

and Processing Lab

Electrical Engineering Department

Electronics
Computers
Communications





# **Cognitive Synthetic Aperture Radar (CoSAR) Prototype**

| Kumar Vijay Mishra                                                                                                                                                                                                      | Andrey Zhitnikov                                                                                    | Eli Shoshan              | Moshe Namer                                                                                                                                                                                             | erc                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maxim Meltsin                                                                                                                                                                                                           | Eran Ror                                                                                            | nen Yo                   | onina C. Eldar                                                                                                                                                                                          | 646804-BNYQ                                                                                                                                                                              |
| Main Contributions                                                                                                                                                                                                      | Stripmap SAR                                                                                        | Range-Doppler Processing | g Fourier-Domain Rar                                                                                                                                                                                    | ige-Doppler                                                                                                                                                                              |
| <ul> <li>Stripmap synthetic aperture radar (SAR)<br/>prototype that demonstrates sub-<br/>Nyquist sampling in radar imaging and<br/>reconstruction of target scene using a<br/>faster 2D recovery algorithm.</li> </ul> | <ul> <li>Conventional SAR strip mapping mode</li> <li>A fixed pointing direction antenna</li> </ul> |                          | Range<br>CompressionConventional RDARange<br>Compression $s[n,m] = d[n,m] * h^*[-n]$ Azimuth DFT $S[n,k] = \sum_{m=0}^{M-1} s[n,m] e^{\frac{-j2\pi km}{M}}$ RCMC $\tilde{S}[n,k] = S[n+n \cdot ak^2,k]$ | Fourier Domain RDA<br>$\tilde{d}_m[1] = T \cdot d_m[1] * h^{s*}[l]$ $s_k[1] = \sum_{m=0}^{M-1} \tilde{d}_m[l] e^{\frac{-j2\pi km}{M}}$ $c_k[l] = \sum_{n \in v(k,l)} s_k[n] Q_{k,l}[-n]$ |

- Cognitive transmission is employed to further enhance SNR for sub-Nyquist SAR and adaptive frequency allocation.
- Cognitive sub-Nyquist SAR recovers the target scene at low SNRs with lesser error and greater feature similarities than non-cognitive Nyquist processing.



platform track with the beam pattern:

 $w_a(\mathbf{x}_m, \mathbf{r}) = \operatorname{sinc}^2\left(\frac{|x - x_m|}{r} \cot \frac{\Theta_a}{2}\right)$ 

Strip map is an image formed in width by the swath of the SAR and follows the length contour of the flight line of the platform itself.



- Range Cell Migration Correction (RCMC) decouples dependency between the azimuth and range axes and corrects the hyperbolic trajectory of the targets' echoes.
- RCMC requires digital interpolation effectively increasing the sampling rate.



- Fourier domain RCMC is similar to beamforming in frequency
- Interpolation is replaced by a weighted sum of Fourier coefficients (weights are characterized by a rapid decay)
- No over-sampling required at the receiver

## Sub-Nyquist SAR



 The returned echoes are sampled in the Fourier domain under the Nyquist rate

# Fast 2D Recovery

Having the partial Fourier processed measurements,  $C_p$ , the image, I, is reconstructed by solving the optimization problem:

 $\min \|\Psi(I)\|_1 \, s. t \, \left\| C_p - F^s{}_p[B \circ (IF)] \right\|^2 < \varepsilon$ 

- $F \mathsf{DFT}$  matrix
- *F<sup>s</sup>* Sampled Fourier series transformation
- *B* Azimuth Compression matrix
- $\Psi$  Sparsifying transform

## **Cognitive SAR (CoSAR)**

- Cognitive SAR sub-Nyquist receiver design
- CoSAR transmits only in a few narrow disjoint subbands
- A framework for adaptive transmission and reception of SAR signals





**CoSAR Submodules** 

- using Xampling
- Xampling requires analog pre-processing
- Recovery by extended Fast Iterative Soft Thresholding Algorithm (FISTA)

### **CoSAR System Design**



- 5 MHz cognitive chirp
- 4 subbands of 625 kHz bandwidth
- Xampling at 1/4<sup>th</sup> of the Nyquist rate
  - RCMC at 1/8<sup>th</sup> of the Nyquist rate

## Radar Controller



#### Analog Pre-Processor



#### Waveform Generator and Digital Receiver



- Single Xilinx Virtex VC707 Board
- 4DSP DAC and ADC daughter boards for generator and receiver
- Separate streams for I and Q signals

#### **CoSAR Prototype and Measurement Results**





CoSAR recovers the target scene sampled at 1/4<sup>th</sup> and processed at 1/8<sup>th</sup> of the Nyquist rate with least error and most similar low-level features