
1 An Information Theoretic
Approach to Analog-to-Digital
Compression

Processing, storing, and communicating information that originates as an analog phe-
nomenon involve conversion of the information to bits. This conversion can be described
by the combined effect of sampling and quantization, as illustrated in Figure 1.1. The
digital representation in this procedure is achieved by first sampling the analog signal
so as to represent it by a set of discrete-time samples and then quantizing these samples
to a finite number of bits. Traditionally, these two operations are considered separately.
The sampler is designed to minimize information loss due to sampling based on prior
assumptions about the continuous-time input [1]. The quantizer is designed to represent
the samples as accurately as possible, subject to the constraint on the number of bits that
can be used in the representation [2]. The goal of this chapter is to revisit this paradigm
by considering the joint effect of these two operations and to illuminate the dependency
between them.

1.1 Introduction

Consider the minimal sampling rate that arises in classical sampling theory due to Whit-
taker, Kotelnikov, Shannon and Landau [3, 4, 1]. These works establish the Nyquist rate
or the spectral occupancy of the signal as the critical sampling rate above which the
signal can be perfectly reconstructed from its samples. This statement, however, fo-
cuses only on the condition for perfectly reconstructing a bandlimited signal from its
infinite-precision discrete samples; it does not incorporate the quantization precision of
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Figure 1.1 Analog-to-digital conversion is achieved by combining sampling and quantization.
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Figure 1.2 Analog-to-digital compression (ADX) and reconstruction setting. Our goal is to
derive the minimal distortion between the signal and its reconstruction from any encoding at
bitrate R of the samples of the signal taken at sampling rate fs.

the samples and does not apply to signals that are not bandlimited. In fact, as follows
from lossy source coding theory, it is impossible to obtain an exact representation of
any continuous-amplitude sequence of samples by a digital sequence of numbers due to
finite quantization precision, and therefore any digital representation of an analog sig-
nal is prone to error. That is, no continuous amplitude signal can be reconstructed from
its quantized samples with zero distortion regardless of the sampling rate, even when
the signal is bandlimited. This limitation raises the following question: In converting a
signal to bits via sampling and quantization at a given bit precision, can the signal be
reconstructed from these samples with minimal distortion based on sub-Nyquist sam-
pling? One of the goals of this chapter is to discuss this question by extending classical
sampling theory to account for quantization and for non-bandlimited inputs. Namely,
for an arbitrary stochastic input and given a total bitrate budget, we consider the lowest
sampling rate required to sample the signal such that reconstruction of the signal from
a bit constrained representation of its samples results in minimal distortion. As we shall
see, without assuming any particular structure on the input analog signal, this sampling
rate is often below the signal’s Nyquist rate.

The minimal distortion achievable in recovering a signal from its representation by
a finite number of bits per unit time depends on the particular way the signal is quan-
tized or, more generally, encoded, into a sequence of bits. Since we are interested in the
fundamental distortion limit in recovering an analog signal from its digital representa-
tion, we consider all possible encoding and reconstruction (decoding) techniques. As an
example, in Fig. 1.1 the smartphone display may be viewed as a reconstruction of the
real world painting The Starry Night from its digital representation. No matter how fine
the smartphone screen, this recovery is not perfect since the digital representation of the
analog image is not accurate. That is, loss of information occurs during the transforma-
tion from analog to digital. Our goal is to analyze this loss as a function of hardware
limitations on the sampling mechanism and the number of bits used in the encoding.
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It is convenient to normalize this number of bits by the signal’s free dimensions, that
is, the dimensions along which new information is generated. For example, the free di-
mensions of a visual signal are usually the horizontal and vertical axes of the frame,
and the free dimension of an audio wave is time. For simplicity, we consider analog
signals with a single free dimension, and we denote this dimension as time. Therefore,
our restriction on the digital representation is given in terms of its bitrate – the number
of bits per unit time.

For an arbitrary continuous-time random signal with a known distribution, the funda-
mental distortion limit due to the encoding of the signal using a limited bitrate is given
by Shannon’s distortion-rate function (DRF) [5, 6, 7]. This function provides the opti-
mal tradeoff between the bitrate of the signal’s digital representation and the distortion
in recovering the original signal from this representation. Shannon’s DRF is described
only in terms of the distortion criterion, the probability distribution of the continuous-
time signal, and the maximal bitrate allowed in the digital representation. Consequently,
the optimal encoding scheme that attains Shannon’s DRF is a general mapping from the
space of continuous-time signals to bits that does not consider any practical constraints
in implementing such a mapping. In practice, the minimal distortion in recovering ana-
log signals from their mapping to bits considers the digital encoding of the signal sam-
ples, with a constraint on both the sampling rate and the bitrate of the system [8, 9, 10].
Here the sampling rate fs is defined as the number of samples per unit time of the
continuous-time source signal; the bitrate R is the number of bits per unit time used
in the representation of these samples. The resulting system describing our problem
is illustrated in Fig. 1.2, and is denoted as the analog-to-digital compression (ADX)
setting.

The digital representation in this setting is obtained by transforming a continuous-
time continuous-amplitude random source signal X(·) through a concatenated operation
of a sampler and an encoder, resulting in a bit sequence. The decoder estimates the
original analog signal from this bit sequence. The distortion is defined to be the mean
squared error (MSE) between the input signal X(·) and its reconstruction X̂(·). Since we
are interested in the fundamental distortion limit subject to a sampling constraint, we
allow optimization over the encoder and the decoder as the time interval over which X(·)
is sampled goes to infinity. When X(·) is bandlimited and the sampling rate fs exceeds
its Nyquist rate fNyq, the encoder can recover the signal using standard interpolation and
use the optimal source code at bitrate R to attain distortion equal to Shannon’s DRF of
the signal [11]. Therefore, for bandlimited signals, a non-trivial interplay between the
sampling rate and the bitrate arises only when fs is below their Nyquist rate. In addition
to the optimal encoder and decoder, we also explore the optimal sampling mechanism,
but limit ourselves to the class of linear and continuous deterministic samplers. Namely,
each sample is defined by a bounded linear functional over a class of signals. Finally, in
order to account for system imperfections or due to external interferences, we assume
that the signal X(·) is corrupted by additive noise prior to sampling. The noise free
version is obtained from our results by setting the intensity of this noise to zero.

The minimal distortion in the ADX system of Fig. 1.2 is bounded from below by
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Figure 1.3 The minimal sampling rate for attaining the minimal distortion achievable under a
bitrate-limited representation is usually below the Nyquist rate fNyq. In this figure the noise is
assumed to be zero.

two extreme cases of the sampling rate and the bitrate, as illustrated in Fig. 1.3: (1)
when the bitrate R is unlimited, the minimal ADX distortion reduces to the minimal
MSE (MMSE) in interpolating a signal from its noisy samples at rate fs [12, 13]. (2)
When the sampling rate fs is unlimited or above the Nyquist rate of the signal and when
the noise is zero, the ADX distortion reduces to Shannon’s DRF of the signal. Indeed,
in this situation the optimal encoder can recover the original continuous-time source
without distortion, and then encode this recovery in an optimal manner according to
the optimal lossy compression scheme attaining Shannon’s DRF. When fs is unlim-
ited or above the Nyquist rate and the noise is not zero, the minimal distortion is the
indirect (or remote) DRF of X(·) given its noise-corrupted version [7, Ch. 3.5], [14].
Our goal is therefore to characterize the MSE due to the joint effect of a finite bitrate
constraint and sampling at a sub-Nyquist sampling rate. In particular, we are interested
in the minimal sampling rate for which Shannon’s DRF or the indirect DRF, describ-
ing the minimal distortion subject to a bitrate constraint, is attained. As illustrated in
Fig. 1.3, and as will be explained in more detail below, this sampling rate is usually
below the Nyquist rate of X(·), or, more generally, the spectral occupancy of X(·) when
non-uniform or generalized sampling techniques are allowed. We denote this minimal
sampling rate as the critical sampling rate subject to a bitrate constraint, since it de-
scribes the minimal sampling rate required to attain the optimal performance in systems
operating under quantization or bitrate restrictions. The critical sampling rate extends
the minimal-distortion sampling rate considered by Shannon, Nyquist and Landau. It is
only as the bitrate goes to infinity that sampling at the Nyquist rate is necessary to attain
minimal (namely zero) distortion.

In order to gain intuition as to why the minimal distortion under a bitrate constraint
may be attained by sampling below the Nyquist rate, we first consider in Section 1.2 a
simpler version of the ADX setup involving the lossy compression of linear projections
of signals represented as finite dimensional random real vectors. Next, in Section 1.3 we
formalize the combined sampling and source coding problem arising from Fig. 1.2 and
provide basic properties of the minimal distortion in this setting. In Section 1.4 we fully
characterize the minimal distortion in ADX as a function of the bitrate and sampling
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rate. We also derive the critical sampling rate that leads to optimal performance. We
conclude this chapter in Section 1.5 where we consider uniform samplers, in particular
single-branch and more general multi-branch uniform samplers, and show that these
samplers attain the fundamental distortion limit.

1.2 Lossy Compression of Finite Dimensional Signals

Let Xn be an n-dimensional Gaussian random vector with covariance matrix ΣXn , and
let Y m be a projected version of Xn defined by

Y m = HXn, (1.1)

where H ∈Rm×n is a deterministic matrix and m < n. This projection of Xn into a lower
dimensional space is the counterpart of sampling the continuous-time analog signal
X(·) in the ADX setting. We consider the normalized MMSE estimate of Xn from a
representation of Y m using a limited number of bits.

Without constraining the number of bits, the distortion in this estimation is given by

mmse(Xn|Y m),
1
n

tr
(
ΣXn −ΣXn|Y m

)
, (1.2)

where ΣXn|Y m is the conditional covariance matrix. When Y m is to be encoded using a
code of no more than nR bits, the minimal distortion cannot be smaller than the indirect
DRF of Xn given Y m, denoted by DXn|Y m(R). This function is given by the following
parametric expression [14]

D(Rθ ) = tr (ΣXn)−
m

∑
i=1

[
λi
(
ΣXn|Y m

)
−θ
]+

,

Rθ =
1
2

m

∑
i=1

log+
[
λi
(
ΣXn|Y m

)
/θ
] (1.3)

where x+ = max{x,0} and λi
(
ΣXn|Y m

)
is the ith eigenvalue of ΣXn|Y m .

It follows from (1.2) that Xn can be recovered from Y m with zero MMSE if and only
if

λi (ΣXn) = λi
(
ΣXn|Y m

)
, (1.4)

for all i = 1, . . . ,n. When this condition is satisfied, (1.3) takes the form

D(Rθ ) =
n

∑
i=1

min{λi (ΣXn) ,θ} ,

Rθ =
1
2

n

∑
i=1

log+ [λi (ΣXn)/θ ]

(1.5)

which is Kolmogorov’s reverse water-filling expression for the DRF of the vector Gaus-
sian source Xn [15], i.e., the minimal distortion in encoding Xn using codes of rate R
bits per source realization. The key insight is that the requirements for equality between



6 An Information Theoretic Approach to Analog-to-Digital Compression

eigenvalues of ΣXn

λn

λn−1

λn−2

θ

eigenvalues of ΣXn|Y m

λm

λm−1

λm−2

Figure 1.4 Optimal sampling occurs whenever DXn(R) = DXn|Y m(R). This condition is satisfied
even for m < n, as long as there is equality among the eigenvalues of ΣXn and ΣXn|Y m which are
larger than the water-level parameter θ .

(1.3) and (1.5) are not as strict as (1.4): All that is needed is equality among those
eigenvalues that affect the value of (1.5). In particular, assume that for a point (R,D)

on DXn(R), only λn(ΣXn), . . .λn−m+1(ΣXn) are larger than θ , where the eigenvalues are
organized in ascending order. Then we can choose the rows of H to be the m left eigen-
vectors corresponding to λn(ΣXn), . . .λn−m+1(ΣXn). With this choice of H, the m largest
eigenvalues of ΣXn|Y m are identical to the m largest eigenvalues of ΣXn , and (1.5) is equal
to (1.3).

Since the rank of the sampling matrix is now m < n, we effectively performed sam-
pling below the “Nyquist rate” of Xn without degrading the performance dictated by
its DRF. One way to understand this phenomenon is an alignment between the range
of the sampling matrix H and the subspace over which Xn is represented, according
to Kolmogorov’s expression (1.5). That is, when Kolmogorov’s expression implies that
not all degrees of freedom are utilized by the optimal distortion-rate code, sub-sampling
does not incur further performance loss provided the sampling matrix is aligned with the
optimal code. This situation is illustrated in Fig. 1.4. Taking less rows than the actual
degree of H is the finite-dimensional analog of sub-Nyquist sampling in the infinite-
dimensional setting of continuous-time signals.

In the rest of this chapter we explore the counterpart of the phenomena described
above in the richer setting of continuous-time stationary processes that may or may not
be bandlimited, and whose samples may be corrupted by additive noise.

1.3 ADX for Continuous-time Analog Signals

We now explore the fundamental ADX distortion in the richer setting of continuous-
time stationary processes that may be corrupted by noise prior to sampling. We consider
the system of Fig. 1.5 in which X(·) , {X(t), t ∈ R} is a stationary process with PSD
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Figure 1.5 Combined sampling and source coding setting.

SX ( f ). This PSD is assumed to be a real, symmetric and an absolute integrable function
that satisfies

E [X(t)X(s)] =
∫

∞

−∞

SX ( f )e2π j(t−s) f d f , t,s ∈ R. (1.6)

The noise process ε(·) is another stationary process independent of X(·) with PSD Sε( f )
of similar properties, so that the input to the sampler is the stationary process Xε(·) ,
X(·)+ ε(·) with PSD SXε

( f ) = SX ( f )+Sε( f ).
We note that by construction, X(·) and ε(·) are regular processes in the sense that

their spectral measure has an absolutely continuous density with respect to the Lebesgue
measure. If in addition the support of SX ( f ), denote by suppSX , is contained1 within a
bounded interval, then we say that X(·) is bandlimited and denote by fNyq its Nyquist
rate, defined as twice the maximal element in suppSX . The spectral occupancy of X(·)
is defined to be the Lebesgue measure of suppSX .

Although not necessary for all parts of our discussion, we assume that the processes
X(t) and ε(·) are Gaussian. This assumption leads to closed form characterizations for
many of the expressions we consider. In addition, it follows from [16, 17] that a lossy
compression policy that is optimal under a Gaussian distribution can be used to encode
non-Gaussian signals with matching second order statistics, while attaining the same
distortion as if the signals were Gaussian. Hence, the fundamental distortion limit for
Gaussian signals is attained under any other distribution using the optimal sampler and
encoding system we use to achieve this limit.

1.3.1 Bounded Linear Sampling

The sampler in Fig. 1.5 outputs a finite dimensional vector of samples where, most
generally, each sample is defined by a linear and bounded (hence, continuous) functional
of the process Xε(·). For this reason, we denote a sampler of this type as a bounded

1 Since the PSD is associated with an absolutely continuous spectral measure, sets defined in term of the
PSD, e.g., suppSX , are understood to be unique up to symmetric difference of Lebesgue measure zero.
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Figure 1.6 Bounded linear sampler (NT , |ΛT |).

linear sampler. In order to consider this sampler in applications, it is most convenient
to define it in terms of a bilinear kernel KH(t,s) on R×R and a discrete sampling
set Λ ⊂ R, as illustrated in Fig. 1.6. The kernel KH(t,s) defines a time varying linear
system on a suitable class of signals [18], and hence each element tn ∈Λ defines a linear
bounded functional K(tn,s) on this class by

Yn ,
∫

∞

−∞

Xε(s)KH(tn,s)ds.

For a time horizon T , we denote by YT the finite dimensional vector obtained by sam-
pling at times t1, . . . , tn ∈ ΛT , where

ΛT , Λ∩ [−T/2,T/2].

We assume in addition that Λ is uniformly discrete in the sense that there exists ε > 0
such that |t− s|> ε for every non identical t,s ∈ Λ. The density of ΛT is defined as the
number of points in ΛT divided by T and denoted here by d(ΛT ). Whenever it exists,
we define the limit

d(Λ) = lim
T→∞

d(ΛT ) = lim
T→∞

|Λ∩ [−T/2,T/2]|
T

as the symmetric density of Λ.

Linear Time-Invariant Uniform Sampling
An important special case of the bounded linear sampler is that of a linear time-invariant
(LTI) uniform sampler [1], illustrated in Fig. 1.7. For this sampler, the sampling set is
a uniform grid ZTs = {nTs, n ∈ Z}, where Ts = f−1

s > 0. The kernel is of the form
KH(t,s) = h(t− s) where h(t) is the impulse response of a LTI system with frequency
response H( f ). Therefore, the entries of YT corresponding to sampling at times nTs ∈Λ

are given by

Yn ,
∫

∞

−∞

h(nTs− s)Xε(s)ds.

It is easy to check that d(TsZ) = fs and hence, in this case, the density of the sampling
set has the usual interpretation of sampling rate.

Multi-branch Linear Time-Invariant Uniform Sampling
A generalization of the uniform LTI sampler incorporates multiple such samplers in
parallel, as illustrated in Fig. 1.8. Each of the L branches in Fig. 1.8 consists of a LTI
system with frequency response Hl( f ) followed by a uniform pointwise sampler with
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Figure 1.7 Uniform linear time-invariant sampler.
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Figure 1.8 Multi-branch linear time-invariant uniform sampler.

sampling rate fs/L, so that the overall sampling rate is fs. The vector YT consists of the
concatenation of the vectors Y1,T , . . . ,YL,T obtained from each of the sampling branches.

1.3.2 Encoding and Reconstruction

For a time horizon T , the encoder in Fig. 1.5 can be any function of the form

f : RNT →
{

1, . . . ,2bT Rc
}
, (1.7)

where NT = dim(YT ) = |ΛT |. That is, the encoder receives the vector of samples YT

and outputs an index out of 2bT Rc possible indices. The decoder receives this index, and
produces an estimate X̂(·) for the signal X(·) over the interval [−T/2,T/2]. Thus, it is
a mapping

g :
{

1, . . . ,2bT Rc
}
→ R[−T/2,T/2]. (1.8)

The goal of the joint operation of the encoder and the decoder is to minimize the ex-
pected mean squared error (MSE)

1
T

∫ T/2

−T/2
E
(

X(t)− X̂(t)
)2

dt.

In practice, an encoder may output a finite number of samples that are then interpo-
lated to the continuous time estimate X̂(·). Since our goal is to understand the limits in
converting signals to bits, this separation between decoding and interpolation, as well
as the possible restrictions each of these steps encounters in practice, are not explored
within the context of ADX.
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Given a particular bounded linear sampler S = (Λ,KH) and a bitrate R, we are inter-
ested in characterizing the function

DT (S,R), inf
f ,g

1
T

∫ T/2

−T/2
E
(

X(t)− X̂(t)
)2

dt, (1.9)

or its limit as T → ∞, where the infimum is over all encoders and decoders of the form
(1.7) and (1.8). This function DT (S,R) is defined only in terms of the sampler S and the
bitrate R, and in this sense measures the minimal distortion that can be attained using
the sampler S subject to a bitrate constraint R on the representation of the samples.

1.3.3 Optimal Distortion in ADX

From the definition of DT (S,R) and the ADX setting, it immediately follows that DT (S,R)
is non-increasing in R. Indeed, any encoding into a set of 2bT Rc elements can be obtained
as a special case of encoding to a set of 2bT (R+r)c elements, for r > 0. In addition, by
using the trivial encoder g ≡ 0, we see that DT (S,R) is bounded from above by the
variance σ2

X of X(·), which is given by

σ
2
X ,

∫
∞

−∞

SX ( f )d f .

In what follows, we explore additional important properties of DT (S,R).

Optimal Encoding
Denote by X̃T (·) the process that is obtained by estimating X(·) from the output of the
sampler according to a MSE criterion. That is

X̃T (t), E [X(t)|YT ] , t ∈ R. (1.10)

From properties of the conditional expectation and MSE, under any encoder f we may
write

1
T

∫ T/2

−T/2
E
(

X(t)− X̂(t)
)2

dt =mmseT (S)+mmse
(

X̃T | f (YT )
)
, (1.11)

where

mmseT (S),
1
T

∫ T/2

−T/2
E
(

X(t)− X̃T (t)
)2

dt (1.12)

is the distortion due to sampling and

mmse
(

X̃T | f (YT )
)
,

1
T

∫ T/2

−T/2
E
(

X̃T (t)− f (YT )
)2

dt

is the distortion associated with the lossy compression procedure, and depends on the
sampler only through X̃T (·).

The decomposition (1.11) already provides important clues on an optimal encoder
and decoder pair that attains DT (S,R). Specifically, it follows from (1.11) that there is
no loss in performance if the encoder tries to describe the process X̃T (·) subject to the
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bitrate constraint, rather than the process X(·). Consequently, the optimal decoder out-
puts the conditional expectation of X̃T (·) given f (YT ). The decomposition (1.11) was
first used in [14] to derive the indirect DRF of a pair of stationary Gaussian processes,
and later in [19] to derive indirect DRF expressions in other settings. An extension of the
principle presented in this decomposition to arbitrary distortion measures is discussed
in [20].

The decomposition (1.11) also sheds light on the behavior of the optimal distortion
DT (S,R) under the two extreme cases of unrestricted bitrate and unrestricted sampling
rate illustrated in Fig. 1.3. We discuss these two cases next.

Unrestricted Bitrate
If we remove the bitrate constraint in the ADX setting (formally, letting R→ ∞), loss
of information is only due to noise and sampling. In this case, the second term in the
RHS of (1.11) disappears, and the distortion in ADX is given by mmseT (S). Namely,
we have

lim
R→∞

DT (S,R) =mmseT (S).

The unrestricted bitrate setting reduces the ADX problem into a classical problem in
sampling theory: the MSE under a given sampling system. Of particular interest is the
case of optimal sampling, i.e., when this MSE vanishes as T →∞. For example, by con-
sidering the noiseless case and assuming that KH(t,s) = δ (t−s) is the identity operator,
the sampler is only defined in terms of Λ. The condition on mmseT (S) to converge to
zero is related to the conditions for stable sampling in the Paley-Wiener spaces stud-
ied by Landau and Beurling [21, 22]. In order to see this connection more precisely,
note that (1.6) defines an isomorphism between the Hilbert spaces of finite-variance
random variables measurable with respect to the sigma algebra generated by X(·), and
the Hilbert space generated by the inverse Fourier transform of

{
e2π jt f

√
SX ( f ), t ∈ R

}
[23]. Specifically, this isomorphism is obtained by extending the map

X(t)←→F−1
{

e2π jt f
√

SX ( f )
}
(s)

to the two aforementioned spaces. It follows that sampling and reconstructing X(·) with
vanishing MSE is equivalent to the same operation in the Paley-Wiener space of analytic
functions whose Fourier transform vanishes outside suppSX . In particular, the condition
mmseT (S)

T→∞−→ 0 holds whenever Λ is a set of stable sampling in this Paley-Wiener
space, i.e., there exists a universal constant A > 0 such that the L2 norm of each function
in this space is bounded by A times the energy of the samples of this function. Landau
[21] showed that a necessary condition for this property is that the number of points in Λ

that fall within the interval [−T/2,T/2] is at least the spectral occupancy of X(·) times
T , minus a constant that is logarithmic in T . For this reason, this spectral occupancy is
termed the Landau rate of X(·), and we denote it here by fLnd. In the special case where
suppSX is an interval (symmetric around the origin since X(·) is real), the Landau and
Nyquist rates coincide.
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Optimal Sampling
The other special case of the ADX setting is obtained when there is no loss of informa-
tion due to sampling. For example, this is the case when mmseT (S) goes to zero under
the conditions mentioned above of zero noise, identity kernel, and sampling density ex-
ceeding the spectral occupancy. More generally, this situation occurs whenever X̃T (·)
converges (in expected norm) to the MMSE estimator of X(·) from Xε(·). This MMSE
estimator is a stationary process obtained by non-causal Wiener filtering, and its PSD is

SX |Xε
( f ),

S2
X ( f )

SX ( f )+Sε( f )
, (1.13)

where in (1.13) and in similar expressions henceforth we interpret the expression to be
zero whenever both the numerator and denominator are zero. The resulting MMSE is
given by

mmse(X |Xε),
∫

∞

−∞

[
SX ( f )−SX |Xε

( f )
]

d f . (1.14)

Since our setting does not limit the encoder from computing X̃T (·), the ADX problem
reduces in this case to the indirect source coding problem of recovering X(·) from a
bitrate R representation of its corrupted version Xε(·). This problem was considered and
solved by Dobrushin and Tsybakov in [14], where the following expression was given
for the optimal tradeoff between bitrate and distortion:

DX |Xε
(Rθ ),mmse(X |Xε)+

∫
∞

−∞

min
{

SX |Xε
( f ),θ

}
d f (1.15a)

Rθ =
∫

∞

−∞

log+
[
SX |Xε

( f )/θ
]

d f . (1.15b)

When the noise ε(·) is zero, SX |Xε
( f ) = SX ( f ) and (1.15) reduces to

DX (Rθ ),
∫

∞

−∞

min{SX ( f ),θ}d f (1.16a)

Rθ =
∫

∞

−∞

log+ [SX ( f )/θ ]d f , (1.16b)

which is Pinsker’s expression [15] for the DRF of the process X(·), denoted here by
DX (R). Note that (1.16) is the continuous-time counterpart of (1.3).

From the discussion above we conclude that

DT (S,R)≥ DX |Xε
(R)≥max{DX (R),mmse(X |Xε)} . (1.17)

Furthermore, when the estimator E[X(t)|Xε ] can be obtained from YT as T → ∞, we
have that DT (S,R)

T→∞−→ DX |Xε
(R). In this situation, we say that the conditions for op-

timal sampling are met, since the only distortion is due to the noise and the bitrate
constraint.

The two lower bounds in Fig. 1.3 describe the behavior of DT (S,R) in the two spe-
cial cases of unrestricted bitrate and optimal sampling. Our goal in the next section is
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Figure 1.9 Water-filling interpretation of (1.15). The distortion is the sum of mmse(X |Xε ) and
the lossy compression distortion.

to characterize the intermediate case of non-optimal sampling and a finite bitrate con-
straint.

1.4 The Fundamental Distortion Limit

Given a particular bounded linear sampler S = (Λ,KH) and a bitrate R, we defined the
function DT (S,R) as the minimal distortion that can be attained in the combined sam-
pling and lossy compression setup of Fig. 1.5. Our goal in this section is to derive and
analyze a function D?( fs,R) that bounds from below DT (S,R) for any such bounded
linear sampler with symmetric density of Λ not exceeding fs. The achievability of this
lower bound is addressed in the next section.

1.4.1 Definition of D?( fs,R)

In order to define D?( fs,R), we let F?( fs)⊂ R be any set that maximizes∫
F

SX |Xε
( f )d f =

∫
F

S2
X ( f )

SX ( f )+Sε( f )
d f (1.18)

over all Lebesgue measurable sets F whose Lebesgue measure does not exceed fs. In
other words, F?( fs) consists of the fs spectral bands with the highest energy in the
spectrum of the process {E[X(t)|Xε(·)], t ∈ R}. Define

D?( fs,Rθ ) =mmse?( fs)+
∫

F?( fs)
min

{
SX |Xε

( f ),θ
}

d f (1.19a)

Rθ =
∫

F?( fs)
log+

[
SX |Xε

( f )/θ
]

d f , (1.19b)

where

mmse?( fs), σ
2
X −

∫
F?( fs)

SX |Xε
( f )d f =

∫
∞

−∞

[
SX ( f )−SX |Xε

( f )1F?( fs)
]

d f .
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Figure 1.10 Water-filling interpretation of D?( fs,Rθ ): The fundamental distortion limit under
any bounded linear sampling, which is the sum of the estimation error and the lossy compression
error.

Graphical interpretations of D?( fs,R) and mmse?( fs) are provided in Fig. 1.10.
The importance of the function D?( fs,R) can be deduced from the following two

theorems:

Theorem 1 (converse) Let X(·) be a Gaussian stationary process corrupted by a Gaus-
sian stationary noise ε(·), and sampled using a bounded linear sampler S = (KH ,Λ).

(i) Assume that for any T > 0, d(ΛT )≤ fs. Then for any bitrate R,

DT (S,R)≥ D?( fs,R).

(ii) Assume that the symmetric density of Λ exists and satisfies d(Λ)≤ fs. Then for any
bitrate R,

liminf
T→∞

DT (S,R)≥ D?( fs,R).

In addition to the negative statement of Theorem 1, we show in the next section the
following positive coding result:

Theorem 2 (achievability) Let X(·) be a Gaussian stationary process corrupted by a
Gaussian stationary noise ε(·). Then for any fs and ε > 0, there exists a bounded linear
sampler S with a sampling set of symmetric density not exceeding fs such that, for any
R, the distortion in ADX attained by sampling Xε(·) using S over a large enough time
interval T , and encoding these samples using bT Rc bits, does not exceed D?( fs,R)+ ε .

A full proof of Theorem 1 can be found in [24]. Intuition for Theorem 1 may be
obtained by representing X(·) according to its Karhunen-Loève (KL) expansion over
[−T/2,T/2], and then using a sampling matrix that keeps only NT , bT fsc of these co-
efficients. The function D?( fs,R) arises as the limiting expression in the noisy version
of (1.5), when the sampling matrix is tuned to keep those KL coefficients corresponding
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to the NT largest eigenvalues in the expansion.

In Section 1.5 we provide a constructive proof of Theorem 2 that also shows D?( fs,R)
is attained using a multi-branch LTI uniform sampler with an appropriate choice of pre-
sampling filters. The rest of the current section is devoted to studying properties of the
minimal ADX distortion D?( fs,R).

1.4.2 Properties of D?( fs,R)

In view of Theorems 1 and 2, the function D?( fs,R) trivially satisfies the properties
mentioned in Subsection 1.3.3 for the optimal distortion in ADX. It is instructive to
observe how these properties can be deduced directly from the definition of D?( fs,R)
in (1.19).

Unrestricted Bitrate
As R→∞, the parameter θ goes to zero and (1.19a) reduces to mmse?( fs). This function
describes the MMSE that can be attained by any bounded linear sampler with symmet-
ric density at most fs. In particular, in the non-noisy case, mmse?( fs) = 0 if and only
if fs exceeds the Landau rate of X(·). Therefore, in view of the explanation in Sub-
section 1.3.3 and under unrestricted bitrate, zero noise, and the identity pre-sampling
operation, Theorem 1 agrees with the necessary condition derived by Landau for stable
sampling in the Paley-Wiener space [21].

Optimal Sampling
The other extreme in the expression for D?( fs,R) is when fs is large enough such that it
does not posses any constraint on sampling. In this case, we expect the ADX distortion
to coincide with the function DX |Xε

(R) of (1.15), since the latter is the minimal distortion
only due to noise and lossy compression at bitrate R. From the definition of F?( fs), we
observe that F?( fs) = suppSX (almost everywhere) whenever fs is equal or greater than
the Landau rate of X(·). By examining (1.19), this equality implies that

D?( fs,R) = DX |Xε
(R). (1.20)

In other words, the condition fs ≥ fLnd means that there is no loss due to sampling in
the ADX system. This property of the minimal distortion is not surprising. It merely
expresses the fact anticipated in Subsection 1.3.3 that when (1.10) vanishes as T goes
to infinity, the estimator E[X(t)|Xε ] is obtained from the samples in this limit and thus
the only loss of information after sampling is due to the noise.

In the next subsection we will see that under some conditions, the equality (1.20) is
extended to sampling rates smaller than the Landau rate of the signal.

1.4.3 Optimal Sampling Subject to a Bitrate Constraint

We now explore the minimal sampling rate fs required in order to attain equality in
(1.20). That is, the minimal sampling rate at which the minimal distortion in ADX
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equals the indirect DRF of X(·) given Xε(·), describing the minimal distortion subject
only to a bitrate R constraint and additive noise. Intuition for this sampling rate is ob-
tained by exploring the behavior of D?( fs,R) as a function of fs for a specific PSD and
a fixed bitrate R. For simplicity, we explore this behavior under the assumption of zero
noise (ε ≡ 0) and signal X(·) with a unimodal PSD as in Fig. 1.11. Note that in this
case we have SX |Xε

( f ) = SX ( f ) since the noise is zero, fLnd = fNyq since SX ( f ) has a
connected support and, and F?( fs) is the interval of length fs centered around the origin
since SX ( f ) is unimodal. In all cases in Fig. 1.11 the bitrate R is fixed and corresponds
to the preserved part of the spectrum through (1.19b). The distortion D?( fs,R) changes
with fs, and is given by the sum of both terms in (1.19a): mmse?( fs) and the lossy com-
pression distortion. For example, the increment in fs from (a) to (b) reduces mmse?( fs)

and increases the lossy compression distortion, although the overall distortion decreases
due to this increment. However, the increase in fs leading from (b) to (c) is different:
while (c) shows an additional reduction in mmse?( fs) compared to (b), the sum of the
two distortion terms in both cases is identical and, as illustrated in (d), equals the DRF
of X(·) from (1.16). It follows that in the case of Fig. 1.11, the optimal ADX perfor-
mance is attained at some sampling rate fR that is smaller than the Nyquist rate, and
depends on the bitrate R through expression (1.16). The full behavior of D?( fs,R) as a
function of fs is illustrated in Fig. 1.12 for two values of R.

The phenomenon described above and in Figs. 1.11 and 1.12 can be generalized to
any Gaussian stationary process with arbitrary PSD and noise in the ADX setting, per
the following theorem:

Theorem 3 (optimal sampling rate [24]) Let X(·) be a Gaussian stationary process
with PSD SX ( f ) corrupted by a Gaussian noise ε(·). For each point (R,D) on the graph
of DX |Xε

(R) associated with a water-level θ via (1.15), let fR be the Lebesgue measure
of the set

Fθ ,
{

f : SX |Xε
( f )≥ θ

}
.

Then for all fs ≥ fR,

D?( fs,R) = DX |Xε
(R).

The proof of Theorem 3 is relatively straightforward and follows from the definition of
Fθ and D?( fs,R).

We emphasize that the critical frequency fR depends only on the PSDs SX ( f ) and
Sε( f ), and on the operating point on the graph of D?( fs,R). This point may be parametrized
by either D, R, or the water-level θ using (1.15). Furthermore, we can consider a version
of Theorem 3 in which the bitrate is a function of the distortion and the sampling rate,
by inverting D?( fs,R) with respect to R. This inverse function, R?( fs,D), is the minimal
number of bits per unit time one must provide on the samples of Xε(·), obtained by
any bounded linear sampler with sampling density not exceeding fs, in order to attain
distortion not exceeding D. The following representation of R?( fs,D) in terms of fR is
equivalent to Theorem 3:
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Figure 1.11 Water-filling interpretation for the function D?( fs,R) under zero noise, a fixed
bitrate R and three sampling rates: (a) fs < fR, (b) fs = fR and (c) fs > fR. (d) corresponds to the
DRF of X(·) at bitrate R. This DRF is attained whenever fs ≥ fR, where fR is smaller than the
Nyquist rate.

Theorem 4 (rate-distortion lower bound) Consider the samples of a Gaussian sta-
tionary process X(·) corrupted by a Gaussian noise ε(·) obtained by a bounded linear
sampler of maximal sampling density fs. The bitrate required to recover X(·) with MSE
at most D >mmse?( fs) is at least

R?( fs,D) =

 1
2
∫

F?( fs) log+
(

fsSX |Xε
( f )

D−mmse?( fs)

)
d f , fs < fR,

RX |Xε
(D), fs ≥ fR,

(1.21)

where

RX |Xε
(Dθ ) =

1
2

∫
∞

−∞

log+
[
SX |Xε

( f )/θ
]

d f

is the indirect rate-distortion function of X(·) given Xε(·), and θ is determined by

Dθ =mmse?( fs)+
∫

∞

−∞

min
{

SX |Xε
( f ),θ

}
d f .

Theorems 3 and 4 imply that the equality in (1.20), which was previously shown
to hold for fs ≥ fLnd, is extended to all sampling rates above fR ≤ fLnd. As R goes to
infinity, D?( fs,R) converges to mmse?( fs), the water-level θ goes to zero, the set Fθ
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Figure 1.12 The function D?( fs,R) for the PSD of Fig. 1.11 and two values of the bitrate R.
Also shown is the DRF of X(·) at these values that is attained at the sub-Nyquist sampling rates
marked by fR.

coincides with the support of SX ( f ), and fR converges to fLnd. Theorem 3 then implies
that mmse?( fs) = 0 for all fs ≥ fLnd, a fact that agrees with Landau’s characterization of
sets of sampling for perfect recovery of signals in the Paley-Wiener space, as explained
in Subsection 1.3.3.

An intriguing way to explain the critical sampling rate subject to a bitrate constraint
arising from Theorem 3 follows by considering the number of degrees of freedom in the
representation of the analog signal pre- and post- sampling and with lossy compression
of the samples. Specifically, for stationary Gaussian signals with zero sampling noise,
the degrees of freedom in the signal representation are those spectral bands in which the
PSD is non-zero. When the signal energy is not uniformly distributed over these bands,
the optimal lossy compression scheme described by (1.16) calls for discarding those
bands with the lowest energy, i.e., the parts of the signal with the lowest uncertainty.

The degree to which the new critical rate fR is smaller than the Nyquist rate depends
on the energy distribution of X(t) across its spectral occupancy. The more uniform this
distribution, the more degrees of freedom are required to represent the lossy compressed
signal and therefore fR is closer to the Nyquist rate. In the examples below we derive
the precise relation between fR and R for various PSDs. These relations are illustrated
in Fig. 1.13.



1.4 The Fundamental Distortion Limit 19

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

SΠ( f ) S4( f ) SΩ( f )Sω ( f )

R [bit/time]

f R
[s

m
p/

tim
e]

Figure 1.13 The critical sampling rate fR as a function of the bitrate R for the PSDs given in the
small frames at the top of the figure. For the bandlimited PSDs SΠ( f ), S4( f ) and Sω ( f ), the
critical sampling rate is always below the Nyquist rate. The critical sampling rate is finite for any
R, even for the non-bandlimited PSD SΩ( f ).

1.4.4 Examples

Example 1 Consider the Gaussian stationary process X4(·) with PSD

S4( f ), σ
2 [1−| f/W |]+

W
,

for some W > 0. Assuming that the noise is zero,

Fθ = [W (Wθ −1),W (1−Wθ)]

and thus fR = 2W (1−Wθ). The exact relation between fR and R is obtained from
(1.19b) and found to be

R =
1
2

∫ fR/2

− fR/2
log

(
1−| f/W |

1− fR
2W

)
d f =W log

2W
2W − fR

− fR

2ln2
.

In particular, note that R→ ∞ leads to fR→ fNyq = 2W, as anticipated.

Example 2 Let XΠ(·) be the process with PSD

SΠ( f ) =
1| f |<W ( f )

2W
. (1.22)

Assume that ε(·) is noise with a flat spectrum within the band (−W,W ) such that γ ,
SΠ( f )/Sε( f ) is the SNR at the spectral component f . Under these conditions, the water-
level θ in (1.15) satisfies

θ = σ
2 γ

1+ γ
2−R/W ,
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and hence
DX |Xε

R)
σ2 =

1
1+ γ

+
γ

1+ γ
2−R/W . (1.23)

In particular, Fθ = [−W,W ], so that fR = 2W = fNyq for any bitrate R and D?( fs,R) =
DX |Xε

(R) only for fs ≥ fNyq. That is, for the process XΠ(·), optimal sampling under a
bitrate constraint occurs only at or above its Nyquist rate.

Example 3 Consider the PSD

SΩ( f ),
σ2/ f0

(π f/ f0)2 +1
,

for some f0 > 0. The Gaussian stationary process XΩ(·) corresponding to this PSD is a
Markov process, and it is in fact the unique Gaussian stationary process that is also
Markovian (a.k.a the Ornstein-Uhlenbeck process). Since the spectral occupancy of
XΩ(·) is the entire real line, its Nyquist and Landau rate are infinite and it is impossible
to recover it with zero MSE using any bounded linear sampler. Assuming ε(·) ≡ 0 and
noting that SΩ( f ) is unimodal, F?( fs) = (− f2/2, fs/2), and thus

mmse?( fs) = 2
∫

∞

fs/2
SΩ( f )d f = σ

2
[

1− 2
π

arctan
(

π fs

2 f0

)]
.

Consider now a point (R,D) on the DRF of XΩ(·) and its corresponding water-level θ

determined from (1.16). It follows that fR = 2 fs
π

√
1/θ fs−1, so that Theorem 3 implies

that the distortion cannot be reduced below D by sampling above this rate. The exact
relation between R and fR is found to be

1
ln2

(
fR−

2 f0

π
arctan

(
π fR

2 f0

))
. (1.24)

Note that although the Nyquist rate of XΩ(·) is infinite, for any finite R there exists a crit-
ical sampling frequency fR, satisfying (1.24), such that DXΩ

(R) is attained by sampling
at or above fR.

The asymptotic behavior of (1.24) as R goes to infinity is given by R∼ fR
ln2 . Thus, for

R sufficiently large, the optimal sampling rate is linearly proportional to R. The ratio
R/ fs is the average number of bits per sample used in the resulting digital representa-
tion. It follows from (1.24) that, asymptotically, the “right” number of bits per sample
converges to 1/ ln2 ≈ 1.45. If the number of bits per sample is below this value, then
the distortion in ADX is dominated by the DRF DXΩ

(·), as there are not enough bits to
represent the information acquired by the sampler. If the number of bits per sample is
greater than this value, then the distortion in ADX is dominated by the sampling distor-
tion, as there are not enough samples for describing the signal up to a distortion equal
to its DRF.

As a numerical example, assume that we encode XΩ(t) using two bits per sample,
i.e. fs = 2R. As R→ ∞, the ratio between the minimal distortion D?( fs,R) and DXΩ

(R)
converges to approximately 1.08, whereas the ratio between D?( fs,R) and mmse?( fs)

converges to approximately 1.48. In other words, it is possible to attain the optimal
encoding performance within an approximate 8% gap by providing one sample per
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each two bits per unit time used in this encoding. On the other hand, it is possible to
attain the optimal sampling performance within an approximate 48% gap by providing
two bits per each sample taken.

1.5 ADX under Uniform Sampling

We now analyze the distortion in the ADX setting of Figure 1.5 under the important
class of single and multi-branch LTI uniform samplers. Our goal in this section is to
show that for any source and noise PSDs, SX ( f ) and Sε( f ), respectively, the func-
tion D?( fs,R) describing the fundamental distortion limit in ADX, is attainable using
a multi-branch LTI uniform sampler. By doing so, we also provide a proof of Theorem 2.

We begin by analyzing the ADX system of Figure 1.5 under an LTI uniform sampler.
As we show, the asymptotic distortion in this case can be obtained in a closed form
that depends only on the signal and noise PSDs, the sampling rate, the bitrate, and the
pre-sampling filter H( f ). We then show that by taking H( f ) to be a low-pass filter with
cutoff frequency fs/2, we can attain the fundamental distortion limit D?( fs,R) whenever
the function SX |Xε

( f ) of (1.13) attains its maximum at the origin. In the more general
case of an arbitrarily shaped SX |Xε

( f ), we use multi-branch sampling in order to achieve
D?( fs,R).

1.5.1 Single-branch LTI Uniform Sampling

Assume that the sampler S is the LTI uniform sampler defined in Subsection 1.3.1 and
illustrated in Figure 1.7. This sampler is characterized by its sampling rate fs and the
frequency response H( f ) of the pre-sampling filter.

In Subsection 1.3.3 we have seen that for any bounded linear sampler, optimal encod-
ing in ADX is obtained by first forming the estimator X̃T (·) from YT , and then encoding
X̃T (·) in an optimal manner subject to the bitrate constraint. That is, the encoder per-
forms estimation under an MSE criterion followed by optimal source coding for this
estimate. Under the LTI uniform sampler, the process X̃T (·) has an asymptotic distribu-
tion described by the conditional expectation of X(·) given the sigma algebra generated
by {Xε(n/ fs), n inZ}. Using standard linear estimation techniques, this conditional ex-
pectation has a representation similar to that of a Wiener filter given by [12]

X̃(t), E [X(t)|{X(n/ fs), n ∈ Z}] = ∑
n∈Z

Xε(n/ fs)w(t−n/ fs), t ∈ R, (1.25)

where the Fourier transform of w(t) is

W ( f ) =
SX ( f ) |H( f )|2

∑k∈Z SXε
( f − k fs) |H( f − k fs)|2

.

Moreover, the resulting MMSE, which is the asymptotic value of mmseT (S), is given
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by

mmseH( fs), ∑
n∈Z

∫ fs
2

− fs
2

[
SX ( f −n fs)− S̃X ( f )

]
d f , (1.26)

where

S̃X ( f ),
S2

X ( f − fsn) |H( f − fsn)|2

∑n∈Z SXε
( f − fsn) |H( f − fsn)|2

. (1.27)

From the decomposition (1.11), it follows that when S is an LTI uniform sampler, the
distortion can be expressed as

DH( fs,R), liminf
T→∞

DT (S,R) =mmseH( fs)+DX̃ (R),

where DX̃ (R) is the DRF of the Gaussian process X̃(·) defined by (1.25), satisfying the
asymptotic law of X̃T (·) as T approaches infinity.

Note that whenever fs ≥ fNyq and suppSX is included within the passband of H( f ),
we have that S̃X ( f ) = SX |Xε

( f ) and thus mmseH( fs) =mmse(X |Xε), i.e., no distortion
due to sampling. Moreover, in this situation, X̃(t) = E[X(t)|Xε(·)] and

DH( fs,R) = DX |Xε
(R). (1.28)

The equality (1.28) is a special case of (1.20) for LTI uniform sampling, and says that
there is no loss due to sampling in ADX whenever the sampling rate exceeds the Nyquist
rate of X(·).

When the sampling rate is below fNyq, (1.25) implies that the estimator X̃(·) has
the form of a stationary process modulated by a deterministic pulse, and is therefore a
block-stationary process, also called a cyclostationary process [25]. The DRF for this
class of processes can be described by a generalization of the orthogonal transformation
and rate allocation that leads to the water-filling expression (1.16) [26]. Evaluating the
resulting expression for the DRF of the cyclostationary process X̃(·) leads to a closed-
form expression for DH( fs,R), initially derived in [27].

Theorem 5 (achievability for LTI uniform sampling) Let X(·) be a Gaussian station-
ary process corrupted by a Gaussian stationary noise ε(·). The minimal distortion in
ADX at bitrate R with an LTI uniform sampler with sampling rate fs and pre-sampling
filter H( f ) is given by

DH( fs,Rθ ) =mmseH( fs)+
∫ fs

2

− fs
2

min
{

S̃X ( f ),θ
}

d f (1.29a)

Rθ =
1
2

∫ fs
2

− fs
2

log+2
[
S̃X ( f )/θ

]
d f , (1.29b)

where mmseH( fs) and S̃X ( f ) are given by (1.26) and (1.27), respectively.

A graphical water-filling interpretation of (1.29) is provided in Figure 1.14. This ex-
pression combines the MMSE (1.26), which depends only on fs and H( f ), with the
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Figure 1.14 Water-filling interpretation of (1.29) with an all pass filter H( f ): The function
∑k∈Z SX ( f − fsk) is the aliased PSD that represents the full energy of the original signal within
the discrete-time spectrum interval (− fs/2, fs/2). The part of the energy recovered by the
estimator X̃(·) is S̃X ( f ). The distortion due to lossy compression is obtained by water-filling
over the recovered energy according to (1.29a). The overall distortion DH( fs,R) is the sum of
the sampling distortion and the distortion due to lossy compression.

expression for the indirect DRF of (1.15), which also depends on the bitrate R. The
function S̃X ( f ) arises in the MMSE estimation of X(·) from its samples and can be in-
terpreted as an average over the PSD of polyphase components of the cyclostationary
process X̃(·) [26].

Implicit in the analysis above, the coding scheme that attains DH( fs,R) is described
by the decomposition of the non-causal MSE estimate of X(·) from its samples YT . This
estimate is encoded using a codebook with 2bT Rc elements that attains the DRF of the
Gaussian process X̃(·) at bitrate R, and the decoded codewords (which is a waveform
over [−T/2,T/2]) are used as the reconstruction of X(·). For any ρ > 0, the MSE
resulting from this process can be made smaller than DH( fs,R−ρ) by taking T to be
sufficiently large.

Example 4 (continuation of Example 2) As a simple example for using formula (1.29),
consider the process XΠ(·) of Example 2. Assuming that the noise ε(·)≡ 0 (equivalently,
γ→∞) and that H( f ) passes all frequencies f ∈ [−W,W ], the relation between the dis-
tortion in (1.29a) and the bitrate in (1.29b) is given by

DH( fs,R) =

{
mmseH( fs)+σ2 fs

2W 2−
2R
fs fs < 2W

σ22−
R
W fs ≥ 2W

(1.30)

where mmseH( fs) = σ2
[
1− fs

2W

]+
. Expression (1.30) is shown in Figure 1.15 for two

fixed values of the bitrate R. It has a very intuitive structure: for frequencies below
fNyq = 2W, the distortion as a function of the rate increases by a constant factor due to
the error as a result of non-optimal sampling. This factor completely vanishes once the
sampling rate exceeds the Nyquist frequency, in which case DH( fs,R) coincides with
the DRF of X(·).
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Figure 1.15 Distortion as a function of sampling rate for the source with PSD SΠ( f ) of (1.22),
zero noise, and source coding rates R = 1 and R = 2 bits per time unit.

In the noisy case when γ = SΠ( f )/Sε( f ), we have mmseH( fs) = σ2(1− fs
2W (1+γ) )

and the distortion takes the form

D?( fs,R) = σ
2

{
mmseH( fs)+

fs
2W

γ

1+γ
2−2R/ fs fs < 2W

mmse(X |Xε)+
γ

1+γ
2−R/W fs ≥ 2W,

(1.31)

where mmse(X |Xε) = 1/(1+ γ).

Next, we show that when SX |Xε
( f ) is unimodal, an LTI uniform sampler can be used

to attain D?( fs,R).

1.5.2 Unimodal PSD and Low-pass Filtering

Under the assumption that H( f ) is an ideal low-pass filter with cutoff frequency fs/2,
(1.29) becomes

DLPF( fs,Rθ ) =
∫ fs

2

− fs
2

[
SX ( f )−SX |Xε

( f )
]

d f +
∫ fs

2

− fs
2

min
{

SX |Xε
( f ),θ

}
d f (1.32a)

Rθ =
1
2

∫ fs
2

− fs
2

log+2
[
SX |Xε

( f )/θ
]

d f . (1.32b)

Comparing (1.32) with (1.19), we see that both expressions coincide whenever the in-
terval [− f2/2, fs/2] minimizes (1.18). Therefore, we conclude that when the function
SX |Xε

( f ) is unimodal in the sense that it attains its maximal value at the origin, the fun-
damental distortion in ADX is attained using an LTI uniform sampler with a low-pass
filter of cutoff frequency fs/2 as its pre-sampling operation.

An example for a PSD for which (1.32) describes its fundamental distortion limit is
the one in Figure 1.11. Note the LPF with cutoff frequency fs/2 in cases (a)-(c) there.
Another example of this scenario for a unimodal PSD is given in Example 4 below.

Example 5 (continuation of Examples 2 and 4) In the case of the process XΠ(·) with
a flat spectrum noise as in Examples 2 and 4, (1.32) leads to (1.31). It follows that the



1.5 ADX under Uniform Sampling 25

fundamental distortion limit in ADX with respect to XΠ(·) and a flat spectrum noise
is given by (1.31), which was already obtained from (1.29). Namely, the fundamental
distortion limit in this case is obtained using any pre-sampling filter whose passband
contains [−W,W ], and using a LPF is unnecessary.

In particular, the distortion in (1.31) corresponding to fs ≥ fNyq equals the indirect
DRF of X(·) given Xε(·), which can be found directly from (1.15). Therefore, (1.31)
implies that optimal sampling for XΠ(·) under LTI uniform sampling occurs only at or
above its Nyquist rate. This conclusion is not surprising since, according to Example 2,
super Nyquist sampling of XΠ(·) is necessary for (1.20) to hold under any bounded
linear sampler.

The analysis above implies in particular that a distortion of D?( fs,R) is achievable
using LTI uniform sampling for any signal X(·) with a unimodal PSD in the noiseless
case or unimodal SX |Xε

( f ) in the noisy case. Therefore, Theorem 5 implies Theorem 2
in these special cases. In what follows, we use multi-branch sampling in order to show
that Theorem 2 holds for an arbitrary SX |Xε

( f ).

1.5.3 Multi-Branch LTI Uniform Sampling

We now consider the ADX system of Figure 1.5 where the sampler is the multi-branch
sampler defined in Subsection 1.3.1 and illustrated in Figure 1.8. This sampler is char-
acterized by L filters H1( f ), . . . ,HL( f ) and a sampling rate fs.

The generalization of Theorem 5 under this sampler is as follows [27]:

Theorem 6 Let X(·) be a Gaussian stationary process corrupted by a Gaussian sta-
tionary noise ε(·). The minimal distortion in ADX at bitrate R with a multi-branch LTI
uniform sampler is given by

DH1,...,HL( fs,R) =mmseH1,...,HL( fs)+
L

∑
l=1

∫ fs
2

− fs
2

min{λl( f ),θ}d f (1.33a)

Rθ =
1
2

L

∑
l=1

∫ fs
2

− fs
2

log+2 [λl( f )/θ ]d f , (1.33b)

where λ1, . . . ,λL are the eigenvalues of the matrix

S̃X ( f ) =
(

S−
1
2

Y ( f )
)H

K( f )S−
1
2

Y ( f ),

with

(SY ( f ))i, j = ∑
n∈Z

SXε
( f − fsn)Hi( f − fsn)H∗j ( f − fsn), i, j = 1, . . . ,L,

(K( f ))i, j = ∑
n∈Z

S2
X ( f − fsn)Hi( f − fsn)H∗j ( f − fsn), i, j = 1, . . . ,L.

In addition,

mmseH1,...,HL( fs), σ
2
X −

∫ fs
2

− fs
2

tr
(

S̃X ( f )
)

d f
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is the minimal MSE in estimating X(·) from the combined output of the L sampling
branches as T approaches infinity.

The most interesting feature in the extension of (1.29) provided by (1.33) is the depen-
dencies between samples obtained over different branches, expressed in the definition
of the matrix S̃X ( f ). In particular, if fs ≥ fNyq, then we may chose the bandpasses of
the L filters to be a set of L disjoint intervals, each of length at most fs/L, such that
the union of these supports contains the support of SX |Xε

. Under this choice, the matrix
S̃X ( f ) is diagonal and its eigenvalues are

λl = S̃l( f ),
∑n∈Z S2

X ( f − fsn)
∑n∈Z SX+ε( f − fsn)

1suppHl ( f ).

Since the union of the filters’ support contains the support of SX |Xε
, we have DH1,...,HL( fS,R)=

DX |Xε
(R). While it is not surprising that a multi-branch sampler attains optimal sampling

when fs is above the Nyquist rate, we note that at each branch the sampling rate can be
as small as fNyq/L. This last remark suggests that a similar principle may be used un-
der sub-Nyquist sampling to sample those particular parts of the spectrum of maximal
energy whenever SX |Xε

( f ) is not unimodal.
Our goal now is to prove Theorem 2 by showing that for any PSDs SX ( f ) and Sε( f ),

the distortion in (1.33) can be made arbitrarily close to the fundamental distortion limit
D?( fs,R) with an appropriate choice of the number of sampling branches and their
filters. Using the intuition gained above, given a sampling rate fs we cover the set of
maximal energy F?( fs) of (1.18) using L disjoint intervals, such that the length of each
interval does not exceed fs/L. For any ε > 0, it can be shown that there exists L large
enough such that

∫
∆

SX |Xε
( f )d f < ε , where ∆ is the part that is not covered by the L

intervals [28].
From this explanation we conclude that for any PSD SX |Xε

( f ), fs > 0, and ε > 0,
there exists an integer L and a set of L pre-sampling filters H1( f ), . . . ,HL( f ) such that,
for every bitrate R,

DH1,...,HL( fs,R)≤ D?( fs,R)+ ε. (1.34)

Since DH1,...,HL( fs,R) is obtained in the limit as T approaches infinity of the minimal
distortion in ADX under the aforementioned multi-branch uniform sampler, the funda-
mental distortion limit in ADX is achieved up to an arbitrarily small constant.

The description starting from Theorem 6 and ending in (1.34) sketches the proof
of the achievability side of the fundamental ADX distortion (Theorem 2). Below we
summarize the main points in the procedure described in this section:

(i). Given a sampling rate fs, use a multi-branch LTI uniform sampler with a sufficient
number of sampling branches L such that the effective passband of all branches is
close enough to F?, which is a set of Lebesgue measure fs that maximizes (1.18).

(ii). Estimate the signal X(·) under a MSE criterion, leading to X̃T (·) defined in (1.10). As
T → ∞ this process converges in L2 norm to X̃(·) defined in (1.25).
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(iii). Given the a bitrate constraint R, encode a realization of X̃T (·) in an optimal manner
subject to a MSE constraint as in standard source coding [7]. For example, for ρ > 0
arbitrarily small, we may use a codebook consisting of 2bT (R+ρ)c waveforms of dura-
tion T generated by independent draws from the distribution defined by the preserved
part of the spectrum in Figure 1.10. We then use minimum distance encoding with
respect to this codebook.

1.6 Summary

Processing, communication and/or digital storage of an analog signal is achieved by
first representing it as a bit sequence. Hardware and modeling constraints in processing
analog information imply that the digital representation is obtained by first sampling the
analog waveform, and then quantizing or encoding its samples. That is, the transforma-
tion from analog signals to bits involves the composition of sampling and quantization
or, more generally, lossy compression operations.

In this chapter we explored the minimal sampling rate required to attain the funda-
mental distortion limit in reconstructing a signal from its quantized samples subject to a
strict constraint on the bitrate of the system. We concluded that when the energy of the
signal is not uniformly distributed over its spectral occupancy, the optimal signal repre-
sentation can be attained by sampling at some critical rate that is lower than the Nyquist
rate or, more generally, the Landau rate, in bounded linear sampling. This critical sam-
pling rate depends on the bitrate constraint, and converges to the Nyquist or Landau
rates in the limit of infinite bitrate. This reduction in the optimal sampling rate under
finite bit-precision is made possible by designing the sampling mechanism to sample
only those parts of the signals that are not discarded due to optimal lossy compression.

The information theoretic approach to analog to digital compression explored in this
chapter can be extended in various directions. First, while we considered the minimal
sampling rate and resulting distortion under an ideal encoding of the samples, such
an encoding is rarely possible in practice. Indeed, in most cases, the encoding of the
samples is subject to additional constraints in addition to the bit resolution, such as
complexity, time delay, or limited information on the distribution of the signal and the
noise. It is therefore important to characterize the optimal sampling rate and resulting
distortion under these limitations. In addition, the reduction in the optimal sampling rate
under the bitrate constraint from the Nyquist rate to fR can be understood as the result
of a reduction in degrees of freedom in the compressed signal representation compared
to the original source. It is interesting to understand whether a similar principle holds
under non-stationary [29] or non-Gaussian [30] signal models (e.g., sparse signals).
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