Signal Acquisition Modeling and Processing Lab				
High				
Kumar Vijay Mishra				
Main Contributions				
 Spatial Compressive Sensing framework is employed for a high angular resolution radar that uses fewer elements than a uniform linear array (ULA) 				
 Previous work on thinned phased arrays lacks efficient direction-of- arrival (DoA) recovery algorithms 				
 We use multi-branch matched pursuit (MBMP) to recover DoA for a thinned phased array and thinned phased-MIMO hybrid array 				
 Theoretical performance guarantees to suggest minimum number of array elements for perfect DoA recovery 				
 Numerical experiments show MBMP outperforms classical beamforming and orthogonal matching pursuit 				
Signal Model – Phased Array				
 Received signal vector for P pulses and K targets: 				
Receive steering vector $r(t) = \sum_{p=0}^{P-1} \sum_{k=1}^{K} \frac{x_{k,p} \mathbf{b}}{\mathbf{b}}(\theta_k) (\mathbf{c}^T(\theta_k) \mathbf{w}) \mathbf{s}(t-pT) + \mathbf{e}(t)$				
 <i>p=0 k=1</i> Transmit signal Transmit signal Beamforming weights Received pth signal after matched filtering: 				
$y_p = vec \left[\sum_{p=0}^{P-1} \sum_{k=1}^{K} x_{k,p} \underline{g}(\theta_k) \mathbf{b}(\theta_k) + \int \mathbf{e}(t) \mathbf{s}^H (t-pT) dt \right]$				
$g(\theta_k) = c^t(\theta_k)w$ Received signal matrix:				
$\begin{aligned} \mathbf{Y} &= \widetilde{\mathbf{A}}(\theta)\widetilde{\mathbf{X}} + \mathbf{E}, where \mathbf{A}(\theta) = [\mathbf{a}(\theta_1), \dots, \mathbf{a}(\theta_K)], \\ \mathbf{a}(\theta) &= g(\theta)\mathbf{b}(\theta), \mathbf{E} = [\mathbf{e}_1, \dots, \mathbf{e}_P], \mathbf{e}_p = vec[\int \mathbf{e}(t)\mathbf{s}^H(t-pT)dt] \end{aligned}$				
Theoretical Perfor				
• We use probabilistic theory of antenna arrays (Lo, 1964) to guarantee SCS p				
Theorem Let the locations $\{\zeta\}_{i=1}^N$ of the transmit and receive elements of a phased array be drawn i.i.d. from a distribution $p(\zeta)$. Let $\hat{\mathbf{x}}$ be the solution of (15). Then, with probability at least $1 - \varepsilon$, we have				
$\ \mathbf{x} - \hat{\mathbf{x}}\ _2 \le C_0 \varepsilon / C_N(\mathbf{w}),$ as long as the number of elements N satisfies				
$N \ge C \left(K - 0.5\right)^2 \ln\left(\frac{G}{\varepsilon}\right)^4$, Thinned				
where $C = (43 + 12\sqrt{7})/16$, C_0 is a positive constant that depends only on ε , $C_N(\mathbf{w})$ is the directivity or the gain that depends on the choice of \mathbf{w} , G is the grid size, and K is the sparsity of the vector \mathbf{x} .				
NE3 – Variably Thinned Hybrid				
 DoA recovery error vs. number af transmittors 				
divided into 5 subarrays.				
• Absolute recovery $\int_{0}^{10^{-2}} 10^{-2}$ MBMP d=[2 2 1] MBMP d=[2 3 1 1]				
a ULA consists of 25 transmitters.				
• FDM signals were				

used.

20

25

15

Number of Transmitters, M

10

	Type of arrays	Uniform	
	Thinned MIMO	$MN \ge C \left(K - \frac{1}{2} \right)^2 \left[\ln \frac{\sqrt{\pi}G}{2\epsilon} + \frac{1}{2} \ln \left(2 \ln \frac{\sqrt{\pi}G}{2\epsilon} \right) \right]$	
	Thinned PA	$N \ge C(K - \frac{1}{2})^2 \left[4 \ln \left(\frac{G}{\epsilon} \right) \right]$	N≥

Absolute recovery is achieved using a ULA consists of 25 transmitters.

divided into 5

subarrays.

FDM signals were used.

- Theoretical performance guarantees derived for thinned PA.
- MBMP outperforms classic beamforming, MUSIC and OMP algorithms.
- Further investigation into theoretical performance and other array architectures required.