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S
ignal processing methods have changed substantially over the last several decades. In 
modern applications, an increasing number of functions is being pushed forward to 
sophisticated software algorithms, leaving only delicate finely tuned tasks for the circuit 
level. Sampling theory, the gate to the digital world, is the key enabling this revolution, 
encompassing all aspects related to the conversion of continuous-time signals to discrete 

streams of numbers. The famous Shannon-Nyquist theorem has become a landmark: a mathemati-
cal statement that has had one of the most profound impacts on industrial development of digital 
signal processing (DSP) systems. 

Over the years, theory and practice in the field of sampling have developed in parallel routes. 
Contributions by many research groups suggest a multitude of methods, other than uniform sam-
pling, to acquire analog signals [1]–[6]. The math has deepened, leading to abstract signal spaces and 
innovative sampling techniques. Within generalized sampling theory, bandlimited signals have no spe-
cial preference, other than historic. At the same time, the market adhered to the Nyquist  paradigm; 
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 state-of-the-art analog to digital conversion (ADC) devices pro-
vide values of their input at equalispaced time points [7], [8]. 
The footprints of Shannon-Nyquist are evident whenever con-
version to digital takes place in commercial applications. 

Today, seven decades after Shannon published his land-
mark result in [9], we are witnessing the outset of an interest-
ing trend. Advances in related fields, such as wideband 
communication and radio-frequency (RF) technology, open a 
considerable gap with ADC devices. Conversion speeds that are 
twice the signal’s maximal frequency component have become 
more and more difficult to obtain. Consequently, alternatives 
to high rate sampling are drawing considerable attention in 
both academia and industry. 

In this article, we review sampling strategies that target 
reduction of the ADC rate below Nyquist. Our survey covers 
classic works from the early 1950s through recent publications 
from the past several years. The prime focus is bridging theory 
and practice, that is, to pinpoint the potential of sub-Nyquist 
strategies to emerge from the math to the hardware. In this 
spirit, we integrate contemporary theoretical viewpoints, which 
study signal modeling in a union of subspaces, together with a 
taste of practical aspects, more specifically how the avant-garde 
modalities boil down to concrete signal processing systems. Our 
hope is that this presentation style will attract the interest of 
both researchers and engineers with the aim of promoting the 
sub-Nyquist premise into practical applications while encourag-
ing further research into this exciting new frontier. 

INTRODUCTION
We live in a digital world. Telecommunication, entertainment, 
gadgets, and business all revolve around digital devices. These 
miniature sophisticated black boxes process streams of bits 
accurately at high speeds. Nowadays, it feels natural for elec-
tronic consumers when a media player shows their favorite 
movie, or when their surrounding system synthesizes pure 
acoustics, as if sitting in the orchestra and not in the living 
room. The digital world plays a fundamental role in our every-
day routine, to such a point that we almost forget that we can-
not “hear” or “watch” these streams of bits running behind the 
scenes. The world around us is analog, yet almost all modern 

man-made means for exchanging information are digital. “I 
am an analog girl in a digital world,” sings Judy Gorman (One 
Sky Music International, 1998), capturing the essence of the 
digital revolution. 

ADC technology lies at the heart of this revolution. ADC 
devices translate physical information into a stream of num-
bers, enabling digital processing by sophisticated software 
algorithms. The ADC task is inherently intricate: its hardware 
must hold a snapshot of a fast-varying input signal steady, 
while acquiring measurements. Since these measurements are 
spaced in time, the values between consecutive snapshots are 
lost. In general, therefore, there is no way to recover the ana-
log input unless some prior on its structure is incorporated. 

A common approach in engineering is to assume that the 
signal is bandlimited, meaning that the spectral contents are 
confined to a maximal frequency fmax. Bandlimited signals 
have limited (hence slow) time variation, and can therefore be 
perfectly reconstructed from equalispaced samples with a rate 
at least 2 fmax, termed the Nyquist rate. This fundamental 
result is often attributed in the engineering community to 
Shannon-Nyquist [9], [10], although it dates back to earlier 
works by Whittaker [11] and Kotel´nikov [12]. 

In a typical signal processing system, a Nyquist ADC 
device provides uniformly spaced pointwise samples x 1nT 2  of 
the analog input x 1t 2 , as depicted in Figure 1. In the digital 
domain, the stream of numbers is either processed or stored. 
Compression is often used to reduce storage volume. DSP, 
which is unquestionably the crowning glory of this flow, is 
typically performed on the uncompressed stream. The deli-
cate interaction with the continuous world is isolated to the 
ADC stage, so that sophisticated algorithms can be developed 
in a flexible software environment. The flow of Figure 1 ends 
with a digital to analog (DAC) device that reconstructs x 1t 2  
from the high Nyquist-rate sequence x 1nT 2 . 

A fundamental reason for processing at the Nyquist rate is 
the clear relation between the spectrum of x 1t 2  and that of 
x 1nT 2 , so that digital operations can be easily substituted for 
their continuous counterparts. Digital filtering is an example 
where this relation is successfully exploited. Since the power 
spectral densities of continuous and discrete random 
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 processes are associated in a 
similar manner, estimation and 
detection of parameters of ana-
log signals can be performed by 
DSP. In contrast, compression, 
in general, results in a nonlin-
ear complicated relationship 
between x 1t 2  and the stored data. 

This article reviews alternatives to the scheme of Figure 
1, whose common denominator is sampling at a rate below 
Nyquist. Research on sub-Nyquist sampling spans several 
decades and has been attracting renewed attention lately, 
since the growing interest in sampling in union of subspac-
es, finite rate of innovation (FRI) models, and compressed 
sensing techniques. Our goal in this survey is to provide an 
overview of various sub-Nyquist approaches. We focus this 
presentation on one-dimensional signals x 1t 2 , with applica-
tions to wideband communication, channel identification, 
and spectrum analysis. Two-dimensional imaging applica-
tions are also briefly discussed. 

Throughout, the theme is bridging theory and practice. 
Therefore, before detailing the specifics of various sub-
Nyquist approaches, we first discuss the relation between the-
ory and practice in a broader context. The example of uniform 
sampling, which without a doubt crossed that bridge, is used 
to list the essential ingredients of a sampling strategy so that 
it has the potential to step from math to actual hardware. Our 
subsequent presentation of sub-Nyquist strategies attempts to 
give a taste from both worlds—presenting the theoretical 
principles underlying each strategy and how they boil down to 
concrete and practical schemes. Where relevant, we shortly 
elaborate on practical considerations, e.g., hardware complex-
ity and computational aspects. 

ESSENTIAL INGREDIENTS OF A SAMPLING SYSTEM

NYQUIST SAMPLING
In 1949, Shannon formulated the following theorem for “a 
common knowledge in the communication art” [9, Th. 1]: 

If a function f 1t 2  contains no frequencies higher than W  
cycles-per-second, it is completely determined by giving 
its ordinates at a series of points spaced 1/2W  seconds 
apart. 
It is instructive to break this one-sentence formulation 

into three pieces. The theorem begins by defining an analog 
signal model—those functions f 1t 2  that do not contain fre-
quencies above W  Hz. Then, it describes the sampling stage, 
namely pointwise equalispaced samples. In between, and to 
some extent implicitly, the required rate for this strategy is 
stated: at least 2W  samples per second. 

The bandlimited signal model is a natural choice to 
describe physical properties that are encountered in many 
applications. For example, a physical communication medium 
often dictates the maximal frequency that can be reliably 
transferred. Thus, material, length, dielectric properties, 

shielding, and other electrical 
parameters define the maximal 
frequency W. Often, bandlim-
itedness is enforced by a lowpass 
filter with cutoff W, whose pur-
pose is to reject thermal noise 
beyond frequencies of interest. 

The implementation suggested by the Shannon-Nyquist 
theorem, equalispaced pointwise samples of the input, is 
essentially what industry has been persistently striving to 
achieve in ADC design. The sampling stage, per se, is insuffi-
cient; The digital stream of numbers needs to be tied together 
with a reconstruction algorithm. The famous interpolation 
formula 

 f 1t 2 5 a
n

f  a n
2W
b  sinc 12Wt2 n 2 ,   sinc 1a 2 ! sin 1pa 2

pa
,  (1)

which is described in the proof of [9], completes the picture 
by providing a concrete reconstruction method. Although (1) 
theoretically requires infinitely many samples to recover f 1t2  
exactly, in practice, truncating the series to a finite number of 
terms reproduces f 1t2  quite accurately [13]. 

The theory ensures perfect reconstruction from samples 
at rate 2W. A generalized sampling theorem by Papoulis 
allows to relax design constraints by replacing a single 
Nyquist-rate ADC by a filter bank of M branches, each sam-
pled at rate 2W/M [14]. Another route to design simplifica-
tion is oversampling, which is often used to replace the ideal 
brick wall filter by more flexible filter designs and to combat 
noise. Certain ADC designs, such as sigma-delta conversion, 
intentionally oversample the input signal, effectively trading 
sampling rate for higher quantization precision. Our wish 
list, therefore, includes a similar guideline for sub-Nyquist 
strategies: achieve the lowest rate possible in an ideal noise-
less setting, and relax design constraints by oversampling 
and parallel architectures. 

Further to what is stated in the theorem, we believe that 
two additional ingredients motivate the widespread use of 
the Shannon theorem. First, the interpolation formula (1) 
is robust to various noise sources: quantization round-off, 
series truncation and jitter effects [13]. The second appeal 
of this theorem lies in the ability to shift processing tasks 
from the analog to the digital domain. DSP is perhaps the 
major driving force that supports the wide popularity of 
Nyquist sampling. In sub-Nyquist sampling, the digital 
stream is, by definition, different from the Nyquist-rate 
sequence x 1nT 2 . Therefore, the challenge of reducing sam-
pling rate creates another obstacle—interfacing the sam-
ples with DSP  algorithms that are traditionally designed to 
work with the high-rate sequence x 1nT 2 , without necessi-
tating interpolation of the Nyquist-rate samples. In other 
words, we would like to perform DSP at the low sampling 
rate as well. 

Table 1 summarizes a wish list for a sub-Nyquist system, 
based on those properties observed in the Shannon theorem. A 
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sampling strategy satisfying most of these properties can, 
hopefully, find its way into practical applications. 

ARCHITECTURE OF A 
SUB-NYQUIST SYSTEM
A high-level architecture of a sub-Nyquist system is depicted 
in Figure 2, following the spirit of the traditional block dia-
gram of Figure 1. The ADC task is carried out by some hard-
ware mechanism, which outputs a sequence y 3n 4  of 
measurements at a low rate. Since the sub-Nyquist samples 
y 3n 4 are, by definition, different from the uniform Nyquist 
sequence x 1nT 2  of Figure 1, a digital core may be needed to 
preprocess the raw data before DSP can take place. A promi-
nent advantage over conventional Nyquist architectures is 
that the DSP operations are carried out at the low input rate. 
The digital core may also be needed to assist in reconstruct-
ing x 1t 2  from y 3n 4. Another advantage is that storage may 
not require a preceding compression stage; conceptually, the 
compression has already been performed by the sub-Nyquist 
sampling hardware. 

An important point that we would like to emphasize is that 
strictly speaking, none of the methods we survey actually 
breach the Shannon-Nyquist theorem. Sub-Nyquist techniques 
leverage known signal structure, that goes beyond knowledge 
of the maximal frequency component. The key to developing 
interesting sub-Nyquist strategies is to rely on structure that is 
not too limiting and still allows for a broad class of signals on 
the one hand, while enabling sampling rate reduction on the 
other. One of the earlier examples demonstrating how signal 
structure can lead to rate reduction is sampling of multiband 
signals with known center frequencies, namely, signals that 
consists of several known frequency bands. We begin our 
review with this classic setting. We then discuss more recent 
paradigms that enable sampling rate reduction even when the 
band positions are unknown. As we show, this setting is a spe-
cial case of a more general class of signal structures known as 
unions of subspaces, which includes a variety of interesting 

examples. After introducing this general model, we consider 
several sub-Nyquist techniques that exploit such signal struc-
ture in sophisticated ways. 

CLASSIC SUB-NYQUIST METHODS
In this section, we survey classic sampling techniques which 
reduce the sampling rate below Nyquist, assuming a multi-
band signal with known frequency support. An example of a 
multiband input with N  bands is depicted in Figure 3, with 
individual bandwidths not greater than B Hz, centered 
around carrier frequencies fi # fmax (N  is even for real-valued 
inputs). Since the carriers fi are known and the spectral sup-
port is fixed, the set of multiband inputs on that support is 
closed under linear combinations, thereby forming a sub-
space of possible inputs. Overlapping bands are permitted, 
though in practical scenarios, e.g., communication signals, 
the bands typically do not overlap. 

DEMODULATION
The most common practice to avoid sampling at the Nyquist 
rate, 

 fNYQ5 2fmax, (2)

is demodulation. The signal x 1t 2  is multiplied by the carrier 
frequency fi of a band of interest, so as to shift contents of a 
single narrowband transmission from high frequencies to the 

x (t )

Signal
Processing

y [n ]

Low Rate

Storage Media

Sub-Nyquist
Hardware

Digital Core

Low Rate

Low Rate
Sub-Nyquist

Reconstruction

Analog S Digital Digital S AnalogDigital Domain

y [n ]

" x (t )

"

[FIG2] A high-level architecture of a sub-Nyquist system. Both processing and continuous recovery are based on lowrate computations. 
The raw data can be directly stored.

[TABLE 1] SUB-NYQUIST SAMPLING: A WISH LIST.
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origin. This multiplication also creates a narrowband image 
around 2fi. Lowpass filtering is used to retain only the base-
band version, which is subsequently sampled uniformly in 
time. This procedure is carried out for each band individually. 

Demodulation provides the DSP block with the informa-
tion encoded in a band of interest. To make this statement 
more precise, we recall how modern communication is often 
performed. Two B/2-bandlimited information signals 
I 1t 2 , Q 1t 2  are modulated on a carrier frequency fi with a 
 relative phase shift of 90°. The quadrature output signal is 
then given by [15] 

 ri 1t 2 5 I 1t 2cos 12p fi  
t2 1Q 1t 2sin 12p fi t2 . (3)

For example, in amplitude modulation (AM), the informa-
tion of interest is the amplitude of I 1t 2 , while Q 1t 2 5 0. 
Phase- and  frequency-modulation (PM/FM) obey (3) such 
that the analog message is g 1t 2 5 arctan 1I 1t2 /Q 1t22  [16]. In 
digital communication, e.g., phase- or frequency shift-key-
ing (PSK/FSK), I 1t 2 , Q 1t 2  carry symbols. Each symbol 
encodes one, two, or more 0/1 bits. The I/Q-demodulator, 
depicted in Figure 4, basically reverts the actions performed 
at the transmitter side, which constructed ri 1t 2 . Once 
I 1t 2 , Q 1t 2  are obtained by the hardware, a pair of low-rate 
ADC devices acquire uniform samples at rate B. The subse-
quent DSP block can infer the analog message or decode the 
bits from the received symbols. 

Reconstruction of each ri 1t 2 , and consequently recovery of 
the multiband input x 1t 2 , is as simple as remodulating the 

information on their carrier frequencies fi, according to (3). 
This option is used in relay stations or regenerative repeaters 
that decode the information I 1t 2 , Q 1t 2 , use digital error cor-
rection algorithms, and then transform the signal back to high 
frequencies for the next transmission section [17]. 

I/Q demodulation has different names in the literature: 
zero-IF receiver, direct conversion, or homodyne; cf. [15] for 
various demodulation topologies. Each band of interest 
requires two hardware channels to extract the relevant 
I 1t 2 , Q 1t 2  signals. A similar principle is used in low-IF receiv-
ers, which demodulate a band of interest to low frequencies 
but not around the origin. Low-IF receivers require only one 
hardware channel per band, though the sampling rate is high-
er compared to zero-IF receivers. 

UNDERSAMPLING ADC
Aliasing is often considered an undesired effect of sampling. 
Indeed, when a bandlimited signal is sampled below its Nyquist 
rate, aliases of high-frequency content trample information 
located around other spectral locations and destroy the ability 
to recover the input. Undersampling (also known as direct 
bandpass sampling) refers to uniform sampling of a bandpass 
signal at a rate lower than the maximal frequency, in which case 
proper sampling rate selection renders aliasing advantageous. 

Consider a bandpass input x 1t 2  whose information band 
lies in the frequency range 1 fl, fu 2  of length B5 fu2 fl. In this 
case, the lowest rate possible is 2B [19]. Uniform sampling of 
x 1t 2  at a rate of fs that obeys 

 
2 fu
k
# fs #

2 fl
k21

,  (4)

for some integer 1 # k # fu /B, ensures that aliases of the 
positive and negative contents do not overlap [18]. Figure 5 
illustrates the valid sampling rates implied by (4). In particu-
lar, the figure and (4) show that fs5 2B is achieved only if 
x 1t 2  has an integer band positioning, fu5 kB. Furthermore, 
as the rate reduction factor k increases, the valid region of 
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[FIG4] A block diagram of a typical I-Q demodulator.
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sampling rates becomes narrower. For a given band position 
fu, the region corresponding to the maximal k # fu/B is the 
most sensitive to slight deviations in the exact values of 
fs, fl, fu [18]. Consequently, besides the fact that fs5 2B can-
not be achieved in general (even in ideal noiseless settings), a 
significantly higher rate is likely to be required in practice to 
cope with design imperfections. 

Bridging theory and practice, the fact that (4) allows rate 
reduction, even though higher than the minimal, is useful in 
many applications. In undersampling, the ADC is applied 
directly to x 1t 2  with no preceding analog preprocessing com-
ponents, in contrary to the RF hardware used in I/Q demodu-
lation. However, not every ADC device fits an undersampling 
system: only those devices whose front-end analog bandwidth 
exceeds fu are viable. 

Undersampling has two prominent drawbacks. First, the 
resulting rate reduction is generally significantly higher 
than the minimal as evident from Figure 5. As listed in Table 
1, approaching the minimal rate, at least theoretically, is a 
desired property. Second, and more importantly, undersam-
pling is not suited to multiband inputs. In this scenario, 
each individual band defines a range of valid values for fs 
according to (4). The sampling rate must be chosen in the 
intersection of these conditions. Moreover, it should also be 
verified that the aliases due to the different bands do not 
interfere. As noted in [21], satisfying all these constraints 
simultaneously, if possible, is likely to require a considerable 
rate increase. 

PERIODIC NONUNIFORM SAMPLING
The discussion above suggests that uniform sampling may 
not be the most desirable acquisition strategy for inputs with 

multiband structure, unless sufficient analog hardware is 
used as in Figure 4. Classic studies in sampling theory have 
focused on nonuniform alternatives. In 1967, Landau proved 
a lower bound on the sampling rate required for spectrally 
sparse signals [19] with known frequency support when 
using pointwise sampling. In particular, Landau’s theorem 
supports the intuitive expectation that a multiband signal 
x 1t 2  with N  information bands of individual widths B neces-
sitates a sampling rate no lower than the sum of the band 
widths, i.e., N B. 

Periodic nonuniform sampling (PNS) allows to approach 
the minimal rate N B without complicated analog preprocess-
ing. Besides ADC devices, the hardware needs only a set of 
time-delay elements. PNS consists of m undersampling 
sequences with relative time-shifts 

 yi 3n 45 x 1nTs1fi 2 , 1 # i # m,  (5)

such that the total sampling rate m/Ts is lower than fNYQ. 
Kohlenberg [22] was the first to prove perfect recovery of a 
bandpass signal from PNS samples taken at an average rate of 
2B samples/s. Lin and Vaidyanathan [23] extended his 
approach to multiband signals. 

We follow the presentation in [23] and explain how the 
parameters m, Ts, fi are chosen in the simpler case of a 
bandpas s  input .  Suppose  x 1t 2  i s  suppor ted  on 
I5 1 fl, fu 2 h 12fu,2fl 2  and B5 fu2 fl. We choose a PNS sys-
tem with m5 2 channels (also known as second-order 
PNS), a sampling interval Ts5 1/B, f15 0, and f25f. Due 
to the undersampling in each channel, aliases of the band 
contents tile the spectrum, so that the positive and negative 
images fold on each other, as visualized in Figure 6. In the 

[FIG6] Second-order PNS. The bandpass signal x 1t 2 is sampled by two rate-B uniform sequences with relative time delay f. The 
interpolation filters cancel out the contribution of the undesired alias.
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frequency domain, the sample sequences (5) satisfy a linear 
system [23] 

 Ts Y1 1 f 2 5 X 1 f 2 1 X 1 f2 b 1 f 2B 2 , (6a)

 Ts Y2 1 f 2 5 X 1 f 2 1 X 1 f2 b 1 f 2B2e2j2pb1f 2fB (6b)

for f [ I. The function b 1 f 2 52b 12f 2  is piecewise constant 
over f [ I, indexing the aliased images. The exact levels and 
transitions of b 1 f 2  depend explicitly on the band position as 
shown in Figure 6. 

The aliases have unity weights in y1 3n 4, whereas the time 
delay f in y2 3n 4 results in unequal weighting. System (6) is 
linearly independent as long as f obeys 

 e2 j2pb1f 2fB 2 1. (7)

Since b 1f 2  can take on only four distinct values within 
f [ 1 fl, fu 2 , there are many possible selections for f that sat-
isfy (7). Recovery of x 1t 2  is carried out by interpolation [22], 
[23] 

 x 1t2 5 a
n[Z

y1 3n4 g1 1t2nTs 2 1 y2 3n4 g2 1t2nTs 2  (8)

with bandpass filters g1 1t 2 , g2 1t 2 , which reverse the weights in 
(6). These filters have frequency responses 

 G1 1 f 25 1

12e2j2pb1f 2fB
,  G2 1f 2 52G1 1f 2 ,  f [ I , (9)

as are drawn in Figure 6. In practice, these filters can be real-
ized digitally, so that the output of Figure 6 is the Nyquist-rate 
sequence x 1nT 2 , with T5 1/2 fu equal to the Nyquist interval. 
Subsequently, a DAC device may interpolate the continuous sig-
nal x 1t 2 . 

The extension to multiband signals with N  bands of indi-
vidual widths B is accomplished following the same procedure 
using an Nth order PNS system, with delays fl, 1 # l # N  
[23]. Reconstruction consists of N  filters, which are piecewise 

constant over the frequency support of x 1t 2 . The indexing 
function b 1f 2  is extended to an N 3 N  matrix A 1f 2, with 
entries depending on fl and band locations. In general, an 
N  th-order PNS can resolve up to N  aliases, since it provides a 
set of N  equations. The equations are linearly independent, or 
solvable, if A21 1 f 2  exists over the entire multiband support 
[23]. Lin and Vaidyanathan show that the choice fl5 lf ren-
ders A 1 f 2  a Vandermonde matrix, in which case the choice of 
the single delay f is tractable. Bands of different widths are 
treated by viewing the bands as consisting of narrower 
 intervals that are integer multiplies of a common length. 
For  example ,  i f  N5 4  ( two  t ransmiss ions)  and 
B15 k1 B, B25 k2 B, then the equivalent model has 4 1k11 k2 2  
bands of equal width B. This conceptual step allows to achieve 
the Landau rate. For technical completeness, the same solu-
tion applies to mixed rational-irrational bandwidths for an 
infinitesimal rate increase. 

PNS VERSUS DEMODULATION
An apparent advantage of PNS over RF demodulation is 
that it can approach Landau’s rate with no hardware com-
ponents preceding the ADC device. This theoretical advan-
tage, however, was not widely embraced by industry for 
acquisition of multiband inputs. In an attempt to reason 
this situation, we leverage practical insights from time-
interleaving ADCs, a popular design topology used in high-
speed converters [24]–[26]. 

Time-interleaved ADC technology splits the task of convert-
ing a wideband signal into M parallel branches, essentially uti-
lizing Papoulis’ theorem with a bank of time-delay elements. 
Each branch in the block diagram of Figure 7 introduces a 
time delay of fl seconds and subsequently samples x 1t2fl 2  at 
rate 1/MT, where T5 1/fNYQ is the Nyquist interval. Ideally, 
when fl5 lT, interleaving the M digital streams provides a 
sequence that coincides with the Nyquist rate samples x 1nT 2 . 
A time-interleaving ADC consists of M separate T/H circuitries 
and quantizers, thereby relaxing design constraints by allow-
ing each branch to perform the conversion task in a duration 
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of MT seconds rather than T. While the larger duration simpli-
fies quantization, the T/H complexity remains almost the 
same—it still needs to track a Nyquist-rate varying input and 
hold its value at a certain time point, regardless of the higher 
duration allocated for conversion, as explained in “Nyquist and 
Undersampling ADC Devices.” 

PNS is a degenerated time-interleaved ADC with only 
m , M  branches. This means that a PNS-based sub-
Nyquist solution requires Nyquist-rate T/H circuitries, one 
per sampling branch. In addition to high analog band-
width, PNS also requires compensating for imperfect pro-
duction of the time delay elements. Consequently, realizing 
PNS in practice may not be much easier than designing an 
M-channel time-interleaved ADC with Nyquist-rate sam-
pling capabilities. Thus, while time-interleaving is a popu-
lar design method for Nyquist ADCs, it may be less useful 
for the purpose of sub-Nyquist sampling of wideband sig-
nals with large fNYQ. 

More broadly, any pointwise strategy, which is applied 
directly on a wideband signal, has a technological barrier 

around the maximal rate of commercial T/H circuitry. This 
barrier creates an (undesired) coupling between advances in 
RF and ADC technologies; as transmission frequencies grow 
higher, a comparable speed-up of T/H bandwidth is required. 
With accelerated development of RF devices, a considerable 
gap has already been opened, rendering ADCs a bottleneck in 
many modern signal processing applications. In contrast, in 
demodulation, even though the signal is wideband, an ADC 
with low analog bandwidth is sufficient due to the preceding 
lowpass filter. RF preprocessing (mixers and filters) buffer 
between x 1t 2  and actual ADCs, thereby offering a scalable 
sampling solution, which effectively decouples T/H capabili-
ties from dependency on the input’s maximal frequency. 
More importantly, demodulation ensures that only in-band 
noise enters the system, whereas in PNS, out-of-band noise 
from the entire Nyquist bandwidth is aggregated. 

We now turn to review sub-Nyquist techniques when the 
carrier frequencies are unknown, as well as low rate sam-
pling strategies for other interesting analog models. The 
insights we gathered so far hint that analog preprocessing is 

An ADC device, in the most basic form, repeatedly alter-
nates between two states: track-and-hold (T/H) and quanti-
zation. During T/H, the ADC tracks the signal variation. 
When an accurate track is accomplished, the ADC holds the 
value steady so that the quantizer can convert the value 
into a finite representation. Both operations must end 
before the next signal value is acquired. 

In the signal processing community, an ADC is often mod-
eled as an ideal pointwise sampler that captures values of x 1t 2  
at a constant rate of r samples per second. As with any analog 
circuitry, the T/H function is limited in the range of frequen-
cies it can accept: a lowpass filter with cutoff b can be used to 
model the T/H capability, as depicted in Figure S1(a) [20]. 

In most off-the-shelf ADCs, the analog bandwidth 
parameter b is specified higher than the maximal sampling 
rate r of the device. Figure S1(b) lists example devices. 
When using an ADC at the Nyquist rate of the input, the 
filter can be omitted from the model, since the signal is 
bandlimited to fmax5 r/2 # b. In contrast, for sub-Nyquist 
purposes, the analog bandwidth b becomes an important 
factor in accurate modeling and actual selection of the 

ADC, since it defines the maximal input frequency that can 
be undersampled 

 fmax # b. (S1)

Typically, b specifies the 23 dB point of the T/H frequency 
response. Thus, if flat response in the passband is of interest, 
fmax cannot approach too close to b. For example, if x 1t 2  is a 
bandpass signal in the range 3600, 625 4 MHz, then unders-
ampling at rate fs5 50 MHz satisfies condition (4). In this 
example, while both AD9433 and AD10200 are capable of 
sampling at a rate r $ 50 MHz, only the former is applicable 
due to (S1). 

Undersampling ADCs have a wider spacing between con-
secutive samples. This advantage is translated into simpli-
fying design constraints, especially in the duration allowed 
for quantization. However, regardless of the sampling rate 
r, the T/H stage must still hold a pointwise value of a fast-
varying signal. In terms of analog bandwidth there is no 
substantial difference between Nyquist and undersam-
pling ADCs; both have to accommodate the Nyquist rate of 
the input.

[FIG S1] (a) A practical model for an ADC device. (b) Example devices.
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an advantageous route towards developing efficient sub-
Nyquist strategies. 

UNION OF SUBSPACES

MOTIVATION
Demodulation, a classic sub-Nyquist strategy, assumes an 
input signal that lies in certain intervals within the Nyquist 
range. But, what if the input signal is not limited to a pre-
defined frequency support, or even worse if it spans the 
entire Nyquist range—can we still reduce the sampling rate 
below Nyquist? Perhaps surprising, we shall see in the sequel 
that the answer is affirmative, provided that the input has 
additional structure we can exploit. Figure 8 illustrates two 
such scenarios. 

Consider for example the scenario of a multiband input 
x 1t 2  with unknown spectral support, consisting of N  frequen-
cy bands of individual widths no greater than B Hz. In 
 contrast to the classic setup, the carrier frequencies fi are 
unknown, and we are interested in sampling such multiband 
inputs with transmissions located anywhere below fmax. At first 
sight, it may seem that sampling at the Nyquist rate 
fNYQ5 2fmax is necessary, since every frequency interval below 
fmax appears in the support of some multiband x 1t 2 . On the 
other hand, since each specific x 1t 2  in this model has struc-
ture—it fills only a portion of the Nyquist range (only N B 
Hz)—we intuitively expect to be able to reduce the sampling 
rate below fNYQ. 

Another interesting problem is sampling of signals that 
consists of several echoes of a known pulse shape, where the 
delays and attenuations are a priori unknown. Mathematically, 

 x 1t 2 5 a
L

,51
a, h 1t2t, 2 , t [ 30, t4  (10)

for some given pulse shape h 1t 2  and unknown t,, a,. Signals of 
this type belong to the broader family of FRI signals, originally 
introduced by Vetterli et al. in [27] and [28]. Echoes are 
encountered, for example, in multipath fading communication 
channels. The transmitter can assist the receiver in channel 
identification by sending a short probing pulse h 1t 2 , based on 
which the receiver can resolve the fading delays t, and use this 
information to decode subsequent information messages. In 
radar applications, inputs of the form (10) are prevalent, 
where the delays t, correspond to the unknown locations of 

targets in space, while the amplitudes a, encode Doppler shifts 
indicating target speeds. Medical imaging techniques, e.g., 
ultrasound, record signals that are structured according to 
(10) when probing density changes in human tissue. 
Underwater acoustics also conform with (10). The common 
denominator of these applications is that h 1t 2  is a short pulse 
in time, so that the bandwidth of h 1t 2 , and consequently that 
of x 1t 2 , spans a large Nyquist range. Nonetheless, given the 
structure (10), we can intuitively expect to determine x 1t 2  
from samples at the rate of innovation, namely 2L samples per 
t,  which counts the actual number of unknowns, 
t,, a,, 1 # , # L in every interval. 

These examples hint at a more general notion of sub-
Nyquist sampling, in which the underlying signal structure 
is utilized to reduce acquisition rate below the apparent 
input bandwidth. As a special case, this notion includes the 
classic settings of structure given by a predefined frequency 
support. To capture more general structures, we present next 
the union of subspace (UoS) model, originally proposed by 
Lu and Do in [29]. 

MATHEMATICAL FRAMEWORK
Denote by x 1t 2  an analog signal in the Hilbert space 
H5 L2 1R 2 , which lies in a parameterized family of subspaces 

 x 1t 2 [ U ! d
l[L

Al,  (11)

where L is an index set, and each individual Al is a subspace 
of H. The key property of the UoS model (11) is that the input 
x 1t 2  resides within Al* for some l* [L, but a priori, the exact 
subspace index l* is unknown. We define the dimension (or 
bandwidth) of U as the dimension of its affine hull S, namely 
the space of all linear combinations of x 1t 2 [ U. Typically, the 
union U has dimension that is relatively high compared with 
those of the individual subspaces Al. 

Multiband signals with unknown carriers fi can be 
described by (11), where each Al corresponds to signals with 
specific carrier positions and the union is taken over all pos-
sible fi [ 30, fmax 4. In this case, each Al has effective band-
width N B, whereas the union U  has fmax bandwidth, as 
follows from the definition of S. Similarly, echoes with 
unknown time delays of the form (10) correspond to L
-dimensional subspaces Al that capture the amplitudes a,. A 
union over all possible delays tl [ 30, t 4 provides an efficient 
way to group these infinitely many subspaces to a single set 
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[FIG8] Parts (a) and (b) show example applications of UoS modeling.
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U. The large bandwidth of h 1t 2  results in U  with a high 
Nyquist bandwidth. 

Union modeling sheds new light on sampling below the 
Nyquist rate. Sub-Nyquist in the union setting, conceptually, 
consists of two layers of rate reduction: from the dimensions of 
U to that of the individual subspaces Al, and then, further 
reduction within the scope of a single subspace until reaching 
its effective bandwidth (rather than twice its highest frequency 
component). The second layer is essentially what is treated in 
the classic works surveyed earlier, which considered a single 
subspace defined according to a given spectral support. 
Eventually, the challenging part is how to design sampling 
strategies that combine these reduction steps and achieve the 
minimal rate by one conversion stage. This challenge is further 
discussed in “Generalized Sampling in Union of Subspaces.”

The model (11) can be categorized to four types, accord-
ing to the cardinality of L (finite or infinite) and the dimen-
sions of the individual subspaces Al (finite or infinite). In 
the next sections, we review sub-Nyquist sampling methods 
for several prototype union models (categorized hereafter by 
the dimensions pair l2Al, where “F” abbreviates finite): 

 ■ multiband with unknown carrier positions (type F2`) 
 ■ variants of FRI models (cover two union types: `2F and 
`2`)

 ■ a sparse sum of harmonic sinusoids (type F2F).
A solution for sampling and reconstruction was developed in 
[30] for more general F2F union structures. A special case of 
the F2F case is the sparsity model underlying compressed sens-
ing [31], [32]. In this review, however, our prime focus is analog 
signals that exhibit infiniteness in either L or AL. A more 

Generalized sampling theory extends upon pointwise 
acquisition by viewing the measurements as inner products 
[3]–[6], [35], 

 y 3n 4 5 8x 1t 2 , sn 1t 2 9,  n [ Z,  (S2)

between an input signal x 1t 2  and a set of sampling func-
tions sn 1t 2 . Geometrically, the sample sequence y 3n 4  is 
obtained by projecting x 1t 2  onto the space 

 S5 span5sn 1t 2 | n [ Z6. (S3)

A special case is of a shift-invariant space S spanned by 
sn 1t 2 5 s 1t2nT 2  for some generator function s 1t 2  [5]. In this 
scenario, (S2) amounts to filtering x 1t 2  by s 12t 2  and taking 
pointwise samples of the output every T seconds. Traditional 
pointwise acquisition y 3n 4 5 x 1nT 2  corresponds to a shift-
invariant S with a Dirac generator s 1t 2 5d 1t 2 . Multichannel 
sampling schemes correspond to a shift-invariant space S 
spanned by shifts of multiple generators [36], [37]. 

Theory and applications of subspace sampling were 
widely studied over the years. If x 1t 2  resides within a sub-
space A # H of an ambient Hilbert space H, then the sam-
ples (S2) determine the input whenever the orthogonal 
complement A' satisfies a direct sum condition [6] 

 A' ! S5H. (S4)

Reconstruction is obtained by an oblique projection [6]. 
Roughly speaking, in noiseless settings, perfect recovery is 
possible whenever the angle u between the subspaces A, S 
is different than 90°, and robustness to noise increases as u 
tends to zero, as visualized in Figure S2. 

When x 1t 2  lies in a union of subspaces (11), both theory 
and practice become more intricate. For instance, even if 
the angles between S and each of the subspaces Al are 
sufficiently small, the samples may not determine the 
input if several subspaces are too close to each other; see 
the illustration. Recent studies [29] have shown that (S2) is 
stably invertible if (and only if) there exist constants 
0 , a , b , ` such that 

a 7x1 1t 2 2 x2 1t 2 7H2 # 7 y1 3n4 2 y2 3n4 7 l22 # b 7x11t 2 2 x2 1t 2 7H2 ,  (S5)

for every signals x1 1t 2 , x2 1t 2 [ Al1
1Al2

 and for all possible 
pairs of l1, l2. In practice, sampling methods for specific 
union applications use certain hardware constraints to hint 
at preferred selections of stable sampling functions sn 1t 2 ; 
see, for example, [20], [27], and [38]–[41] and other UoS 
methods surveyed in this review. 

GENERALIZED SAMPLING IN UNION OF SUBSPACES 

Sampling
Space

Union of Subspaces Single Subspace

Al3

Al2

Al1

A

SS

x (t ) x (t )

y [n ]θ

[FIG S2] Geometric illustration of sampling in a single subspace versus in a union of subspaces.
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detailed treatment of the general union setting can be found in 
[33] and [34]. 

MULTIBAND SIGNALS WITH 
UNKNOWN CARRIER FREQUENCIES

UNION MODELING
A description of a multiband union can be obtained by letting 
l5 5fi6, so that each choice of carrier positions fi determines 
a single subspace Al in U. In principle, fi lies in the continu-
um fi [ 30, fmax 4, resulting in union type `2`  containing 
infinitely many subspaces. In the setup we describe below a 
different viewpoint is used to treat the multiband model as a 
finite union of bandpass subspaces (type F2`), termed spec-
trum slices [20], [42]. 

In this viewpoint, the Nyquist range 32fmax, fmax 4 is con-
ceptually divided into M5 2L1 1 consecutive, nonoverlap-
ping, slices of individual widths fp, such that Mfp $ 2fmax. 
Each spectrum slice represents a single bandpass subspace. 
By choosing fp $ B, we ensure that no more than 2N  spec-
trum slices are active, namely contain signal energy. In this 
setting, there are Q M

2N
R subspaces in U. Dividing the spectrum 

to slices is only a conceptual step, which assumes no specific 
displacement with respect to the band positions. The advan-

tage of this viewpoint is that switching to union type F2` 
simplifies the digital reconstruction algorithms, while pre-
serving a degree of infiniteness in the dimensions of each 
individual subspace Al. 

SEMIBLIND AND FULLY BLIND 
POINTWISE APPROACHES
Earlier approaches for treating multiband signals with 
unknown carriers were semiblind: a sampler design indepen-
dent of band positions combined with a reconstruction algo-
rithm that requires exact support knowledge. Herley et al. 
[43] and Bresler et al. [44], [45] studied multicoset sampling, 
a PNS grid that is a subset of the Nyquist grid, and proved 
that the grid points can be selected independently of the band 
positions. The reconstruction algorithms in [43] and [45] 
coincide with the nonblind PNS reconstruction algorithm of 
[23], for time delays fl chosen on the Nyquist grid. These 
works approach the Landau rate, namely N B samples/s. Other 
techniques targeted the rate N B by imposing alternative con-
straints on the input spectrum [44]. 

Recently, the math and algorithms for fully blind systems 
were developed in [39], [42], and [46]. In this setting, both 
sampling and reconstruction operate without knowledge of 
the band positions. A fundamental distinction between 

Sampling strategies are often compared on the basis of the 
required sampling rate. It is therefore instructive to com-
pare existing strategies with the lowest sampling rate possi-
ble. For instance, the Shannon-Nyquist theorem states (and 
achieves) the minimal rate 2fmax for bandlimited signals. The 
following results derive the lowest sub-Nyquist sampling 
rates for spectrally sparse signals, under either subspace or 
union of subspace priors. 

Consider the case of a subspace model for signals that are 
supported on a fixed set I  of frequencies 

 BI5 5x 1t 2 [ L2 1R 2  | supp X 1f 2 # I6. (S6)

A grid R5 5tn6 of time points is called a sampling set for BI 
if the sequence of samples xR 3n 4 5 x 1tn 2  is stable, namely 
there exist constants a . 0 and b , ` such that 

a 7x 1t 22y 1t 2 7 L2

2 # 7xR 3n 42yR 3n 4 7 l22 # b 7x 1t 22y 1t 2 7 L2

2 ,

 4x 1t 2 , y 1t 2 [ BI. (S7)

Landau [19] proved that if R is a sampling set for BI then it 
must have a density 

 D2 1R 2 !  lim
rS`

  inf 
y[R

0R d 3y, y1 r 4 0
r

$ meas 1I 2 ,  (S8)

where D2 1R 2  is the lower Beurling density and meas 1I 2   is 
the Lebesgue measure of I. The numerator in (S8) counts 
the number of points from R in every interval of width r of 
the real axis. The Beurling density (S8) reduces to the usual 

concept of the average sampling rate for uniform and 
periodic nonuniform sampling. Consequently, for multi-
band signals with N bands of widths B, the minimal sam-
pling rate is the sum of the bandwidths NB, given a fixed 
subspace description of known band locations. 

A UoS model can describe a more general scenario, in 
which, a priori, only the fraction 0 , V , 1 of the Nyquist 
bandwidth actually occupied is assumed known but not 
the band locations 

 NV 5 5x 1t 2 [ L2 1R 2 0meas 1supp X 1f 22 # VfNYQ6. (S9)

A blind sampling set R for NV is stable if there exists a . 0 
and b , ` such that (S7) holds with respect to all signals 
from NV. A theorem of [42] derived the minimal rate 
requirement for the set NV 

 D2 1R 2 $ min52VfNYQ, fNYQ6. (S10)

This requirement doubles the minimal sampling rate to 
2NB for multiband signals whose band locations are 
unknown. It also implies that if the occupation V . 50%, 
then no rate reduction is possible. 

Both minimal rate theorems are universal for pointwise 
sampling strategies in the sense that for any choice of a 
grid R5 5tn6, if the average rate is too low, particularly 
below (S8) or (S10), then there exist signals whose samples 
on R are indistinguishable. Note that both results are non-
constructive; they do not hint at a sampling strategy that 
achieves the minimal rate.

UNIVERSAL BOUNDS ON SUB-NYQUIST SAMPLING RATES 
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 nonblind or semiblind approaches to fully blind systems is 
that the minimal sampling rate increases to 2N B, as a conse-
quence of recovery that lacks knowledge on the exact spectral 
support. A more thorough discussion in [42] studies the differ-
ences between earlier approaches that were based on subspace 
 modeling and the fully blind sampling methods [39], [42], [46] 
that are based on union modeling. “Universal Bounds on Sub-
Nyquist Sampling Rates” reviews the theorems underlying this 
distinction. The fully blind framework developed in [42] and 
[46] provides reconstruction algorithms that can be combined 
with various sub-Nyquist sampling strategies: multicoset in 
[42], filter bank followed by uniform sampling in [39], and the 
modulated wideband converter (MWC) in [20]. In viewing our 
goal of bridging theory and practice, the Achilles heel of the 
combination with multicoset is pointwise acquisition, which 
enters the Nyquist-rate thru the backdoor of T/H bandwidth. 
As discussed earlier and outlined in “Nyquist and 
Undersampling ADC Devices,” pointwise acquisition requires 
an ADC device with Nyquist-bandwidth T/H circuitry. The fil-
ter-bank approach is part of a general framework developed in 
[39] for treating analog signals lying in a sparse-sum of shift-
invariant (SI) subspaces, which includes multiband with 
unknown carriers as a special case. The filters and ADCs, how-
ever, also require Nyquist-rate bandwidth, in this setting. 

In the next section, we describe the MWC strategy, which 
utilizes the principles of the fully blind sampling framework, 
and also results in a hardware-efficient sub-Nyquist strategy 
that does not suffer from analog bandwidth limitations of T/H 
technology. In essence, the MWC extends conventional I/Q 
demodulation to multiband inputs with unknown carriers, and 
as such it also provides a scalable solution that decouples unde-
sired RF-ADC dependencies. The combination of hardware-effi-
cient sampler with fully blind reconstruction effectively satisfies 
the wish list of Table 1. 

MODULATED WIDEBAND CONVERTER
The MWC [20] combines the advantages of RF demodulation 
and the blind recovery ideas developed in [42], and allows sam-
pling and reconstruction without requiring knowledge of the 
band locations. To circumvent analog bandwidth issues in the 
ADCs, an RF front end mixes the input with periodic wave-
forms. This operation imitates the effect of delayed undersam-
pling, specifically folding the spectrum to baseband with 
different weights for each frequency interval. In contrast to 
undersampling (or PNS), aliasing is realized by RF components 
rather than by taking advantage of the T/H circuitry. In this way, 
bandwidth requirements are shifted from ADC devices to RF 
mixing circuitries. The key idea is that periodic mixing serves 
another goal—both the sampling and reconstruction stages do 
not require knowledge of the carrier positions. 

Before describing the MWC system that is depicted in 
Figure 9, we point out several properties of this approach. The 
system is modular; Sampling is carried out in independent 
channels, so that the rate can be adjusted to match the 
requirements of either a traditional subspace model or the 

more challenging union of subspace prior. It can also scale up 
to the Nyquist rate to support the standard Shannon-Nyquist 
bandlimited prior. The reconstruction algorithm that appears 
in Figure 10 has several functional blocks: detecting the spec-
tral support through a  computationally light optimization 
problem, signal recovery, and information extraction. Support 
detection, the heart of this digital algorithm, is carried out 
whenever the carrier locations vary. The rest of the digital 
computations are simple and performed in real time. In addi-
tion, the recovery stage outputs baseband samples of 
I 1t 2 , Q 1t 2 . This enables a seamless interface to existing DSP 
algorithms with sub-Nyquist processing rates, as could have 
been obtained by classic demodulation had the carriers fi been 
known. We now elaborate on each part of this strategy. 

SUB-NYQUIST SAMPLING SCHEME
The conversion from analog to digital consists of a front end of 
m channels, as depicted in Figure 9. In the ith channel, x 1t 2  is 
multiplied by a periodic waveform pi 1t 2  with period Tp5 1/fp, 
lowpass filtered by h 1t 2 , and then sampled at rate fs5 1/Ts. 
The figure lists basic and advanced configurations. To simplify, 
we concentrate on the theory underlying the basic version, in 
which the sampling interval Ts equals the aliasing period Tp, 
each channel samples at rate fs $ B and the number of 
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[FIG9] (a) Block diagram of the modulated wideband converter 
[20] (figure courtesy of the IEEE). Part (b) lists the parameters 
choice of the basic and advanced MWC configurations. Adapted 
from [47] (figure courtesy of IET).
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 hardware branches m $ 2N, so that the total sampling rate 
can be as low as 2N B. These choices stem from necessary and 
 sufficient conditions derived in [20] on the required sampling 
rate mfs to allow perfect reconstruction. If the input’s spectral 
support is known, then the same conditions translate to a simi-
lar parameter choice with half the number of channels, result-
ing in a total sampling rate as low as N B. Thus, although the 
MWC does not take pointwise values of x 1t 2 , its optimal sam-
pling rate coincides with the lowest possible rates by pointwise 
strategies, which are discussed in “Universal Bounds on Sub-
Nyquist Sampling Rates.” Advanced configurations enable 
additional hardware savings by collapsing the number of 
branches m by a factor of q at the expense of increasing the 
sampling rate of each channel by the same factor, ultimately 

enabling a single-channel sampling system [20]. This tech-
nique is also briefly reviewed in the next subsection. 

The choice of periodic waveforms pi 1t 2  becomes clear once 
analyzing the effect of periodic mixing. Each pi 1t 2  is periodic, 
and thus has a Fourier expansion 

 pi 1t2 5a`
l52`

cil e
j2pfplt. (12)

Denote by zl 3n 4 the sequence that would have been obtained 
by mixing x 1t 2  with e j2pfp lt, filtering by h 1t 2  and sampling 
every T seconds. By superposition, mixing x 1t 2  by the sum 
in (12) outputs yi 3n 4, which is a linear combination of the 
zl 3n 4  sequences according to the Fourier coefficients cil of 
pi 1t 2 . Figure 11 visualizes the effect of mixing with periodic 
waveforms, where each sequence zl 3n 4  corresponds to a 
spectrum slice of x 1t 2  positioned around lfp. Mathematically, 
the analog mixture boils down to the linear system [20] 

 y 3n 45 Cz 3n 4, (13)

where the vector y 3n45 3y1 3n4, c, ym 3n 4 4T collects the mea-
surements at t5 nTs. The matrix C contains the coefficients cil 
and z 3n 4 rearranges the values of zl 3n 4 in vector form. 

To enable aliasing of spectrum slices up to the maximal 
frequency fmax, the periodic functions pi 1t 2  need to have 
Fourier coefficients cil with nonnegligible amplitudes for all 
2L # l # L, such that Lfp $ fmax. In principle, every period-
ic function with high-speed transitions within the period Tp 
can be appropriate. One possible choice for pi 1t 2  is a sign-
alternating function, with M5 2L1 1 sign intervals within 
the period Tp [20]. Popular binary patterns, e.g., the Gold or 
Kasami sequences, are especially suitable for the MWC [38]. 

HARDWARE-EFFICIENT REALIZATION
A board-level hardware prototype of the MWC is reported in 
[47]. The hardware specifications cover 2 GHz Nyquist-rate 
inputs with spectral occupation up to N B5 120 MHz. The 
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[FIG11] The spectrum slices from x 1t 2  are overlayed in the 
spectrum of the output sequences yi 3n 4. In the example, 
channels i and i r realize different linear combinations of the 
spectrum slices centered around lfp, lfp, l

|fp. For simplicity, the 
aliasing of the negative frequencies is not drawn. Adapted 
from [47] (figure courtesy of IET).
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sub-Nyquist rate is 280 MHz. 
Photos of the hardware appear 
in Figure 12.  

To reduce the number of 
analog components, the hard-
ware realization incorporates an 
advanced MWC configuration 
[20]. In this version 

 ■ a collapsing factor q5 3 results in m5 4 hardware 
branches with individual sampling rates 1/Ts5 70 MHz 

 ■ a single shift-register generates periodic waveforms for 
all hardware branches.
Further technical details on this representative hardware 

exceed the level of practice we are interested in here, though 
we emphasize below a few conclusions that connect back to 
the theory. 

The Nyquist burden always manifests itself in some part of 
the design. For example, in pointwise methods, implementation 
requires ADC devices with Nyquist-rate front-end bandwidth. In 
other approaches [41], [48], which we discuss in the sequel, the 
computational loads scale with the Nyquist rate, so that an 
input with 1 MHz Nyquist rate may require solving linear sys-
tems with 1 million unknowns. Example hardware realizations 
of these techniques [49] treat signals with Nyquist rate up to 
800 kHz. The MWC shifts the Nyquist burden to an analog RF 
preprocessing stage that precedes the ADC devices. The motiva-
tion behind this choice is to enable capturing the largest possi-
ble range of input signals, since, in principle, when the same 
technology is used by the source and sampler, this range is 
maximal. In particular, as wideband multiband signals are often 
generated by RF sources, the MWC framework can treat an 
input range that scales with any advance in RF technology. 

While this explains the choice of RF preprocessing, the actu-
al sub-Nyquist circuit design can be quite challenging and call 
for nonordinary solutions. To give a taste of circuit challenges, 
we briefly consider two design problems that are studied in 
detail in [47]. Low-cost analog mixers are typically specified for 

a pure sinusoid in their oscillator 
port, whereas the periodic mix-
ing requires simultaneous mix-
ing with the many sinusoids 
comprising pi 1t 2 , which creates 
nonlinear distortions and com-
plicates the gain selections along 

the RF path. In [47], special power circuitries that are tailored 
for periodic mixing were inserted before and after the mixer. 
Another circuit challenge pertains to generating pi 1t 2  with 2 
GHz alternation rates. The strict timing constraints involved in 
this logic are eliminated in [47] by operating commercial devic-
es beyond their datasheet specifications. 

Going back to a high-level practical viewpoint, besides 
matching the source and sampler technology and addressing 
circuit challenges, an important point is to verify that the 
recovery algorithms do not limit the input range through con-
straints they impose on the hardware. In the MWC case, peri-
odicity of the waveforms pi 1t 2  is important since it creates the 
aliasing effect with the Fourier coefficients cil in (12). The 
hardware implementation and experiments in [47] demon-
strate that the appearance in time of pi 1t 2  is irrelevant as long 
as periodicity is maintained. A video recording of hardware 
experiments and additional documentation for the MWC hard-
ware is available in [85]. This property is crucial, since precise 
sign alternations at high speeds of 2 GHz are difficult to main-
tain, whereas simple hardware wirings ensure periodicity, spe-
cifically that pi 1t 2 5 pi 1t1 Tp 2  for every t [ R. The recent 
work [50] provides digital compensation for nonflat frequency 
response of h 1t 2 , assuming slight oversampling to accommo-
date possible design imperfections, similarly to oversampling 
solutions in Shannon-Nyquist sampling. 

Noise is inevitable in practical measurement devices. A 
common property of many existing sub-Nyquist methods, 
including PNS sampling, MWC, and the methods of [41] and 
[48] is that they aggregate wideband noise from the entire 
Nyquist range, as a consequence of treating all possible 

(a) (b)

[FIG12] A hardware realization of the MWC consisting of two circuit boards. Part (a) implements m 5 4 sampling channels, 
whereas (b) provides four sign-alternating periodic waveforms of length M 5 108, derived from a single shift-register. Adapted 
from [47] (figure courtesy of IET).

IN PRINCIPLE, WHEN THE SAME 
TECHNOLOGY IS USED BY THE SIGNAL 
SOURCE AND SAMPLER, THE RANGE 

OF POSSIBLE INPUT SIGNALS 
IS MAXIMIZED.
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 spectral supports. The digital reconstruction algorithm we 
outline in the next subsection partially compensates for this 
noise enhancement for PNS/MWC by digital denoising. 
Another route to noise reduction can be careful design of the 
 sequences pi 1t 2 . However, noise aggregation remains a prac-
tical limitation of all current sub-Nyquist techniques. 

RECONSTRUCTION ALGORITHM
The digital reconstruction algorithm encompasses three stages 
that appear in Figure 10: 

1) A block named continuous-to-finite (CTF) constructs a 
finite-dimensional frame (or basis) from the samples, from 
which a small-size optimization problem is formulated. 

A famous riddle is as follows: “You are given a balanced 
scale and 12 coins, one of which is counterfeit. The counter-
feit weighs less or more than the other coins. Determine the 
counterfeit in three weighings, and whether it is heavier or 
lighter.” This riddle captures the essence of sparsity priors. 
While there are multiple unknowns (the weights of the 12 
coins), far fewer measurements (only three) are required to 
determine low-dimensional information of interest (the rel-
ative weight of the counterfeit coin). Several “12 coins” 
solutions (widely available online) are based on three 
rounds of comparing weights of two groups of four coins 
each, followed by a sort of combinatorial logic that indi-
cates the counterfeit coin. 

Sparse solutions of underdetermined linear systems 
extend the principle underlying the above riddle. The 
influential works by Donoho [31] and Candès et al. [32] 
paved the way to CS, an emerging field in which problems 
of this type are widely studied. Mathematically, consider 
the linear system 

 y5 Cz, (S11)

with the m 3 M matrix C having fewer rows than columns, 
i.e., m , M. Since C has a nontrivial null space, there are 
infinitely many candidates z satisfying (S11). The goal of 
CS is to find a sparse z among these solutions, in other 
words, a vector z that contains only few nonzero entries. A 
basic result in the field [53] shows that (S11) has a unique 
sparse solution if 

 7z 70 , 1
2

 a11 1
mb , m!max

i2 j

8Ci, Cj97Ci 7  7Cj 7 ,  (S12)

where 7z 70 counts the number of nonzeros in z, and 7Ci 7  
denotes the Euclidian norm of the i th column Ci. The 
unique sparse solution can be found via the minimization 

program, 

 min
z
7z 70 s.t. y5 Cz. (S13)

Similar to the riddle, program (S13) is NP-hard with combi-
natorial complexity. 

The CS literature provides polynomial-time techniques 
for sparse recovery, which coincide with the sparse z, 
under various conditions on the matrix C. A popular alter-
native to (S13) is solving the convex program 

 min
z
7z 71 s.t. y5 Cz, (S14)

where the norm 7z 71 sums the magnitudes of the entries. 
Convex variants of (S14) include penalizing terms that 
account for additive noise. Another approach to sparse 
recovery are greedy algorithms, which iteratively recover 
the nonzero locations. For example, orthogonal matching 
pursuit (OMP) [54] iteratively identifies a single support 
index. A residual vector r contains the part of y that is not 
spanned by the currently recovered index set. In OMP, an 
orthogonal projection PS y is computed in every iteration, 
as described in Figure S3. Various greedy approaches are 
modifications of the main OMP steps.

The procedure repeats until the location set S reaches a 
predefined cardinality or when the residual r is sufficiently 
small. Upon termination, the nonzero values zS are com-
puted by pseudoinversion of the relevant column subset CS 

 zS5 C†
S
 y5 1CS

TCS 221CS
Ty. (S15)

Convex and greedy methods have also been proposed to 
account for joint sparsity, in which case the unknown is a 
matrix Z having only a few nonidentically zero rows [30], 
[46], [55]–[59]. The special issue of IEEE Signal Processing 
Magazine from March 2008 and book [60] provide a com-
prehensive review of this field [61].

SPARSE SOLUTIONS OF UNDERDETERMINED LINEAR SYSTEMS 

y C= =

z

S Indicates the
Nonzero Locations

CS zS

Orthogonal Matching Pursuit

Init:

Correlate:

Update:

Residual:

Repeat Until (ir i L 0 or  S  = k )

S = { }, r  ← y

r  ← (I – PS) y

S ← S

)

{ i ∗}

i ∗ = arg max 〈r, Ci 〉
i

U U 

(a) (b)

[FIG S3] (a) An underdetermined system with a sparse solution vector. (b) Example sparse recovery algorithm. 
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The solution of that program indicates those spectrum slic-
es that contain signal energy. The CTF outputs an index set 
S of active slices. This block is executed on initialization or 
when the carrier frequencies change. 
2) A single matrix-vector multiplication, per instance of 
y 3n 4, recovers the sequences zl 3n 4 containing signal energy, 
as indicated by l [ S.  
3) A digital algorithm estimates fi and (samples of) the 
baseband signals I 1t 2 , Q 1t 2  of each information band.
In addition to DSP, analog recovery of x 1t 2  is obtained by 

remodulating the quadrature signals I 1t 2 , Q 1t 2  on the estimat-
ed carriers fi according to (3). Analog back end employs custom-
ary components, DACs and modulators, to recover x 1t 2 . 

To understand the recovery flow, we begin with the lin-
ear system (13). Due to the sub-Nyquist setup, the matrix C 
in (13) has dimension m 3 M, such that m , M. In other 
words, C is rectangular and (13) has fewer equations than 
the dimension M  of the unknown z 3n 4. Fortunately, the 
multiband prior in accordance with the choice fp $ B 
ensures that at most 2N  sequences zl 3n 4  contains signal 
energy [20]. Therefore, for every time point n, the unknown 
z 3n 4  is sparse with no more than 2N  nonzero values. 
Solving for a sparse vector solution of an underdetermined 
system of equations has been widely studied in the litera-
ture of compressed sensing (CS). “Sparse Solutions of 
Underdetermined Linear Systems” summarizes relevant CS 
theorems and algorithms. 

Recovery of z 3n 4 using any of the existing sparse recovery 
techniques is inefficient, since the sparsest solution z 3n 4, 
even if obtained by a polynomial-time CS technique, is com-
puted independently for every n. Instead, the CTF method 
that was developed in [42] and [46] exploits the fact that the 
bands occupy continuous spectral intervals. This analog con-
tinuity boils down to z 3n 4 having a common nonzero loca-
tion set S over time. To take advantage of this joint sparsity, 
the CTF builds a frame (or a basis) from the measurements 
using, for example, 

 y 3n4 bFrame 
construct

Q5a
n

y 3n4 y H 3n4 Decompose
b Q5 V VH, (14)

where the (optional) decomposition allows to combat noise. 
The finite dimensional system 

 V5 CU, (15)

is then solved for the sparsest matrix U with minimal num-
ber of nonidentically zero rows; example techniques are ref-
erenced in “Sparse Solutions of Underdetermined Linear 
Systems.” The important observation is that the indices of 
the nonzero rows in U, denoted by the set S, coincide with 
the locations of the spectrum slices that contain signal ener-
gy [42]. This property holds for any choice of matrix V in 
(15) whose columns span the measurements space 5y 3n 4 6. 
The CTF effectively locates the signal energy at a spectral 
resolution of fp. Once S is found, z 3n 4  are recovered by a 
matrix-vector multiplication; see (S15) in “Sparse Solutions 
of Underdetermined Linear Systems.” Since all CTF opera-
tions are executed only once (or when carrier frequencies 
change), in steady state, the reconstruction runs in real 
time, specifically a single matrix-vector multiplication (S15) 
per measurement y 3n 4. 
SUB-NYQUIST BASEBAND PROCESSING
Software packages for DSP expect baseband inputs, specifically 
the information signals I 1t 2 , Q 1t 2  of (3), or equivalently their 
uniform samples at the narrowband rate. These inputs are 
obtained by classic demodulation when the carrier frequencies 
are known. A digital algorithm developed in [51] translates the 
sequences z 3n 4 to the desired DSP format with only lowrate 
computations, enabling smooth interfacing with existing DSP 
software packages. 

The input to the algorithm are the sequences z 3n 4 corre-
sponding to the spectrum slices of x 1t 2 . In general, as depict-
ed in Figure 13, a spectrum slice may contain more than a 
single information band. The energy of a band of interest 
may also split between adjacent slices. To correct for these 
two effects, the algorithm performs the following actions: 

1) Refine the coarse support estimate S to the actual band 
edges, using power spectral density estimation.

zl [n ]

ri [n ]

rj [n ]

s (t )

Balanced Quadricorrelator

zl + 1 [n ]

Align/Stitch
cos(v0t )
sin(v0t )

LPF

LPF

vI (t )

vd (t )

vQ (t )

d
dt

d
dt

+

Carrier fi

Narrowband
Information

Ii (t ), Qi (t )

s (((t ))) cos(v0t )
sin(v0t )

LPF

LPF

vIv (t ))))))))

vdvv (tt )))))

vQv (t )

d
dt

d
dt

+

[FIG13] The flow of information extraction begins with detecting the band edges. The slices are filtered, aligned and stitched 
appropriately to construct distinct quadrature sequences ri 3n 4 per information band. The balanced quadricorrelator finds the carrier fi 
and extracts the narrowband information signals.
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2) Separate bands occupying the same slice to distinct 
sequences ri 3n 4. Stitch together energy that was split 
between adjacent slices. 
3) Apply a common carrier recovery technique, the bal-
anced quadricorrelator [52], on ri 3n 4. This step estimates 
the carrier frequencies fi and outputs uniform samples of 
the narrowband signals I 1t 2 , Q 1t 2 .
The baseband processing algorithm renders the MWC 

compliant with the high-level architecture of Figure 2 depict-
ed in the beginning of the article. The digital computations of 
the MWC (CTF, spectrum slices recovery, and baseband pro-
cessing) lie within the digital core that enables DSP and assist 
continuous reconstruction. 

ADAPTIVE SOLUTIONS
We conclude this section with a brief discussion on a potential 
adaptive strategy for multiband sampling. An adaptive system 
may scan the spectrum for the frequencies fi prior to sampling, 
and then employ classic solutions, e.g., demodulation or PNS, 
for the actual conversion to digital. This approach requires a 
wideband analog spectrum scanner that can be hardware exces-
sive and time consuming; cf. [51]. During that time, signal 
acquisition is idle, thereby precluding reconstruction of poten-
tially valuable data. The fact that fi are unknown a priori and are 
learned while the system is running has additional implications 
on the hardware. For example adaptive demodulation requires a 
local oscillator tunable over the entire wideband range, so that 
it can generate a sinusoid at any identified fi in 30, fmax 4. In PNS 
techniques, the sampling grid needs to be designed at run time, 
especially after fi are determined, as evident from conditions 
(4)–(7) and Figures 5 and 6. Nonetheless, where applicable, 
adaptive solutions may be another venue for sub-Nyquist sam-
pling. A prominent advantage of adaptive demodulation is that 
only in-band noise enters the system. 

SIGNALS WITH FINITE RATE OF INNOVATION

PERIODIC TIME-DELAY MODEL
Vetterli et al. [27], [62] coined the FRI terminology for signals 
that are determined by a finite number L of unknowns, 

referred to as innovations, per time interval t. Bandlimited 
signals, for example, have L5 1 innovations per Nyquist inter-
val t 5 1/fNYQ. The most studied FRI model is that of (10), in 
which there are 2L innovations: unknown delays t, and atten-
uations a, of L copies of a given pulse shape h 1t 2  [27], [28], 
[40], [62]–[64]. As outlined earlier, the sub-Nyquist goal in 
this setting is to determine x 1t 2  from about 2L samples per t, 
rather than sampling at the high rate that stems from the 
bandwidth of h 1t 2 . In what follows, we consider a simple ver-
sion of (10) with a periodic input, x 1t 2 5 x 1t1t 2 , so that the 
echoes pattern, i.e., t, and a,, repeats every t seconds. Each 
possible choice of delays 5t,6 leads to a different L-dimension-
al subspace of signals Al, spanned by the functions 5h 1t2t, 26. 
Since the delays lie on the continuum t, [ 30, t 4, the model 
(10) corresponds to an infinite union of finite dimensional 
subspaces (type `2F). We first describe the sub-Nyquist prin-
ciples for this periodic version, and then outline other variants 
of FRI signals and sampling strategies. 

SUB-NYQUIST SAMPLING SCHEME
The key enabling sub-Nyquist sampling in the FRI setting is in 
identifying the connection to a standard problem in signal 
processing: retrieval of the frequencies and amplitudes of a 
sum of sinusoids. The Fourier series coefficients X 3k 4 of the 
periodic pulse stream x 1t 2  can be shown to equal a sum of 
complex exponentials, with amplitudes 5a,6, and frequencies 
directly related to the unknown time-delays [27] 

 X 3k 45 1
t3

t

0
x 1t2e2j2pkt/tdt5

1
tH 12pk/t 2aL

,51
a,e2j2pkt, /t,  (16)

where H 1v 2  is the Fourier transform of the pulse h 1t 2 . Once 
the coefficients X 3k 4 are known, the delays and amplitudes can 
be found using standard tools developed in the context of array 
processing and spectral estimation [27], [65]. Therefore, the 
goal is to design a sampling scheme from which X 3k 4 can be 
determined. 

Figure 14 depicts two sampling strategies to obtain X 3k 4. 
In the single-channel version, the input is filtered by s 1t 2  and 
then sampled uniformly every T seconds. If s 1t 2  is designed to 
capture a set x of M $ 2L consecutive coefficients X 3k 4 and 
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[FIG14] Parts (a) and (b) show single and multichannel sampling schemes for time-delay FRI models.
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zero out the rest, then the vector x of Fourier coefficients can 
be obtained from the samples [63] 

 x5 S21 DFT5c6, (17)

where S is an M 3 M diagonal matrix with kth entry S* 12pk/t 2  
for all k in the filter’s passband, and c collects M uniform sam-
ples in a time duration t. One way to capture M coefficients 
X 3k 4 is by choosing a lowpass s 1t 2  with an  appropriate cutoff 
[27]. A more general condition on the sampling kernel s 1t 2  is 
that its Fourier transform S 1v 2  satisfies [63] 

 S 1v 2 5 •0 v 5 2pk/t, k /[ K

nonzero v 5 2pk/t, k [ K

arbitary otherwise,
 (18)

where K is a set of M $ 2L consecutive indices such that 
H 12pk/t 2 2 0 for all k [ K. Practical (real-valued) kernels 
s 1t 2  have conjugate symmetric transform S 1v 2  and thus 
necessitate selecting odd M, in which case the minimal num-
ber of samples is 2L1 1. 

A special class of filters satisfying (18) are sum of sincs 
(SoS) in the frequency domain [63], which lead to compactly 
supported filters in the time domain; this property becomes 
crucial in other variants of FRI models we survey below. As the 
name hints, SoS filters are given in the Fourier domain by 

 G 1v 2 5 t"2p
 a
k[K

 bk sinc a v

2p/t
2 kb,  (19)

where bk 2 0, k [ K. It is easy to see that this class of fil-
ters satisfies (18) by construction. Switching to the time 
domain 

 g 1t 2 5 rect Q t
t
R a

k[K
bk e j2pkt/t, (20)

which is clearly a time compact filter with support t. For the 
special case in which K5 52p, c, p6 and bk5 1, 

 g 1t 2 5 rect Q t
t
R ap

k52p
e j2pkt/t 5 rect Q t

t
R Dp 12pt/t2 ,  (21)

where Dp 1t 2  denotes the Dirichlet kernel. 
An alternative multichannel sampling system was pro-

posed in [64]. The system, depicted in Figure 14(b), is con-
ceptually constructed in two steps. First, M analog branches 
are used to compute X 3k 4  directly from x 1t 2  according to 
(16): modulation by e2j2pkt/t and integration over t. For prac-
tical reasons, generating M complex sinusoids at different 
frequencies can be hardware excessive. Therefore, the second 
step replaces mixing with individual sinusoids by x 1t 2si 1t 2 , 
with mixing waveforms si 1t 2  consisting of a linear combina-
tion of |K| complex sinusoids. The advantage is that si 1t 2  can 
be efficiently generated by proper (lowpass) filtering of peri-
odic waveforms. The periodic waveforms themselves can be 
generated from a single clock source [47]. Interestingly, the 
MWC hardware prototype, whose boards appear in Figure 12, 

functions as a generic sub-Nyquist platform; it can also be 
used for reduced-rate sampling of FRI models [66]. In the 
digital domain, X 3k 4 are computed from samples of the lin-
ear mixtures x 1t 2si 1t 2 . 
RECONSTRUCTION ALGORITHM
Given a vector x of coefficients X 3k 4, solving for t,, a, from 
(16) is tantamount to recovering L frequencies and ampli-
tudes in a sum of complex exponentials. A variety of methods 
for that problem have been proposed; see [65] for a compre-
hensive review. Below we outline the annihilating filter 
method that is used in [27], as it allows recovery from the 
critical rate of 2L/t. 

The key ingredient of the method is a digital filter A 3k 4, 
whose z-transform 

 A 1z 2 5 a
L

k50
A 3k 4 z2k5 A 30 4qL

l51

112e2j2pt,/tz21 2  (22)

has zeros at the L  fundamental frequencies ej2pt,/t. 
Convolving A 3k 4 with the coefficients X 3k 4, has an annihilat-
ing effect, namely returns zero, since each of the frequencies 
in X 3k 4 is canceled out by the relevant zero of A 1z 2 . The idea 
is therefore to construct A 3k 4 and then factorize its roots to 
recover the fundamental frequencies, which imply t,. In 
turn, the amplitudes a, are found by standard linear regres-
sion tools. The annihilating filter A 3k 4 is computed from the 
set of constraints [27], [65] 

 ≥ X 30 4 X 321 4 c X 32L 4
X 31 4 X 30 4 c X 32 1L21 2 4
( ( f (

X 3L 4 X 3L21 4 c X 30 4 ¥ ± A 30 4
A 31 4
(

A 3L 4 ≤ 5 0. (23)

Without loss of generality A 30 45 1 [constant scaling does 
not affect the roots in (22)], so that (23) determines the 
annihilating filter, and consequently 5t,6,51

L , from as low as 
2L values of X 3k 4. As explained before, a single-channel real-
valued kernel s 1t 2  requires a minimal number of samples 
equal to M5 2L1 1. 

FINITE-DURATION FRI MODELS
While periodic streams are mathematically convenient, finite 
pulse streams of the form (10) are ubiquitous in real-world 
applications. For example, in ultrasound imaging, there are 
finitely many echoes reflected from the tissue. Radar tech-
niques determine target locations based on echoes of a trans-
mitted pulse, where again finitely many echoes are used. A 
finite-duration FRI input x 1t 2  coincides with its periodized 
version g k[Z x 1t1 kt 2  on the observation interval 30, t 4. 
Thus, ultimately, we would like to utilize the previous sam-
pling techniques and algorithms on that interval. The difficul-
ty is, however, that a simple lowpass kernel s 1t 2  has infinite 
time support, which lasts effectively beyond the time interval 30, t 4, to the point where x 1t 2  differs from its periodized 
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 version. A more localized Gaussian sampling kernel was pro-
posed in [27]; however, this method is numerically unstable 
since the samples are multiplied by a rapidly diverging or 
decaying exponent. Compactly supported sampling kernels 
based on splines were studied in [28] for certain classes of 
pulse shapes. These kernels enable computing moments of the 
signal rather than its Fourier coefficients, which are then pro-
cessed in a similar fashion to obtain t,, a,. 

An alternative approach is to exploit the compact support 
of SoS filters [63]. Since (20) is compactly supported in time 
by construction, the values of x 1t 2  beyond the filter support 
are of no interest. In particular, x 1t 2  may be zero in that 
range. Therefore, when using SoS filters, periodic and finite-
duration FRI models are essentially treated in the same fash-
ion. This approach exhibits superior noise robustness when 
compared to the Gaussian and spline methods, and can be 
used for stable reconstruction even for very high values of L, 
e.g., L5 100. Potential applications are ultrasound imaging 
[63], radar [67], and Gabor analysis in the Doppler plane 
[68]. Multichannel sampling, according to Figure 14, can be 
more efficient for implementation since accurate delay ele-
ments are avoided. The parallel scheme enjoys similar 
robustness to noise and allows approaching the minimal 
innovation rate. It is also applicable in cases of infinite pulse 
streams, as we discuss next. 

INFINITE PULSE STREAM
The model of (10) can be further extended to an infinite 
stream case, in which 

 x 1t 2 5 a
l[Z

a,h 1t2t, 2 ,  t,, a, [ R. (24)

Both [28] and [63] exploit the compact support of their sam-
pling filters and show that under certain conditions, the infi-
nite stream may be divided into a series of finite-duration FRI 
problems, which are each solved independently using the pre-
vious algorithms. Since proper spacing is required between 
the finite streams to ensure up to L pulses within the support 
of the sampling kernel, the rate is increased beyond minimal. 
In [28], the rate scales with L2, whereas in [63] the rate 
requirement is improved to about 6L, specifically a small con-
stant factor from the rate of innovation. A multichannel 
approach for the infinite model was first considered for Dirac 
streams, where a successive chain of integrators allows obtain-
ing moments of the signal [69]. Exponential filters were used 
in [70] for the same model of Dirac streams. Unfortunately, 
both methods are sensitive in the presence of noise and for 
large values of L [64]. A simple sampling and reconstruction 
scheme consisting of two R-C circuit channels was presented 
in [71] for the special case where there is no more than one 
Dirac per sampling period. The system of Figure 14 can treat a 
broader class of infinite pulse streams, while being much more 
stable [64]. It exhibits superior noise robustness over the inte-
grator chain method [69] and allows for more general com-
pactly supported pulse shapes. 

SEQUENCES OF INNOVATIONS
A special case of (24) is when the time delays repeat periodical-
ly (but not the amplitudes), resulting in 

 x 1t 2 5 a
n[Z

 a
L

,51
a, 3n4 h 1t2t,2nT 2 ,  (25)

where l5 5t,6,51
L  is a set of unknown time delays contained 

in the time interval 30, T 4, 5a, 3n 4 6 are arbitrary bounded ener-
gy sequences and h 1t 2  is a known pulse shape. For a given set 
of delays l, each signal of the form (25) lies in a shift-invariant 
subspace Al, spanned by L generators 5h 1t2 t, 2 6,51

L . Since 
the delays can take on any values in the continuous interval 30, T 4, the set of all signals of the form (25) constitutes an infi-
nite union of shift-invariant subspaces |L|5 `. Additionally, 
since any signal has parameters 5a, 3n 4 6n[Z, each of the Al 
subspaces has infinite cardinality, i.e., union type ` 2 `. This 
model can represent, for example, a time-division multiple 
access (TDMA) setup, in which L transmitters access a joint 
channel on predefined time slots. Due to unknown propaga-
tions in the channel, the receiver intercepts symbol streams 
a, 3n 4 at unknown delays t,. 

A sampling and reconstruction scheme for signals of the 
form (25) is depicted in Figure 15 [40]. The multichannel 
scheme has p parallel sampling channels. In each channel, the 
input signal x 1t 2  is filtered by a band-limited sampling kernel 
s,

* 12t 2  with frequency support contained in an interval of 
width 2pp/T, followed by a uniform sampler at rate 1/T, thus 
providing the sampling sequence c, 3n 4. Note that just as in the 
MWC system, the multiple branches can be collapsed to a sin-
gle filter whose output is sampled p times faster. The role of 
the sampling kernels is to smear the pulse in time, prior to 
low rate sampling. 

To recover the signal from the samples, a properly designed 
digital filter correction bank, whose frequency-domain 
response is given by W21 1e jvT 2 , is applied to the sampling 
sequences c, 3n 4. The entries of W 1e jvT 2  depend on the choice 
of the sampling kernels s,

* 12t 2  and pulse shape h 1t 2  by 

 W 1e jvT 2 ,,m5
1
T

 S,
* 1v 1 2pm/T 2H 1v 1 2pm/T 2 . (26)

The corrected sample vector d 3n 45 3d1 3n4, c,dp 3n 4 4T  is 
r e l a t e d  t o  t h e  u n k n o w n  a m p l i t u d e  v e c t o r 
a 3n45 3a1 3n4, c, aL 3n4 4T  by a Vandermonde matrix that 
depends on the unknown delays t, [40]. Therefore, subspace 
detection methods, such as the estimation of signal parame-
ters via rotational invariance techniques (ESPRIT) algorithm 
[72], can be used to recover the delays l5 5t1, c, tL6. Once 
the delays are determined, additional filtering operations are 
applied on the samples to recover the information sequences 
a, 3n 4. In particular, referring to Figure 15, the matrix D is a 
diagonal matrix with diagonal elements equal to e2jvtk, and 
N 1l 2  is a Vandermonde matrix with elements e2j2pmtk/T. 

In general, the number of sampling channels p required 
to ensure unique recovery of the delays and sequences using 
the proposed scheme has to satisfy p $ 2L [40]. This leads 
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to a minimal sampling rate of 2L/T. For certain signals, the 
sampling rate can be reduced even further to 1L1 1 2 /T [40]. 
Evidently, the minimal sampling rate is not related to the 
Nyquist rate of the pulse h 1t 2 . Therefore, for wideband pulse 
shapes, the reduction in rate can be quite substantial. As an 
example, consider the setup in [73], used for characteriza-
tion of ultrawideband wireless indoor channels. Under this 
setup, pulses with bandwidth of W5 1 GHz are transmitted 
at a rate of 1/T5 2 MHz. Assuming that there are ten signif-
icant multipath components, this method reduces the sam-
pling rate down to 40 MHz compared with the 2 GHz 
Nyquist rate. 

NOISE-FREE VERSUS NOISY FRI MODELS
The performance of FRI techniques was studied in the litera-
ture mainly for noise-free cases. When the continuous-time 
signal x 1t 2  is contaminated by noise, recovery of the exact 
signal is no longer possible regardless of the sampling rate. 
Instead, one may speak of the minimum squared error (MSE) 
in estimating x 1t 2  from its noisy samples. In this case the 
rate of innovation L takes on a new meaning as the ratio 
between the best MSE achievable by any unbiased estimator 
and the noise variance s2, regardless of the sampling method 
[74]. This stands in contrast to the noise-free interpretation 
of L as the minimum sampling rate required for perfect 
recovery. 

In general, the sampling rate that is needed to achieve an 
MSE of Ls2 is equal to the rate associated with the affine hull 
S of the union set [74]. In some cases, this rate is finite, e.g., 
in a multiband union, but in many cases the sum covers the 
entire space L2 1R 2 , e.g., an FRI union with nonbandlimited 
pulse shape h 1t 2 , in which case no finite-rate technique 
achieves the optimal MSE. This again is quite different from 
the noise-free case, in which recovery is usually possible at a 
rate of 2L, where L is the individual subspace dimension. 

A consequence of these results is that oversampling can 
generally improve estimation performance. Indeed, it can be 
shown that sampling rates much higher than L are required in 
certain settings to approach the optimal performance. 
Furthermore, these gains can be substantial: In some cases, 
oversampling can improve the MSE by several orders of mag-
nitude. These results help explain effects of numerical instabil-
ity which are sometimes observed in FRI reconstruction. As a 
rule of thumb, it appears that for union of subspace signals, 
performance is improved at low rates if most of the unknown 
parameters identify the position within the subspace Al, rath-
er than the subspace index l*. Further details on these bounds 
and recovery performance appear in [74]. 

SPARSE SUM OF HARMONIC SINUSOIDS

DISCRETIZED MODEL
Rapidly growing interest in CS over the last few years has 
given a major drive to sub-Nyquist sampling. CS focuses on 
efficiently measuring a discrete signal (vector) z of length M 
that has k , M nonzero entries. A measurement vector y of 
shorter length, proportional to k, is generated by y5Fz, 
using an underdetermined matrix F. Since z is sparse, it can 
be recovered from y, even though F has fewer rows than col-
umns. “Sparse Solutions of Underdetermined Linear Systems” 
elaborates more on the techniques used in CS for sparse vec-
tor reconstruction. The CS setup borrows the sub-Nyquist ter-
minology for the finite setting, so as to emphasize that the 
measurement vector y is shorter than z. 

Although CS is in essence a mathematical theory for mea-
suring finite-length vectors, various researchers applied these 
ideas to sensing of analog signals by using discretized or finite-
dimensional models [41], [75]–[77]. One of the first works in 
this direction [41] explores CS techniques for sensing a sparse 
sum of harmonic tones 

Unknown Delays
λ = {t/}

x (t )

t = nT

t = nT

c1[n ] d1[n ]
a1[n ]

cp [n ] dp [n ]
aL [n ]

s1 (−t )∗

sp(−t )∗

W–1(e jvT) D–1 (e jvT, λ) N†(λ )

ESPRIT

[FIG15] Sampling and reconstruction scheme for signals of the form (25). 
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 f 1t2 5 a
W/2

k521W/2212ak e j2pkt,  for t [ 30,12  (27)

with at most k nonzero coefficients ak out of W  possible tones. In 
contrast to FRI models that permit t, to lie on the continuum, 
the active sinusoids in (27) lie on a uniform grid of frequencies 5kD6 with normalized spacing D5 1 (union type F2 F). 

The random demodulator (RD) senses a sparse harmonic 
input f 1t 2  by mapping blocks of Nyquist-rate samples to low 
rate measurements via a binary random combination, as 
depicted in Figure 16. The signal f 1t 2  is multiplied by a pseu-
dorandom 61 generator alternating at rate W, and then inte-
grated and dumped at a constant rate R , W. A vector y 
collects R consecutive measurements, resulting in the under-
determined system [41] 

 y5Ff5F DFT5z6,  (28)

where the random sign combinations are the entries of F and f 
corresponds to the values of f 1t 2  on the Nyquist grid (more pre-

cisely, the entries of f are the values that are obtained by inte-
grating-and-dumping f 1t 2  on 1/W  time intervals). The vector 
of DFT coefficients z coincides with ak due to the time-axis nor-
malization D5 1. Using CS recovery algorithms, z is deter-
mined and then f 1t 2  is resynthesized using (27). A bank of RD 
channels with overlapping integrations was studied in [48]. 

The RD method is one of the pioneer and innovative 
attempts to extend CS to analog signals. Underlying this 
approach is input modeling that relies on finite discretization. 
Thus, as long as the signal obeys this finite model, as in the 
case, for example, with harmonic tones (27), extending CS is 
possible following this strategy. In practice, however, in many 
applications we are interested in processing and representing an 
underlying analog signal, which is decidedly not finite-dimen-
sional, e.g., multiband or FRI inputs. Applying discretization on 
analog signals that posses infinite structures can result in large 
hardware and software complexities, as we discuss in the next 
subsection. 

DISCRETIZATION VERSUS 
CONTINUOUS ANALOG MODELING
Transition from analog to digital is one of the tricky parts in 
any sampling strategy. The approach we have been describing 
in this review treats analog signals by taking advantage of UoS 
modeling, where infiniteness enters either through the dimen-
sions of the underlying subspaces Al, the cardinality of the 
union |L|, or both (types F2`, `2F and `2`, respectively). 
The sparse harmonic model is, however, exceptional since in 
this case both L and Al are finite (type F2F). It is naturally 
tempting to use finite tools and to avoid the difficulties that 
come with infinite structures. Theoretically, an analog multi-
band signal can be approximated to a desired precision by a 
dense grid of discrete tones [41]. However, there is a practical 

[TABLE 2] IMPACT OF DISCRETIZATION ON COMPUTATIONAL LOADS.

RD MWC

DISCRETIZATION SPACING D 5 1 HZ D 5 100 HZ

MODEL
K TONES 300 # 106 3 # 106 N BANDS 6 

OUT OF Q TONES 10 # 1010 10 # 108 WIDTH B 50 MHZ 

SAMPLING SETUP

ALTERNATION SPEED W 10 GHZ 10 GHZ m CHANNELS 35 

M FOURIER COEFFICIENTS 195 

fs PER CHANNEL 51 MHZ 

RATE R 2.9 GHZ 2.9 GHZ TOTAL RATE 1.8 GHZ 

PREPARATION 

COLLECT SAMPLES NUM. OF SAMPLES N R 2.9 # 109 2.9 # 107 2N SNAPSHOTS OF y 3n 4 12 # 355 420 

DELAY NR / R 1 S 10 MS 2N/fs 235NSEC 

CS BLOCK 

MATRIX DIMENSIONS FF5NR 3 Q 2.6 # 109 3 1010 2.6 # 107 3 108 C5m 3 M 35 3 195 

APPLY MATRIX O 1W log W 2  O 1mM1M logM 2  
STORAGE O 1W 2  O 1mM 2  
REAL TIME (FIXED SUPPORT) 

MEMORY LENGTH NR 2.9 # 109 2.9 # 107 1 SNAPSHOT OF y 3n 4 35 

DELAY NR/R 1 S 10 MS 1/fs 19.5 NS 

MULT.-OPS. KNR / 1NR /R 2  8.7 # 1011 8.7 # 109 2Nmfs 21420 

(MILLIONS/S) 

Seed

f (t ) f (t ) ⋅ pc (t )

pc (t )

y [n ]
2

t

t – 1
R

t = n
R

Pseudorandom
±1 Generator at

Rate W

[FIG16] Block diagram of the random demodulator [41]. (Figure 
courtesy of the IEEE.)
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price to pay—the finite dimen-
sions grow arbitrarily large; a 1 
MHz Nyquist-rate input boils 
down to a sparse recovery prob-
lem with W5 106 entries in z. In 
addition, discretization brings 
forth sensitivity issues and loss of 
signal resolution as demonstrat-
ed in the sequel. 

To highlight the issues that 
result from discretization of general analog models, we con-
sider an example scenario of a wideband signal with fNYQ5 10 
GHz, 3 concurrent transmissions and 50 MHz bandwidths 
around unknown carriers fi. Table 2, quoted from [51], com-
pares various digital complexities of the MWC and an RD sys-
tem which is applied on a D-spaced grid of frequencies for two 
discretization options D5 1 Hz and D5 100 Hz. The notation 
in the table is  self-explanatory. It shows that discretization of 
general continuous inputs results in computational loads that 
effectively scale with the Nyquist rate of the input, which can 
sometimes be orders of magnitude higher than the complexity 
of approaches that directly treat the infinite union structure. 

The differences reported in Table 2 stem from attempting 
to approximate a multiband model by a discrete set of tones, 
so as to consider inputs with comparable Nyquist bandwidth. 
At first sight, the signal models and compression techniques 
used in the MWC and RD seem similar, at least visually. A 
comprehensive study in [51] examines each system with its 
own model and compares them in terms of hardware and soft-
ware complexities and robustness to model mismatches (as 
also briefly discussed in “Numerical Simulations of Sub-
Nyquist Systems”). This comparison reveals that in this set-
ting the MWC outperforms the RD, at least in these practical 
metrics, with a sampler hardware that can be readily imple-
mented with existing analog devices and computationally light 
software algorithms. Similar conclusions were reached in [67], 
where sub-Nyquist radar imaging developed based on union 
modeling was demonstrated to accomplish accurate target 
identification and super-resolution capabilities in high signal-
to-noise ratio (SNR) environments. In comparison, discretiza-
tion-based approaches for radar imaging in high SNR were 
shown to suffer from spectral leakage which degrades identifi-
cation accuracy and has limited su    per-resolution capabil ities 
even in noise free settings. 

The conclusion we would like to convey is that union mod-
eling provides a convenient mechanism to preserve the inher-
ent infiniteness that many classes of analog signals posses. The 
infiniteness can enter thru the dimensions of the individual 
subspaces Al, the union cardinality |L|, or both. Alternative 
routes relying on finite models to approximate continuous sig-
nals, presumably via discretization, may lead to high computa-
tional complexities and strong sensitivities. Nonetheless, there 
are examples of continuous-time signals that naturally possess 
finite representations (one such example is trigonometric 
polynomials). In such situations of an input that is well 

approximated by a regularized 
finite model of small size, ana-
log discretization can be bene-
ficial. It is therefore instructive 
to examine the specific acquisi-
tion problem at hand and 
choose between analog-based 
sampling to the discretization-
based alternative. In either 
option, applying CS techniques 

in the digital domain, as part of reconstruction, can bring for-
ward prominent advantages, i.e., provable robustness to noise 
and widely available off-the-shelf solvers. One potential appli-
cation of CS is in the context of FRI recovery, where instead of 
using ESPRIT, MUSIC or annihilating filter for time-delay 
estimation on the continuum, one can consider discretizing 
the reconstruction time-axis and using a CS solver to increase 
the overall noise robustness [78]. 

In the next section, we summarize our review and discuss 
the potential of sub-Nyquist strategies to appear in real-world 
applications. 

SUMMARY

FROM THEORY TO PRACTICE
We began the review with the Shannon-Nyquist theorem. 
Undoubtedly, uniform sampling ADC devices are the most 
common technology in the market. Figure 17 maps off-the-
shelf ADC devices according to their sampling rate. The ADC 
industry has perpetually followed the Nyquist paradigm—the 
datasheets of all the devices that are reported in the figure 
highlight the conversion speed, referring to uniform sampling 
of the input. The industry is continuously striving to increase 
the possible uniform conversion rates. 
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[FIG17] ADC technology: Stated number of bits versus sampling 
rate. A map of more than 1,200 ADC devices from four leading 
manufacturers, according to online datasheets [47]. Previous 
mappings from the last decade are reported in [7] and [8].

THE RD METHOD IS ONE OF 
THE PIONEER AND INNOVATIVE 
ATTEMPTS TO EXTEND CS TO 

ANALOG SIGNALS. UNDERLYING 
THIS APPROACH IS INPUT 

MODELING THAT RELIES ON FINITE 
DISCRETIZATION. 
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In this article, we have focused on bridging theory and practice, 
specifically on a high-level survey and comparison of sub-
Nyquist methods. Such a high-level evaluation reveals the 
potential performance and inherent limitations in a device-
independent setting. Numerical simulations are often used for 
these evaluation purposes. This box highlights delicate points 
concerning simulation of sub-Nyquist sampling strategies. 

Hardware Modeling 
A first step to numerical evaluation of an analog prototype is 
properly modeling the hardware components in a discrete 
computerized setup. For example, an analog filter can be 
represented by a digital filter with appropriate translation of 
absolute to angular frequencies. Modeling of an ADC device 
is a bit trickier. In classic PNS works [22], [23], [43], [45], the 
ADC is modeled as an ideal pointwise sampler. However, as 
explained in “Nyquist and Undersampling ADC Devices,” a 
commercial ADC has an analog bandwidth limitation that 
dictates the maximal frequency b that the internal T/H cir-
cuitry can handle. To express the T/H limitations of the hard-
ware, a lowpass filter preceding the pointwise sampling 
should be added [20]. Figure S4(a) depicts the spectrum of a 
single branch in a PNS setup. When discarding the analog 
bandwidth b, contents from high frequencies alias to base-
band. Unfortunately, this result is misleading, since, in prac-
tice, the T/H bandwidth would eliminate the desired aliasing 
effect. This behavior is immediately noticed when inserting a 
lowpass filter with cutoff b before the ideal sampler. 

Point Density 
Once the hardware is properly modeled, the simulation 
computes samples on a grid of time points. The step size (in 
time) controls the accuracy of the computed samples com-

pared with those that would have been obtained by the 
hardware. Clearly, if all the hardware nodes are bandlimit-
ed, then the computations can be performed at the Nyquist 
rate. The ADC is then visualized as a decimator at the end 
of the path. This option cannot be used, however, when the 
hardware nodes are not bandlimited. For example, in the 
MWC strategy, the periodic waveforms pi 1t 2  are not neces-
sarily bandlimited, and neither is the product x 1t 2pi 1t 2 , 
which, theoretically, consists of infinitely many shifts of the 
spectrum of x 1t 2 . As a result the subsequent analog filter-
ing, which involves continuous convolution between h 1t 2  
and the nonbandlimited signal x 1t 2pi 1t 2 , becomes difficult 
to approximate numerically. In the simulations of [20], a 
simulation grid with density ten times higher than the 
Nyquist rate of x 1t 2  was used to estimate the MWC samples 
in a precision approaching that of the hardware. The figure 
below exemplifies the importance of correct density choice 
for simulation. The Fourier-series coefficients cil of a sign 
alternating pi 1t 2  were computed over a grid that contains r 
samples per each sign interval. Evidently, as r increases the 
simulation density improves and the coefficients converge 
to their true theoretical values. 

Sensitivity Check 
Hardware circuits are prone to design imperfections. 
Therefore, besides simulation at the nominal working point, 
it is important to check the system behavior at nearby condi-
tions; recall the wish list of Table 1. Figure S4(c) demon-
strates the consequence of applying the RD on a harmonic 
sparse input, whose tones spacing D does not match exactly 
the spacing that the system was designed for. The recon-
struction error is large; see also [51] and [84]. Numerical 

NUMERICAL SIMULATIONS OF SUB-NYQUIST SYSTEMS 

Concluding this review, we would like to focus on multi-
band inputs and sketch the scenarios that may justify employ-
ing a sub-Nyquist solution over the traditional DSP scheme of 

Figure 1. Tables 3 and 4 summarize the sub-Nyquist methods 
we surveyed earlier. Among the subspace methods demodula-
tion is already adapted by industry for sampling a multiband 

[TABLE 3] SUB-NYQUIST STRATEGIES (SPECTRALLY SPARSE).

STRATEGY MODEL
CARDI-
NALITY ANALOG 

PREPROCESS.
REQ. ADC 
BANDWIDTH 

RECONSTRUCTION 
PRINCIPLE 

SUB-NYQ. 
PROCESS. STATUS

TECHNOLOGY
BARRIER 0L 0  Al 

C
LA

SS
IC

 

SHANNON-
NYQUIST BANDLIMITED 1 ` NYQUIST INTERPOLATION (1) COMMERCIAL ADC 

DEMODULATION MULTIBAND 1 ` I/Q DEMOD. LOW RATE 
DAC + 
MODULATION  ✓ COMMERCIAL RF 

UNDERSAMPLING 
[18] BANDPASS 1 ` DELAY NYQUIST 

PIECEWISE 
FILTERING ADC (T/H) 

PNS [22],[23],
[43],[45] MULTIBAND 1 ` DELAY NYQUIST 

PIECEWISE 
FILTERING ADC (T/H) 
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 O
F 

SU
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PNS [42] MULTIBAND M ` DELAY NYQUIST CTF ADC (T/H) 

FILTER-BANK [39] SPARSE-SI M ` FILTERS NYQUIST CTF ADC (T/H) 

MWC [20] MULTIBAND M `
PERIODIC-
MIXING LOW CTF  ✓

2.2 GHZ 
BOARD-LEVEL [47] RF 

RD [41] SPARSE 
HARMONIC 

K W RANDOM-
SIGN MIXING 

LOW CS 800 KHZ 
BOARD-LEVEL [49] 

SOFTWARE 



IEEE SIGNAL PROCESSING MAGAZINE   [121]   NOVEMBER 2011

 simulations in [20] and [50] and hardware experiments in 
[47] affirm robustness of the MWC system to various noise 
and imperfection sources. 

We note that discretization techniques that are used to 
conduct a numerical study are not to be confused with 
model discretization approaches which use finite signal 
models to begin with. As an evaluation tool, discretization 
gives the ability to simulate the hardware performance to 
desired precision. Obviously, increasing the simulation den-
sity improves accuracy, at the expense of additional compu-

tations and memory and time resources. In practice, the 
hardware performs analog operations instantly, regardless 
of the run time and computational loads that were required 
for numerical simulations. In contrast, when basing the 
approach on discretization of the analog model, the choice 
of grid density brings forth issues of accuracy and various 
complexities to the actual sampling system. Eventually, 
model discretization also affects the size of problems that 
can be simulated numerically; multiband with 10 GHz 
Nyquist-rate in [20] versus a bandwidth of 32 kHz in [41].

Effects of Numerical Simulations of Analog Hardware

(Setup: K = 30 tones out of W = 1,000
RD with W = 1,000, R = 125)

(Setup: multiband N = 2, B = 10 MHz
PNS with M = 195, 1/MT = 50 MHz)

(Setup: sign pattern of length M =195
r samples per sign interval)
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input below fNYQ when the carrier positions are known. 
Undersampling is also popular to some extent when there is a 
single band of information, and the maximal frequency fu , b, 
namely within the available T/H bandwidths of commercial 
ADC devices. In contrast, although popular in time-interleaved 
ADCs, PNS was not widely embraced for sub-Nyquist sampling. 

[FIG S4] Accurate (red lines) versus incomplete (blue lines) numerical simulation of analog sub-Nyquist samplers: (a) PNS, (b) 
MWC, and (c) RD.
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[FIG18] Technology potential of state-of-the-art sub-Nyquist 
strategies (for multiband inputs).

[TABLE 4] SUB-NYQUIST STRATEGIES 
(FINITE RATE OF  INNOVATION).

ANALOG PREPROCESSING

CARDINALITY RECONSTRUCTION0L 0  Al ALGORITHM 

LOWPASS [27], [62] ` 2L ANNIHILATING FILTER 

GAUSSIAN [27], [62] ` 2L ANNIHILATING FILTER 

POLY.-/EXP.-REPRODUCING 
KERNEL [28] ` 2L MOMENTS FILTERING 

SUCC.-INTEGRATION [69] ` 2L ANNIHILATING FILTER 

EXP.-FILTERING [70] ` 2L POLE-CANCELATION FILTER 

RC-CIRCUIT [71] ` 2 CLOSED-FORM 

SOS-FILTERING [63] ` 2L ANNIHILATING FILTER 

PERIODIC-MIXING [64] ` 2L/` ANNIHILATING FILTER 

FILTER-BANK [40] ` ` MUSIC [79] / ESPRIT [72] 
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This situation is perhaps reasoned by the fact that the technol-
ogy barrier of any pointwise method is eventually limited by 
the analog bandwidth of the T/H stage. Accumulating wide-
band noise is another drawback of PNS (and the MWC and RD). 

When the carrier frequencies are unknown, single subspace 
methods are not an option anymore. In Figure 18, we draw the 
rough potential of three leading sub-Nyquist technologies (for 
multiband inputs) as we foresee. The MWC approach extends 
the capabilities of I/Q demodulation by mixing the input with 
multiple sinusoids at once, probably limited by noise. T/H limi-
tations remain the bottleneck of PNS alternatives [42]. We 
added the RD to Figure 18 despite the fact that it treats har-
monic inputs rather than narrowband transmissions. The figure 
reveals that while hardware constraints bound the potential of 
sampling strategies such as MWC and PNS, it is the software 
complexity that limits the RD approach, since complexity of its 
recovery algorithm scales with the high Nyquist rate W. 

The MWC provides a sampling solution for scenarios in 
which the input reaches frequencies that are beyond the ana-
log bandwidths of commercial ADCs, fmax . b. The system can 
be used when knowledge of the carrier positions is present or 
absent. Furthermore, even when fmax is moderate, say within 
T/H bandwidth b of available ADC devices, the MWC proposes 
an advantage of reducing the processing rates, so that a cheap 
processor can be used instead of a premium device that can 
accommodate the Nyquist rate. In fact, even when the sole 
purpose of the system is to store the samples, the cost of stor-
age devices that are capable of handling high-speed bursts of 
data streams, with or without compression, may be a sufficient 
motivation to shift from Figure 1 toward the MWC sub-
Nyquist system. The hardware prototype [47] is also applicable 
for sampling FRI signals at their innovation rate [66]. A recent 
publication [51] introduces Xampling, a generic framework for 
signal acquisition and processing in UoS. The Xampling para-
digm is built upon the various insights and example applica-
tions we surveyed in this review and the general sampling 
approach developed in [39]. 

Finally, we would like to point out the Nyquist-folding 
receiver of [80] as an alternative sub-Nyquist paradigm. This 
method proposes an interesting route to sub-Nyquist sam-
pling. It introduces a deliberate jitter in an undersampling 
grid, which induces a phase modulation at baseband such that 
the modulation magnitude depends on the unknown carrier 
position. We did not elaborate on [80] since a reconstruction 
algorithm was not published yet. In addition, the jittered sam-
pling results in a time-varying operator and thus departs from 
the linear time-invariant framework that unifies all the works 
we surveyed herein. However, this is an interesting venue for 
developing sub-Nyquist strategies. 

FORECAST: SUB-NYQUIST IN COGNITIVE RADIOS
Sub-Nyquist systems may play an important role in the next gen-
eration of communication systems. The traditional zero-IF and 
low-IF receivers are based on demodulation by a given carrier fre-
quency fc prior to sampling. Knowledge of the carrier frequency 

is utilized to improve circuit properties of the receiver for the 
given fc, at the expense of degraded performance in spectrum 
zones that are far from the specified frequency. For example, the 
oscillator that generates fc in the I/Q-demodulator can be chosen 
to have a narrow tuning range so as to improve the frequency 
stability. An active mixer whose linear range is tailored to fc is 
another possible design choice once the carrier is known. 

In the last decade, the trend is to construct generic hard-
ware platforms to reduce the production expenses involved in 
specifying the design for a given carrier. Two strategies that 
are recently being pushed forward are: 

 ■ software-defined radio (SDR) [81], where the receiver 
contains a versatile wideband hardware platform. The firm-
ware is programmed to a specific fc after manufacturing, 
enabling the SDR to function in different countries or by 
several cellular operators. 

 ■ cognitive radio (CR) [82], which adds another layer of 
programming, by permitting the software to adjust the 
working frequency fc according to high-level cognitive 
decisions, such as cost of transmission and availability of 
frequency channels.
The interest in CR devices stems from an acute shortage 

in additional frequency regions for licensing, due to past 
allocation policies of spectral resources. Fortunately, studies 
have shown that those licensed regions are not occupied 
most of the time. The prime goal of a CR device is to identify 
these unused frequency regions and utilize them while their 
primary user is idle. Today, most civilian applications assume 
knowledge of carrier frequencies so that standard demodula-
tion is possible. In contrast, CR is an application where by 
definition spectral support varies and is unknown a priori. 
We therefore foresee sub-Nyquist sampling playing an impor-
tant role in future CR platforms. The MWC hardware, for 
instance, does not assume the carrier positions and is there-
fore designed in a generic way to cover a wideband range of 
frequencies. The ability to recover the frequency support 
from lowrate sampling may be the key to efficient spectrum 
sensing in CR [83]. 
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