with respect to [0, T ). When substituted by its
Fourier coefficients, the distortion function effectively transfers
the beamforming delays defined in (3) as well as dynamic
aperture and apodization to the frequency domain. The func-
tion qk,m(t;xf , α) depends only on the array geometry and
is independent of the received signals. Therefore, its Fourier
coefficients can be computed off-line and used as a look-up-
table (LUT) during the imaging cycle.

For apodization in our experiments we use a normalized
Hamming window given by

Am(t;xf ) =
2f#(

a2 + 1
2b

2
)
ct

(a+ b cos (4πf#δfm/t)) , (13)

with a = 0.54, b = 0.46. An explicit expression for the
resulting distortion function qk,m(t;xf , α) for α 6= 0 is
given in Appendix . The analytical analysis of this expression
is quite involved. Numerical studies show that most of the
energy of the set {Qk,m;xf ,α[n]} is concentrated around the
dc component. This behavior is typical to any choice of k, m,
xf or α and is illustrated in Fig. 2. We therefore rewrite (12)
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Fig. 2: Illustration of the rapid decay of the Fourier coefficients
{Qk,m;xf ,α[n]} of qk,m(t;xf , α) around the dc component for
Hamming apodization.

with a finite number Nq of Q-coefficients as

ĉαm[k] '
N2∑

n=−N1

cαm[k − n]Qk,m;xf ,α[n], (14)

where Nq = N2 +N1 + 1. The choice of N1 and N2 controls
the approximation quality. The dependence of image quality on
Nq is evaluated and presented in Section III-B for Nq = 21, 11
and 5.

Substitution of (14) into (9) yields the desired relationship
between the Fourier coefficients of the beam and the individual
signals

cα[k] '
∑
m

N2∑
n=−N1

cαm[k − n]Qk,m;xf ,α[n]. (15)

The compounding is then performed directly in frequency

c[k] =
∑
α

cα[k], (16)

where c[k] denotes the Fourier coefficients of the xf -line in
the final image Φ(t;xf ) defined in (4). Applying an inverse
Fourier transform on {c[k]} yields the beamformed signal in
time.

B. Performance Validation

We verify FDBF on data acquired by a Supersonic Imagine
Aixplorer scanner. The images are produced with a 1D linear
array, model SL 15-4, of 256 elements with central frequency
fc = 9 MHz and pitch 0.2 mm. Each image was obtained
using 41 plane-wave transmissions with a separation of 1◦.
Standard time domain processing was performed at the rate
of fs = 36 MHz.

We compare the performance of time domain processing
to FDBF defined in (11) as well as to FDBF with different
approximation levels in (14) according to the choice of Nq .
The implementation of FDBF using (11) requires numerical
computation of an integral and is not computationally prac-
tical. It is provided to verify the similarity between time
and frequency domain processing when no approximations
are applied. FDBF is performed at the effective bandpass
bandwidth of the transmitted signal which is equal to 9 MHz.

To evaluate spatial resolution a tissue mimicking CIRS 040
GSE phantom with wire targets is used. The resulting images
are shown in Fig. 3(a). The experimental axial and lateral point
spread functions (PSF) are computed based on the response
to a single point target at a depth of 21 mm and are presented
in Fig. 4. As can be seen, axial resolution is not affected
by frequency-domain implementation of beamforming for all
approximation levels. The lateral resolution is also unchanged,
however the lateral side-lobes are slightly higher for a coarse
approximation, e.g. with Nq = 5. As expected, increased
lateral side-lobes degrade the anechoic contrast computed
based on the cyst scans, shown in Fig 3(b). The anechoic
contrast is defined as

CR =
µcyst − µb√
σ2
cyst + σ2

b

, (17)

where µcyst, σcyst and µb, σb stand for the mean and stan-
dard deviation of log-compressed values of the cyst and the
background, respectively. The computed values are presented
in Table I. The contrast obtained by FDBF is 0.6 dB lower
compared to time domain processing. One would expect
similar performance for both methods since mathematically
they are completely equivalent. This result can be explained
by the fact that the implementation of FDBF according to
(11) requires computation of an integral. When performed
numerically such a computation introduces errors that affect
the resulting performance. For FDBF with higher values of Nq ,
the contrast is still in good agreement with the one obtained
by time domain processing.

In addition, the proposed method is validated with respect to
a single beam corresponding to an image line and to the entire
image after compounding. To compare the one-dimensional
signals, we calculated the normalized root-mean-square error
(NRMSE) between the signals obtained by FDBF and those
obtained by standard beamforming in time. Both classes of
signals were compared after envelope detection, performed by
a Hilbert transform in order to remove the carrier. Denote
by Φ[n;xf ] the signal obtained by standard beamforming and
let Φ̂[n;xf ] denote the signal obtained by beamforming in
frequency. The Hilbert transform is denoted by H(·). For the
set of J image lines, we define NRMSE as:

NRMSE =
1

J

|H(Φ[n;xf ])−H(Φ̂[n;xf ])|2
H(Φ[n;xf ])max −H(Φ[n;xf ])min

, (18)

where H(Φ[n;xf ])max and H(Φ[n;xf ])min denote the max-
imal and minimal values of the envelope of the beamformed
signal in time.

Comparison of the resulting images in Fig. 3 was performed
by calculating the structural similarity (SSIM) index [34],
commonly used for measuring similarity between two images.
Table II summarizes the resulting values. These values verify
that both one-dimensional signals and the resulting images are
extremely similar, even with a very coarse approximation with
only five coefficients.
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Fig. 3: Comparison of standard time domain processing and FDBF with different approximation levels. The first column from
the left presents time domain processing while the second one corresponds to FDBF. The last three columns present FDBF with
approximation using Nq = 21, 11 and 5 respectively. (a) Scan of wire targets for resolution evaluation. (b) Scan of anechoic
cyst for contrast evaluation.

Table I: Anechoic Contrast

Method Contrast, [dB]
Time Domain Beamforming 25.2
FDBF 24.6
FDBF, Nq = 21 24.2
FDBF, Nq = 11 23.7
FDBF, Nq = 5 22.5

Table II: NRMSE and SSIM

Medium Method SSIM NRMSE

Wire targets

FDBF 0.920 0.057
FDBF, Nq = 21 0.918 0.058
FDBF, Nq = 11 0.913 0.060
FDBF, Nq = 5 0.890 0.068

Cyst

FDBF 0.909 0.061
FDBF, Nq = 21 0.900 0.062
FDBF, Nq = 11 0.890 0.065
FDBF, Nq = 5 0.880 0.070

IV. LOW-RATE ACQUISITION AND SUB-NYQUIST
PROCESSING

We next address low-rate acquisition of Fourier coefficients
of the detected signals required for frequency domain process-

ing and show that the beamformed signal can be recovered
from its partial frequency data while exploiting its structure.

A. Low-Rate Data Acquisition

The low-rate data acquisition step is based on the ideas
of Xampling [12], [24], [25], which obtains the Fourier
coefficients of individual detected signals from their low-rate
samples. More specifically, using Xampling we can obtain an
arbitrary set κ, comprised of K frequency components, from
K point-wise samples of the signal filtered with an analog
kernel s(t), designed according to κ. In ultrasound imaging
with modulated Gaussian pulses the transmitted signal has one
main band of energy. As a result the analog filter takes on the
form of a bandpass filter, leading to a simple low-rate sampling
scheme [22]. The choice of κ dictates the bandwidth of the
filter and the resulting sampling rate.

In plane-wave mode the same low-rate sampling scheme can
be applied to the individual signals detected by the transducer
elements yielding their Fourier coefficients. When all the
beam’s Fourier coefficients within its bandwidth are computed,
the sampling and processing rates are equal to the effective
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Fig. 4: Spatial resolution comparison for different processing
methods. (a) Axial PSF. (b) Lateral PSF. The PSFs are com-
puted empirically based on the response to a single point target
with lateral and axial coordinates [25mm, 21 mm]. The legend
is the same for both (a) and (b).

Nyquist rate. The beam in time is then obtained simply by
an inverse Fourier transform. When further rate reduction is
required, only a subset of Fourier coefficients is computed and
the beam’s structure is exploited to recover it from its partial
frequency data.

B. Sparsity-Based Recovery from Partial Frequency Data

When FDBF is performed at a sub-Nyquist rate, the beam-
formed signal in time cannot be recovered by an inverse
Fourier transform, since only partial frequency information
is available. The ideas of sparsity of the beamformed signal
combined with `1-regularized optimization were exploited in
[20], [22]. There, clinical images were recovered from partial
frequency data for a focused acquisition mode. In this work
we follow these ideas and compensate for the apparent loss of
information of sub-Nyquist processing by relying on sparsity
of the beamformed data.

According to [20], the beamformed signal satisfies the finite
rate of innovation (FRI) model [11], [35]. That is, we assume
that it can be regarded as a sum of pulses, all replicas of a
known transmitted pulse shape:

Φ(t;xf ) =
L∑
l=1

b̃lh(t− tl). (19)

Here h(t) is the transmitted pulse, L is the number of scat-
tering elements in the direction xf , {b̃l}Ll=1 are the unknown
amplitudes of the reflections and {tl}Ll=1 are the times at which
the reflection from the l-th scatterer arrives at the reference
element.

Having acquired the Fourier coefficients c[k] as described
in the previous section, we now wish to reconstruct the
beamformed signal. Since the beam satisfies the FRI model
our task is to extract the unknown parameters, {b̃l}Ll=1 and
{tl}Ll=1, that describe it.

Denote Ts = 1
fs

and N = T/Ts. As shown in [22], when
the delays {tl}Ll=1 are quantized with a step size Ts, such that
tl = qlTs for some integer 0 ≤ ql ≤ N − 1, the Fourier
coefficients of Φ(t;xf ) are given by

c[k] =
1

T

∫ T

0

Φ(t;xf )e−i
2π
T ktdt

= h[k]
N−1∑
j=0

bje
−i 2πN kj . (20)

Here h[k] is the k-th Fourier coefficient of h(t) and
bj = b̃lδj,ql where δa,b is the Kronecker delta.

We conclude that recovering the beamformed signal in time
is equivalent to determining bl in (20) for 0 ≤ l ≤ N − 1. In
vector-matrix notation, (20) can be rewritten as

c = HDb = Ab, (21)

where c is a vector of length K with k-th entry c[k], H is a
K ×K diagonal matrix with k-th entry h[k], D is a K ×N
matrix whose rows are taken from the N × N DFT matrix
corresponding to the relevant Fourier indices of Φ(t;xf ), and
b is a column vector of length N with l-th entry bl.

To extract the values of b, which fully describe the beam-
formed signal, we rely on the assumption that a typical
ultrasound image is relatively sparse or compressible. Namely,
it is comprised of a small number of strong reflectors and
much weaker sub-wavelength scatterers in the scanned tissue.
Using this sparsity assumption we then find b by solving an
`1 optimization problem:

min
b
‖b‖1 s.t. ‖Ab− c‖2 ≤ ε. (22)

In practice, we solve (22) using the NESTA algorithm [36]
which works well when the signal of interest has high dy-
namic range. NESTA uses a single smoothing parameter, µ,
selected based on a trade-off between accuracy and speed of
convergence. We choose this parameter empirically to achieve
good performance with respect to image quality.

C. Results

1) In vitro: To verify the performance of our sub-Nyquist
technique we processed the data at the rate of 3.6 MHz which
corresponds to 0.4 of the effective Nyquist rate and is 10
times lower than the minimal rate required for time domain
beamforming. The processing rate is chosen empirically to be
as low as possible while allowing to recover meaningful im-
ages. In the context of Xampling, defined in Section IV-A, the
chosen processing rate corresponds to an analog preprocessing
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Fig. 5: Scan of wire targets for resolution evaluation. (a) Time
domain beamforming, processed at 36 MHz. (b) Sub-Nyquist
FDBF, processed at 3.6 MHz.
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Fig. 6: Spatial resolution comparison for time domain process-
ing and sub-Nyquist FDBF. (a) Axial PSF. (b) Lateral PSF.
The PSFs are computed empirically based on the response to
a single point target with lateral and axial coordinates [25mm,
21 mm]. The legend is the same for both (a) and (b).

filter with bandwidth of 3.6 MHz centered around the central
frequency of the transducer, fc = 9 MHz. All the images
are obtained with 41 transmitted plane-waves, as described
in Section III-B. Spatial resolution is evaluated based on the
wire targets scan presented in Fig. 5. The axial and lateral
PSF, computed based on a point target 21 mm, are presented
in Fig. 6. Contrast, evaluated based on the cyst scans shown if
Fig. 7, is in good agreement for both methods. Corresponding
values of NRMSE and SSIM are reported in the first two lines
of Table III. These values validate close similarity between
FDBF and sub-Nyquist FDBF. However, in this case, NRMSE
is slightly higher and SSIM is lower, compared with the values
obtained in Section III.

Table III: Sub-Nyquist FDBF: NRMSE and SSIM

Medium SSIM NRMSE
Wire targets 0.844 0.06
Cyst 0.796 0.08
Carotid (in vivo) 0.764 0.07
Thyroid (in vivo) 0.803 0.07
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Fig. 7: Scan of an anechoic cyst for contrast evaluation. (a)
Time domain beamforming, processed at 36 MHz, anechoic
contrast: 25.2 dB (b) Sub-Nyquist FDBF, processed at 3.6
MHz, anechoic contrast: 24.8 dB.

2) in vivo: We next applied sub-Nyquist FDBF to in vivo
carotid artery data, obtained by scanning a healthy volunteer.
The examination of the carotid wall is a powerful tool for
atherosclerosis diagnosis and ultrasound imaging is one of the
best methods for evaluation of the wall structure [37]. Intima-
media (IM), defined as a double line pattern on both walls
of the carotid artery, is a structure of interest for diagnosis.
It can be seen from comparison of the highlighted boxes in
Fig. 8 (a) and (b), that IM is preserved by FDBF and can be
used for further diagnosis. Moreover, we note that despite a
slight degradation of axial resolution, that can be noticed in
Fig. 6 (a), the in vivo image retains all the fine details. This
can be explained by the fact that the underlying clinical image
contains fewer strong reflectors and thus, better fits the sparsity
model.

We verify the ability of (22) to capture speckle by applying
sub-Nyquist FDBF to in vivo data, obtained by scanning a
healthy volunteer at the thyroid region. The scanned area
includes soft tissue with almost no strong reflectors and, thus,
is expected to provide an image comprised of fully developed
speckle. The resulting images, shown in Fig. 9(a) and (b),
demonstrate high similarity of the pattern resulting from time
and frequency domain processing. An example of a RF image
line obtained by both methods is presented in Fig. 10. It can
be seen that the RF lines are very close even in the regions
with weak echoes, that are expected to be speckle.

To provide statistical evidence that the resulting pattern
is indeed speckle we check whether it obeys a Rayleigh
probability density function (pdf) [38], [39] by performing a
Kolmogorov-Smirnov (K-S) test. This is a common statistical
hypothesis test that verifies whether there is enough evidence
in the data to deduce that the hypothesis under consideration
is correct. To this end, the envelope data of each image is
divided to overlapping patches of 20× 15 pixels and the K-S
test is applied to each patch. The patches that pass the K-S
test with significance level α = 0.05 are included into the
speckle region of each image. Figures 9(c) and (d) present
the speckle regions obtained by time domain beamforming
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(a) (b)

Fig. 8: In vivo carotid scan. The highlighted boxes contain the IM regions. (a) Time domain beamforming, processed at 36
MHz. (b) Sub-Nyquist FDBF, processed at 3.6 MHz.
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Fig. 9: In vivo thyroid scan. (a) Time domain beamforming, processed at 36 MHz, (b) sub-Nyquist FDBF, processed at 3.6
MHz, (c) speckle regions according to K-S test for time domain processing at 36 MHz, (d) speckle regions according to K-S
test for time domain processing at 3.6 MHz.  

Fig. 10: Comparison of RF lines located at x = 27 mm from
the thyroid scan presented in Fig. 9 obtained by time domain
processing and sub-Nyquist FDBF.

and sub-Nyquist FDBF, respectively. The patches that did not
pass the test are zeroed out. As expected, most of the image
in Fig. 9(a) is indeed speckle. Speckle region in the image
obtained by sub-Nyquist FDBF is in a good agreement with
that of time domain processing. To quantify this similarity,
we define the speckle region of time domain processing as a
reference and compute which percentage of it is defined as
speckle in an image obtained by the proposed method. The
correspondence between the speckle regions in Figs. 9(c) and
(d) is 95.7%, which clearly shows the ability of sub-Nyquist
FDBF combined with an `1-based prior to recover speckle
patterns.

The last two lines of Table III report the values of NRMSE
and SSIM which correspond to applying sub-Nyquist FBDF
on in-vivo carotid and thyroid data, showing similar results
to those obtained using the phantom scans. We emphasize
that the values of NRMSE and SSIM are provided to give
a sense of performance of the proposed method compared
with the established technique of time domain beamforming.
In practice, validation is typically performed visually by
sonographers, radiologists, and physicians. Furthermore, since
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Fig. 11: Elasticity maps of a phantom containing a 6 mm
hard inclusion. (a) Time domain beamforming, processed at
30 MHz. (b) Sub-Nyquist FDBF, processed at 5 MHz.

our approach uses only a small portion of the spectrum, it
inherently filters out noise, spread over the entire spectrum.
Thus, high similarity with beamforming in time may not
necessarily be advantageous.

3) Elastography: We next demonstrate the applicability of
sub-Nyquist FDBF in velocity estimation. In particular, we
consider supersonic shear imaging [2] where an Aixplorer
system was used to scan a CIRS 040GSE phantom with an
elasticity target of 40 kPa and 0 dB grayscale compared to the
background. Three steered plane-waves were used for imaging
and sub-Nyquist FDBF was applied on the data acquired for
each of them. Inclusion detection was performed using shear
compound as described in [2] and the resulting elasticity maps
are presented in Fig. 11. As can be seen, the elasticity maps
generated using time domain beamforming and sub-Nyquist
FDBF are similar and allow distinguishing the elasticity target.
Using sub-Nyquist FDBF the data is processed at the rate of 5
MHz which is 6 times lower than the rate of 30 MHz, required
by time domain beamforming. This shows the potential use of
sub-Nyquist FDBF for velocity estimation.

V. DISCUSSION AND CONCLUSIONS

In this work we extended the FDBF framework developed
recently for focused imaging to plane-wave imaging and
showed that the core of FDBF, the relationship between
the beam and the detected signals in the frequency domain,
holds. By appropriate modification of the distortion function
that was originally derived for a focused mode to translate
the beamforming delays to frequency, we extended FDBF to
include dynamic aperture and apodization, crucial for image
quality improvement. The efficient implementation of FDBF is
enabled by approximation based on the decay properties of the
distortion function. Here we verify numerically that the decay
property is preserved in the case of Hamming apodization and
evaluate the performance of FDBF for different approximation
levels. Such a numerical study can be performed for any choice
of the apodization function.

The effect of approximation on image quality is studied
by measuring spatial resolution and contrast as well as SSIM
and NRMSE values using real data acquired by a commer-
cial scanner. The results verify the equivalence of time and
frequency domain processing. We show that FDBF provides
4 times rate reduction by avoiding oversampling required by
digital implementation of beamforming in time.

When the signal’s structure is exploited further rate reduc-
tion is obtained. In this case we compute only a portion of
the beam’s bandwidth, which implies sampling and processing
the detected signals at a sub-Nyquist rate. The recovery of
the beam from its partial frequency data is then performed
by solving an optimization problem under the assumption
that the signal is compressible. The performance of sub-
Nyquist processing is verified in terms of spatial resolution
and contrast. Despite the slight degradation in axial resolution
observed in measuring the PSF based on a tissue mimicking
phantom, the comparison of in vivo carotid scans shows high
similarity and the ability of the proposed method to recover
the speckle pattern is verified using an in vivo thyroid scan.
In addition, we demonstrate the use of sub-Nyquist FDBF
to SWE. The ability to achieve significant rate reduction
using sub-Nyquist FDBF while obtaining meaningful elasticity
maps is of great importance since SWE is one of the main
applications of ultrafast imaging.

Besides the immediate advantage of sampling and pro-
cessing rate reduction, the proposed method offers two addi-
tional benefits. First, the reduction in the number of samples
taken at each transducer element is a potential enabler for
the concept of a wireless probe and remote processing [9].
Second, FDBF can efficiently incorporate pulse compression
required for coded excitation imaging [40], [41]. Transmission
of coded signals such as linear frequency modulated chirps
yields increased SNR and penetration depth and was shown
to improve the performance of shear-wave detection with plane
wave imaging [42].

APPENDIX - DISTORTION FUNCTION

To derive an expression of the distortion function we
consider two cases.

1) α = 0 : In this case we have

τm(t;xf , 0) =
1

2

(
t+
√
t2 + 4δ2fm

)
. (23)

Defining t′ = τm(t;xf , 0), we obtain

t = t′ −
δ2fm
t′
,

dt =

(
1 +

δ2fm
t′2

)
dt′.

(24)

Using (24) we can write

ϕ0
m(τm(t;xf , 0)) = ϕ0

m(t′),

wm(t;xf ) = wm(t′ −
δ2fm
t′

;xf ),

e−i
2π
T kt = ei

2π
T k

δ2fm
t′ e−i

2π
T kt

′
,

I[0,TB(xf ))(t) = I[δfm,T ′
B(xf ;0))

(t′),

(25)

where T
′

B(xf ; 0) , τm(TB(xf );xf , 0). Substituting
t′ = τm(t;xf , 0) into (10) yields
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ĉ0m[k] =
1

T

τm(T ;xf ,0)∫
δfm

ϕ0
m(t′)qk,m(t′;xf , 0)e−i

2π
T kt

′
dt′, (26)

where qk,m(t′;xf , 0) is defined in (27). By construction,
T

′

B(xf ; 0) ≤ T . Hence, considering the contribution of
I[δfm,T ′

B(xf ;0))
(t′), we can change the bounds of integration

in (26) to get

ĉ0m[k] =
1

T

∫ T

0

ϕ0
m(t′)qk,m(t′;xf , 0)e−i

2π
T kt

′
dt′. (28)

Omitting the tag superscript in t′, for clarity, results in equation
(11) where α = 0.
2) α 6= 0 : Define t′ = τm(t;xf , α) and let
y = 2

(
t′ − xf sinα

c

)
. We then obtain

t =
−y cosα+

√
y2 − 4δ2fm sin2 α

sin2 α
,

dt =
2(y − t′ cosα)√
y2 − 4δ2fm sin2 α

dt′.
(29)

Substituting the latter into (10) we have

ĉαm[k] =
1

T

τm(T ;xf ,α)∫
xf sinα

c +δfm

ϕαm(t′)qk,m(t′;xf , α)e−i
2π
T kt

′
dt′,

(30)
where qk,m(t′;xf , α) is given by (31) and we define
T

′

B(xf ;α) , τm(TB(xf );xf , α). An explicit expression of
the distortion function for Hamming window apodization,
defined in (13), is presented in (32). As in the previous case,
it holds that T

′

B(xf ;α) ≤ T . Taking into account the indicator
function I

[
xf sinα

c +δfm,T
′
B(xf ;α))

(t′), we can modify (30) to get
equation (11).
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“Reconstruction of ultrasound rf echoes modeled as stable random
variables,” IEEE Transactions on Computational Imaging, vol. 1, no. 2,
pp. 86–95, 2015.

[17] G. Tzagkarakis, A. Achim, P. Tsakalides, and J.-L. Starck, “Joint
reconstruction of compressively sensed ultrasound rf echoes by exploit-
ing temporal correlations,” in International Symposium on Biomedical
Imaging (ISBI). IEEE, 2013, pp. 632–635.

[18] C. Quinsac, A. Basarab, and D. Kouamé, “Frequency domain com-
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