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Description of a sub-Nyquist L-shape uniform linear array (ULA) system based on 
the modulated wideband converter (MWC) [1]
Formulation of the joint spectrum sensing and direction of arrival (DOA) 
estimation from sub-Nyquist samples problem
Derivation of sufficient conditions for perfect recovery of the carrier frequencies, 
DOAs and input signals
Derivation of an ESPRIT-based joint frequency and DOA recovery algorithm that 
achieves the minimal derived sampling rate
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Cognitive Radio (CR)

Sparse Multiband Signal Model
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Sampling Scheme

Analog front-end: modified MWC sampling chain [1]
In each sensor, a unique channel aliases the spectrum so that each band appears 

in baseband using the same mixing function:

Relation between known discrete time 
Fourier transforms (DTFTs) of the 
samples from the ULA in 𝑥 axis and 
unknown signal Fourier transform:
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Pairing Issue
perfect blind 

reconstruction of 𝜃𝑖, 𝑓𝑖
and 𝑠𝑖 𝑡

Multiband model: 𝑀 signals with max. bandwidth 𝐵 and max. frequency 
𝑓𝑁𝑦𝑞

2
.

Each transmission 𝑠𝑖 𝑡 is characterized by an angle of arrival (AOA) 𝜃𝑖 and 
carrier frequency 𝑓𝑖
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Address the conflict between spectrum saturation and underutilization
Grant opportunistic access to spectrum "holes" to unlicensed users
Perform spectrum sensing task efficiently, in real-time and reliably

Nyquist sampling is not an option ⇒ sub-Nyquist sampling
Joint DOA estimation and spectrum sensing increase CR efficiency
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System Description

L-shape ULA with 𝑁 sensors in 𝑥 axis and 𝑁 + 1 sensors in 𝑧 axis:

Phase accumulation in 𝑥 axis:

Phase accumulation in 𝑧 axis:
reference sensor

Received signal at nth sensor in 𝑥 axis:  𝑈𝑛 𝑓 = σ𝑖=1
𝑀 𝑆𝑖 𝑓 − 𝑓𝑖 𝑒

𝑗Δ𝜙𝑋𝑛 𝑓𝑖,𝜃𝑖
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Recovery conditions
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Joint Frequency – Angle Estimation (Joint SVD ESPRIT)

Theorem

Sufficient condition to recover 𝑀 signals: 𝟐𝑀 + 1 sensors, each sampling at rate 𝐵

ESPRIT algorithm
Input: 𝒙 – Sensors measurements 

1. Calculate the covariance matrix 𝑹 = 𝑬 𝒙 𝒙𝑻

2. Decompose 𝑹 (using SVD) to its eigenvectors

3. Calculate ෩𝚽 = 𝐞𝐢𝐠 𝐔1
†𝐔2 .

Output :෩𝚽– diagonal matrix

Eigenvectors of 𝑅 spans the 
same subspace as 𝑨

𝑑

𝑨1 𝑨2

Apply ESPRIT on x axis ULA: 𝑓𝑖 cos 𝜃𝑖 =
𝑐

2𝜋𝑑
∠෩𝚽𝑖𝑖

Apply ESPRIT on z axis ULA: 𝑓𝑗 sin 𝜃𝑗 =
𝑐

2𝜋𝑑
∠෡𝚿𝑗𝑗

෩𝚽, ෡𝚿 suffer from different permutations. How can we pair the eigenvalues?
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Simulation Results

Compared methods:
PARAFAC: iterative algorithm (based on alternating least squares) [3]
Compressed sensing (CS): exploiting the spectrum sparsity
Joint SVD ESPRIT (SVD): analytic solution (as presented)
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To overcome the pairing problem:
Compute cross correlation matrices between ULAs

Perform joint SVD on the cross-correlations to 
create same permutations for ෩𝚽 and ෩𝚿

Compute 𝜃𝑖 and 𝑓𝑖 from the paired eigenvalues:

Reconstruct 𝑨 𝒇, 𝜽 and compute  𝒘 = 𝑨†𝒙

𝜃𝑖 = tan−1
∠෩Φ𝑖𝑖

∠෩Ψ𝑖𝑖

𝑓𝑖 =
𝑐

2𝜋𝑑 cos 𝜃𝑖
⋅ ∠෩Φ𝑖𝑖


