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Sampling Without Input
Constraints: Consistent
Reconstruction in Arbitrary
Spaces

Yonina C. Eldar

ABSTRACT

In this chapter we develop a general framework for sampling and reconstruction
procedures. The procedures we develop allow for almost arbitrary sampling and re-
construction spaces, as well as arbitrary input signals. The rudimentary constraint we
impose on the reconstruction is that if the input lies in the reconstruction space, then
the reconstruction will be equal to the original signal, so that our framework includes
the more restrictive perfect reconstruction theories as special cases.

In our development we consider both nonredundant sampling and redundant sam-
pling in which the samples constitute an overcomplete representation of the signal. In
this case reconstruction is obtained using the oblique dual frame vectors, that lead to
frame expansions in which the analysis and synthesis frame vectors are not constrained
to lie in the same space as in conventional frame expansions. As we show, the algo-
rithms we develop are consistent, so that the reconstructed signal has the property that
although it is not necessarily equal to the original signal, it nonetheless yields the same
measurements. Building upon this property of our algorithms, we develop a general
procedure for constructing signals with prescribed properties.

1 Introduction

Sampling is the process of representing a signal f by a sequence of numbers, which
can be interpreted as measurements of f. The classical approach is to choose the
measurements as samples of f. A more recent approach [29, 20, 3, 27, 28, 11,
8, 33, 32] is to consider measurements that can be expressed as inner products
of f with a set of sampling vectors that span a subspace S, which is referred to
as the sampling space. Examples include multiresolution decompositions [20, 7],
and spline decompositions [27]. The problem then is to reconstruct f from these
measurements, using a set of reconstruction vectors that span a subspace W,
which is referred to as the reconstruction space.

Standard sampling problems that have been studied extensively in the sam-
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pling literature are the problems of perfectly reconstructing a signal f from a
given set of measurements, and the dual problem of sampling f so that it can be
perfectly reconstructed using a given set of reconstruction vectors. If f does not
lie in the reconstruction space W, then it cannot be perfectly reconstructed using
only reconstruction vectors that span WW. The traditional approach is therefore
to assume that f lies in W, or to choose a sampling method such that the recon-
structed signal is the minimal-error approximation to f, i.e., closest to f in a
least-squares (l2) sense. However, this requires the sampling space S to be equal
to the reconstruction space W.

An interesting problem first studied by Unser and Aldroubi [29] in the context
of shift invariant spaces and later in [30, 31, 28, 9, 8], is the problem in which both
the sampling vectors and the reconstruction vectors are specified, so that we have
no freedom in choosing & and W, and the input signal f can lie in an arbitrary
space H containing W, that may be larger than W. If f does not lie in W and
the sampling scheme is such that S # W, then the minimal-error approximation
cannot be obtained. Therefore, in this general setting, our problem is to construct
a good approximation of f given both a sampling method and a reconstruction
method.

In this chapter we develop a broad sampling framework for nonredundant and
redundant sampling and reconstruction. The procedures we develop allow for
almost arbitrary sampling and reconstruction spaces, as well as arbitrary input
signals. The rudimentary constraint we impose on the reconstruction is that
if the input f lies in W, then the reconstruction will be equal to f so that our
framework includes the more restrictive perfect reconstruction theories as special
cases. We will show that this requirement uniquely determines the reconstructed
signal. Furthermore this reconstructed signal is a consistent reconstruction [29]
of f, namely it has the property that although if f does not lie in W then it is
not equal to f, it nonetheless yields the same measurements.

In our development, we consider both the case of nonredundant sampling and
the case of redundant sampling in which the measurements constitute an over-
complete representation of the signal. To obtain a consistent reconstruction of f
in this case, we introduce a generalization of the well known dual frame vectors
[6], referred to as the oblique dual frame vectors [8]. These frame vectors have
properties that are very similar to those of the conventional dual frame vectors.
However, in contrast with the dual frame vectors, they are not constrained to lie
in the same space as the original frame vectors.

By allowing for arbitrary sampling and reconstruction spaces, the sampling
algorithms can be greatly simplified in many cases with only a minor increase in
approximation error [29, 27, 28, 30, 4, 5]. Using oblique dual frame vectors we can
further simplify the sampling and reconstruction processes while still retaining
the flexibility of choosing the spaces almost arbitrarily, due to the extra degrees
of freedom offered by the use of frames that allow us to construct frames with
prescribed properties [14, 1]. Furthermore, using the redundant procedure we
can reduce the quantization error when the measurements are quantized prior
to reconstruction [8].
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Building upon a geometric interpretation of the consistent sampling proce-
dures, we also develop a general framework for constructing signals with pre-
scribed properties. For example, using this framework we can construct a signal
with specified lowpass coefficients and specified values over a time interval.

For simplicity of exposition the results in this chapter are derived for the
finite-dimensional case; however, most of the results can be extended to the
infinite-dimensional case, under certain mild constraints. For example, we must
assume that the sampling and reconstruction spaces are closed, and that the
sampling and reconstruction vectors satisfy certain norm constraints. This more
general case is the subject of ongoing work.

In Section 2 we consider the sampling framework in detail, and develop a
geometric interpretation of the sampling and reconstruction scheme that pro-
vides further insight into the problem. Section 3 considers explicit reconstruction
methods and develops an interpretation of the sampling scheme in terms of the
oblique pseudoinverse. The stability and reconstruction error resulting from our
general scheme are analyzed in Section 4. In Section 5 we consider nonredundant
sampling schemes, and illustrate the reconstruction in the context of concrete ex-
amples. In Section 6 we use the concept of oblique dual frame vectors to develop
redundant sampling procedures, and to derive some general properties of our
algorithms. Based on our consistent reconstruction algorithms, in Section 7 we
develop a general framework for constructing signals with prescribed properties.

2 Consistent Reconstruction

2.1 Notation and Definitions

We denote vectors in an arbitrary Hilbert space H by lowercase letters, and the
elements of a vector ¢ € CV by c[k]. Ps denotes the orthogonal projection oper-
ator onto the space S, and V() and R(-) denote the null space and range space
of the corresponding operator, respectively. The Moore-Penrose pseudoinverse
[12] of a transformation 7T is denoted by TT, and T* denotes the adjoint of T
The inner product between vectors z,y € H is denoted by (z,y) = z*y.

A set transformation X: CN — H corresponding to {zy € H,1 <k < N}is
defined by Xa = Zszl alk]zy, for any a € CV. From the definition of the adjoint
X*: H — CV it follows that if @ = X*y, then a[k] = (zx,y).

A set of vectors {z € H,1 < k < N} forms a frame for an M-dimensional
space H if there exists constants A > 0 and B < oo such that

N
Allyll® <> Ky, =i)1” < BllylP, (2.1)
k=1

for all y € H [6]. Although in principle N maybe infinite, we assume throughout
that NV is finite. With X denoting the set transformation corresponding to the
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vectors xy, (2.1) is equivalent to
Al|Pall* < {(a, X*Xa) < B||Palf?, (2.2)

for any a € CN, where P = Py(x) is the orthogonal projection onto N'(X)*.
The lower bound in (2.1) ensures that the vectors zy span ; thus we must have
N > M. If N < oo, then the right hand inequality of (2.1) is always satisfied
with B = Eszl (zk, k). Thus, any finite set of vectors that spans H is a frame
for H. If the bounds A = B in (2.1), then the frame is called a tight frame. The
redundancy of the frame is defined as r = N/M.

A set of vectors {z € H} is a Riesz basis for A if it is complete, i.e., the
closure of the span of {z;} equals #H, and there exists constants a > 0 and
B < oo such that

a)_ lafk]” <
k

for all a € l2. We note that if H is a finite-dimensional space, then any basis for
H is a Riesz basis.

Z alk]xy,

k

<8 Jalk)?,

2.2 Consistency Condition

Suppose we are given measurements c[k] of a signal f that lies in an arbitrary
Hilbert space H. The measurements c[k] = (s, f) are obtained by taking the
inner products of f with a set of N sampling vectors {si,1 < k < N} that span
an M-dimensional subspace S C #, which is referred to as the sampling space.
We construct an approximation f of f using a given set of N reconstruction
vectors {wy,1 < k < N} that span an M-dimensional subspace YW C H, which
is referred to as the reconstruction space. In the case of nonredundant sampling
N = M so that the sampling and reconstruction vectors form a basis for S and
W, respectively; in the case of redundant sampling N > M and the sampling
and reconstruction vectors form a frame for S and W, respectively. We do not
require the sampling space S and the reconstruction space W to be equal.

The reconstruction f has the form f = Eszl d[k]wy, for some coefficients d[k]
that are a linear transformation of the measurements c[k], so that d = He for
some H. With W and S denoting the set transformations corresponding to the
vectors wy, and sy respectively,

N
f=> dklwy =Wd=WHc=WHS"f. (2.3)
k=1

The sampling and reconstruction scheme is illustrated in Fig. 1.

Since f given by (2.3) always lies in W, if f ¢ W, then f # f. Because we
are allowing the space of signals H to be larger than W, we must replace the re-
quirement for perfect reconstruction of f ¢ W with a less stringent requirement.
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c[k] d[k]

FIGURE 1. General sampling and reconstruction scheme.

Therefore, our problem is to choose H in Fig. 1 so that f is a good approxi-
mation of f. In particular, we require that if f € W, then f = f. To this end
we must have that W N St = {0}. For suppose that z is a nonzero signal in
WNSL. Then clk] = (sg,z) = 0 for all k, and clearly x cannot be reconstructed
from the measurements c[k]. Consequently, throughout this chapter we explicitly
assume that WN S+ = {0}, and that H = W & S*. Note that if W and S both
have finite and equal dimension, then W N S+ = {0} implies that H = W & S*.
However, this is not true in general for infinite-dimensional spaces.

The condition WNS+ = {0} can be equivalently stated in terms of the cosine
of the “angle” between the subspaces S and W [29, 2], which is defined by

cos(OV, ) = _inf || Psul. (2.4)

Specifically, if W + St is closed in H, then W N S+ = {0} if and only if
cos(6(W,S)) > 0 [26]. Furthermore, cos(§(W,S)) > 0 and cos(6(S,W)) > 0
if and only if W @ S+ = H. Note that in general cos(8(S,W)) # cos(8(W, S))
but we always have cos(8(S,W)) = cos(@(W+,S1)). If W@ St = H, then
cos(0(S,W)) = cos(8(W,S)) [26]. We also have equality when W and S are
both shift invariant spaces [29)].

Since we are requiring that f=WHS*f = f for all f € W it follows im-
mediately that with G = WHS*, GGf = Gf for any f € W. Furthermore,
since any € H can be expressed as £ = w 4+ v with w € W and v € S+ and
S*v =0, Gz = Gw = w, so that for any f € H, GGf = G f. We conclude that
G must be a projection operator. To specify G, we need to determine its null
space NV (G) and its range space R(G). Since G = WHS*, N(G) D N(S*) = S+
and R(G) € R(W) = W. But since Gf = f for all f € W we have that
R(G) = W which immediately implies that N'(G) = S*. Therefore G = W HS*
is an oblique! projection [15, 2, 18] with R(G) = W and N(G) = S, denoted
by Eyys+. The oblique projection Ey,g1 is the unique operator satisfying

Eysiw = wforany weW;

Eywsiv = 0 for any v € S*. (2.5)

1 An oblique projection is a projection operator E satisfying E? = E that is not necessarily
Hermitian. The notation E), 5. denotes an oblique projection with range space VW and null
space S+, If W = S, then E\y s is an orthogonal projection onto W which we denote by Pyy.
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We therefore have the following theorem:

Theorem 2.1. Let {c[k] = (sk, f)} denote measurements of f € H with sam-
pling vectors {sy} that span a subspace S C H, and let the reconstruction vectors
{wi} span a subspace W C H. such that H = W S+. Then f 18 a reconstruction
of f that reduces to a perfect reconstruction for oll f € W if and only if

f=Ews: . (2.6)

The reconstruction (2.6) has the additional property that it satisfies the con-
sistency requirement as formulated by Unser and Aldroubi in [29]. A consistent
reconstruction f of f has the property that if we measure it using the measure-
ment vectors si, then the measurements will be equal to the measurements c[k]
of f. SinAce f = Eys. f it follows immediately that S*f = S*Eyss f = S*f,
so that f i is a consistent reconstruction of f. Furthermore, any consistent recon-
struction f of f reduces to a perfect reconstruction for f € W. Indeed, if f € W
and f is a consistent reconstruction of f, then (s, f) = (sk, f) for all k, so that
(sk, f — f) = 0, which implies that f — f € S*. But f — f also lies in W, and
since WN 8t = {0} we conclude that f = f. We therefore have the following
corollary to Theorem 2.1:

Corollary 2.1. Let {c[k] = (sk, )} denote measurements of f € H with sam-
pling vectors {sy} that span a subspace S C H, and let the reconstruction vectors
{wy} span a subspace W C ‘H such that H = W & S*. Then f is a consistent

reconstruction of f if and only sz =FEyst f.

Theorem 2.1 describes the form of the unique consistent reconstruction if it
exists, however it does not establish its existence. In Section 3 we show that a
consistent reconstruction can always be obtained, and we derive explicit recon-
struction procedures. This then implies that if f € W, then f can be perfectly
reconstructed from the measurements c[k]. Therefore, our results can also be
used to generate new sampling theorems that yield perfect reconstruction. We
will illustrate these ideas in the context of a concrete example in Section 5.2.
Before proceeding to the detailed methods, in the next section we present a ge-
ometric interpretation of the sampling and reconstruction that provide further
insight into the problem.

2.3 Geometric Interpretation of Sampling and Reconstruction

Let us first consider the case of perfect reconstruction for signals in WW. Thus, we
would like to determine conditions under which any f € W can be reconstructed
from the measurements c[k] = (f, si). We first note that sampling f with mea-
surement vectors in S, is equivalent to sampling the orthogonal projection of f
onto &, denoted by fs = Psf. This follows from the relation

(sk, f) = (Pssk, f) = (s, Psf). (2.7)
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We may therefore decompose the sampling process into two stages, as illustrated
in Fig. 2. In the first stage the signal f is (orthogonally) projected onto the
sampling space &, and in the second stage the projected signal fs is measured.
Since fs € S and the vectors s span S, fs is uniquely determined by the
measurements c[k]. Therefore, knowing c[k] is equivalent to knowing fs.

_ fs
f S* |k = f Ps S* | c[K]

FIGURE 2. Decomposition of the sampling process into two stages.

In view of the interpretation of Fig. 2, our problem can be rephrased as follows.
Can we reconstruct a signal in W, given the orthogonal projection of the signal
onto S, with # = W @ S*? Fig. 3(a) depicts the orthogonal projection of an
unknown signal f € W onto S, denoted fs. The problem then is to determine
f from this projection. Since the “direction” of W is known, there is only one
vector in W whose orthogonal projection onto S is fs; this vector is illustrated
in Fig. 3(b). Thus, from this geometrical interpretation we conclude that for
H =W @ S+, perfect reconstruction of any f € W from the measurements c[k]
is always possible.

S+ S+

fs

(a) (b)

FIGURE 3. Illustration of perfect reconstruction of f € W from fs = Psf, with
# = W @® S8t (a) orthogonal projection of unknown signal in W onto S (b) unique
signal in W with the given projection.

We now discuss consistent reconstruction for signals f € H. If f is a consistent
reconstruction of f, then f and f have the same measurements: c[k] = (s, f) =
(s, f). From our previous discussion it then follows that fs = fs where fs =
Ps f Thus, geometrically a consistent reconstruction f of f is a signal in W
whose orthogonal projection onto S is equal to the orthogonal projection of f
onto S, as illustrated in Fig. 4. Evidently, the consistent reconstruction is unique

and always exists. We have seen in Theorem 2.1 that this reconstruction has a
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nice geometrical interpretation: It is the oblique projection of f onto W along
S+. This interpretation is illustrated in Fig. 5, from which it is apparent that
Eyst f and f have the same orthogonal projection onto S and consequently
yield the same measurements.

SJ_

fs

FIGURE 4. Illustration of consistent reconstruction of an arbitrary f from fs, with
H=WaSs".

SJ_

Eysif

Egiwfy-

FIGURE 5. Decomposition of f into its components in W and S* given by Eysif
and Eg.1,y f, respectively.

In summary, by considering a geometric interpretation of the sampling process
and the consistency requirement we have demonstrated that perfect reconstruc-
tion of signals in W is always possible as long as H = W@ S+, and we illustrated
the reconstruction geometrically. We also showed that under the same condition
consistent reconstruction is always possible, and illustrated the reconstruction.
It is important to note that the geometric interpretation (and Theorem 2.1) hold
irrespective of whether the sampling process is nonredundant or redundant. In
the next section we derive an explicit reconstruction scheme. We then specialize
the results to the nonredundant case in Section 5, and to the redundant case in
Section 6.
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3 Reconstruction Scheme

3.1 Reconstruction Algorithm

From Theorem 2.1 and the geometric interpretation of Section 2.3 it follows that
to obtain a consistent reconstruction f of f we need to determine H in Fig. 1
such that G = WHS* = Eyys1, i.e., such that G satisfies (2.5). The following
proposition establishes that with H = (S*W)t,

N
F=> dkw, =Wd=W(S*W)le = W(S*W)!S*f, (3.8)

k=1
is a consistent reconstruction of f for all f € H.

Proposition 3.1 ([8, 9]). Let the vectors {si,1 < k < N} corresponding to S
span an M -dimensional subspace S C H, and let the vectors {wg,1 < k < N}
corresponding to W span an M -dimensional subspace W C H, with H = WaS*.
Then Eyys. can be expressed as Eyyg: = W(S*W)TS*.

If f € W then f = Eys+ f = f, and f can be perfectly reconstructed from the
measurements c[k] using (3.8). By choosing different spaces #, W and S and us-
ing (3.8), we can arrive at a variety of new and interesting perfect reconstruction
sampling theorems.

From (3.8), f is obtained by first transforming the measurements c[k] into
“corrected” measurements d[k] corresponding to d = (S*W)tc = Tf, where
T = (S*W)'S*. As we now show, T has an interesting interpretation: It is the
oblique pseudoinverse of W on V = N'(W)+ along S+.

Alternatively, we can obtain f by transforming the reconstruction vectors wy,
into “corrected” reconstruction vectors g corresponding to @ = W (S*W)t, so
that f =3 ¢ Clk]ar- In analogy to T, in the next section we show that @ is the
oblique pseudoinverse of S* on W along Q = N(S).

3.2 Oblique Pseudoinverse Interpretation of Reconstruction

Let T: K — U be a linear transformation and let X = G ® N(T) and Y =
R(T) ® Z. The oblique pseudoinverse of T on G along Z, denoted Tg#z, is the
unique transformation satisfying [21, 9]

TTZfZ = E’R(T)Z; (3.9)
THT = Egn(ry; (3.10)
R(TY;) =G. (3.11)

As shown in [9], (3.9)-(3.11) imply that Tg#z inverts T' between G and R(T),
while nulling out any vector in Z. This interpretation is illustrated in Fig. 6,
from which it follows that the pseudoinverse T is a special case of the oblique
pseudoinverse Tébz for which G = N(T)*+ and Z = R(T)*.
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T

< F

P

FIGURE 6. The action of T and T}, on the subspaces G, N'(T), R(T) and Z.

Proposition 3.2. Let the vectors {s,1 < k < N} corresponding to S span an
M -dimensional subspace S C H, and let the vectors {wg,1 < k < N} corre-
sponding to W span an M -dimensional subspace W C H, with H =W @ S*.
Then

1. the oblique pseudoinverse of W onV = N (W)L along S* can be expressed
as Wfsl = (S*W)tS*;

2. the oblique pseudoinverse of S* on W along Q = N(S) can be expressed
as (S*)o = W(S*W)1.

Proof. The proof of (1) is given in [8]; the proof of (2) is analogous to the proof
of (1) and is therefore omitted. O

The actions of Wff . and (S *)fvg are illustrated in Fig. 7.

FIGURE 7. (a) The action of W, with V = N'(W)* (b) the action of (S*)}} o with
Q = N(9).

Comparing (3.8) with Proposition 3.2 we see that f = Wd where d = Wfslf.
Thus d[k] = (vg, f) where v}, are the vectors corresponding to (W;;'?E )" Since
R((WfSL)*) = /\/(WjésL)L = 8, the vectors vy, € S span S. Therefore, in the

case of nonredundant sampling, i.e., N = M, the vectors vy form a basis for
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S, and in the case of redundant sampling, i.e., N > M, the vectors v form
a frame for S. These basis and frame vectors have special properties which we
discuss in Sections 5 and 6, respectively. Specifically, in Section 5 we show that
in the case of nonredundant sampling, the vectors vy form a basis for S that is
biorthogonal to the basis vectors wy. In Section 6 we show that in the case of
redundant sampling, the vectors vj, form the obligue dual frame [8] of wy on S,
which has properties analogous to the dual frame vectors.

Alternatively, f = Qc = Zszl clk]gr where @ = (S*)#\,Q and the vectors g,
correspond to @. Since R(Q) = W, the vectors g € W span W. As we show
in Sections 5 and 6, when N = M the vectors g form a basis for W that is
biorthogonal to the basis vectors si, and when N > M the vectors g form a
frame for W that is the oblique dual frame of s; on W.

In Section 6 we will see that both of these interpretations are useful in devel-
oping properties of our general reconstruction scheme.

Before developing the properties of the vectors vy and gg, in the next section
we consider the performance of our reconstruction algorithm. Specifically, we
derive a figure of merit characterizing the stability of the reconstruction, and
provide bounds on the norm of the reconstruction error.

4 Stability and Performance Analysis

4.1 Stability

We first consider the stability of our algorithm, namely the affect of a small
perturbation of the measurements on the reconstructed signal.

Since f = Qc with Q = W(S*W), and the vectors {gy,1 < k < N} form a
frame for W,

AglIPel” < IfII? < Byl Pe|l?, (4.12)

for some constants 0 < A4, < B, and any ¢ € CV, where P is the orthogo-
nal projection onto N (Q)+ = N(S)+L. Therefore, if the measurements c[k] are
perturbed by a sequence e[k], then the perturbation in the output f. satisfies

Ag ||Pell” _ [Ifell? By || Pe]l*
By [|[Pe|l> — IIfII* ~ { Aq |1 Pell?

(4.13)
Based on (4.13), Unser and Zerubia [30] propose the condition number

_ B
K= 1, (4.14)

as an indicator of the stability of the reconstruction algorithm. Here it is assumed
that B, and A, are the tightest possible bounds in (4.12).
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To derive & for our reconstruction algorithm, let G = (W*S)H(W*W)'/2 so
that GG* = Q*Q. Then from (4.12),

Agllall* < {a,G*Ga) < Byllall?, (4.15)

for any a € V(W)™ so that the tightest possible frame bounds are 4, = 0%,(G
and B, = 0}(G), where o4 (X) denote the nonzero singular values of X, o1(X) =
maxy, o (X) and o (X) = ming o (X). Thus,

_ a(G)
om(G)’

Although (4.16) provides an explicit formula for k, it is not very informative.
In particular, it is difficult to see from this expression how the properties of
the frame vectors si, and the subspaces & and W affect the stability of the
reconstruction. In what follows, we develop an upper bound on s that depends
only on the angles between the different subspaces, and on the frame bounds of
the vectors sy, but not on the specific choice of frame vectors. Furthermore, we
show that in many cases this bound is tight.

Since ((S*S)'/2)1(S*S)'/? = Py(syr and R((W*S)t) = N(S)*, we can ex-
press G as G = ZT, with

(4.16)

Z = ((8*S)/)1, (4.17)
and
T = ($*S)'\2(W*S)t(w*w)1/2. (4.18)
It then follows that [16]
01 (G) <01 (Z)oi(T), (4.19)
and
o11(G) > 03 (Z)o3 (T). (4.20)

We have equality in (4.19) (resp. (4.20)) if and only if the right singular vector
corresponding to o1 (Z) (resp. oa(Z)) is equal to the left singular vector corre-
sponding to o1(T) (resp. oa(T)). In particular, we have equality in both (4.19)
and (4.20) if S*S and TT* commute.

Since the vectors s form a frame for S, for any a € N(S)+,

Asllal® < {a,S*Sa) < Bsllall?, (4.21)

where the tightest bounds are A; = 0%,(S) and Bs = 0% (S). Therefore ¢3(Z) =
1/As and 02,(Z) = 1/Bs. Finally, 0?(T) = 1/02,(T") and 02,(T) = 1/03(TT)
where using the fact that for two matrices D and H, (DH)' = HI D! if R(H) =
N(D)t, N(DH) = N(H) and R(DH) = R(D), we have

TH = (W W)Y tw*s(($*S)H/ )1, (4.22)



Sampling Without Input Constraints: Consistent Reconstruction in Arbitrary Spaces 13

Since N'(T1) = N(S) and Py, = W (W*W) W,

m(Th) = i T'z[>= min ||Pys|® = cos*(6(S 4.23
o) = min TR = min ([Pws]l” = cos’(6(S, W), (4.23)

where cos(0(S,W)) is defined by (2.4), and

o2(T1) = IPwsl2=1— min [|(I - Py)s|? =1 — cos?(8(S, W)).
s€ES, || =1 sES,||s||=1
(4.24)

V1- cos2 (S, w+))
1<k< \/7 oS (4.25)

If §*S and TT* commute, then

. %\/I—cos2(0(3,WL))’ (4.26)
A cos(0(S,W))
so that in this case the stability of our algorithm does not depend on the specific
choice of frame vectors s or on the specific choice of subspaces S and W, but
only on the frame bounds and the appropriate angles between the subspaces.

If the vectors sj, form a tight frame for S, then SS* = AP (5. for some
A > 0, and S*S is an orthogonal projection. In this case S*S = (S*9)'/2,
and S*S and TT* commute. In addition A; = By, = A, so that k =
/1= cos2(8(S,WL))/ cos(8(S, W)).

As we show in Section 5.1, in the special case in which f = f(t) liesin Ly, and S
and W are shift invariant spaces generated by integer translates of appropriately
chosen functions, each of the infinite matrices S*S, W*S and W*W are Toeplitz
matrices which are diagonalized by a Fourier transform matrix. Therefore in this
case TT* and S*S commute and k is given by (4.26). An explicit expression for
cos(0(S,W)) in this case is given in [29].

We conclude that

4.2 Performance Analysis

Since our reconstruction algorithm does not yield perfect reconstruction for all
f € H, there is an error associated with the reconstruction. If S = W, then
Eyst = Py and our algorithm will result in a reconstruction that minimizes
the norm of the reconstruction error. If S # W, then the minimal error approx-
imation cannot be obtained. Nonetheless, the norm of the reconstruction error
f — Eyys1 f can be bounded based on results derived in [29],

If = Pwfll < IIf = Ewse fIl < 7= Pwill, (4.27)

OS( s)

where || f — Pw f|| is the minimal norm of the reconstruction error corresponding
to the case in which W= S.
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From (4.27) we see that there is a penalty for the flexibility offered by choos-
ing S (almost) arbitrarily: The norm of the reconstruction error for f ¢ W is
increased. However, in many practical applications this increase in error is very
small [28, 30, 4, 5].

5 Reconstruction From Nonredundant Measurements
Suppose that the sampling vectors {sx,1 < k < M} form a basis for S and the
reconstruction vectors {wg,1 < k < M} form a basis for W. Then, from Propo-

sition 5.1 below S*W is invertible so that the general reconstruction formula
(3.8) reduces to

dlklwe = Wd = W(S*W) 1S*f. (5.28)

M=

f=

k=1

Proposition 5.1 ([8]). Let the vectors {si,1 < k < M} corresponding to S
denote a basis for an M-dimensional subspace S of H, and let the wvectors
{wg,1 < k < M} corresponding to W denote a basis for an M -dimensional

subspace W of H. Then S*W is invertible if and only if H =W & S+.

A similar proposition was proved in [9] for the infinite-dimensional case in which
the vectors s; and wy, form Riesz bases for S and W respectively. Furthermore,
since S*W is bounded, the open map theorem implies that (S*W)~! is also
bounded.

The resulting measurement and reconstruction scheme is depicted in Fig. 8.
Note, that since f is unique and the vectors wy, are linearly independent, the
coeflicients d[k] are unique. The reconstruction scheme of Fig. 8 can also be used
in the case in which & and W are infinite-dimensional spaces generated by the
Riesz bases {s;,} and {wy} respectively, with H = W @ S*.

c[k] d[k]
f 5 (S*w)! W — f=Eps.f

FIGURE 8. Consistent reconstruction of f using nonredundant sampling vectors s
and nonredundant reconstruction vectors wg, with H =W S S +,

We may interpret the reconstruction scheme of Fig. 8 in terms of a basis ex-
pansion for signals in W. Since for f € W, f = f, any f € W can be represented
as f = ), d[k]w, where d[k] = (vg, f) and the vectors vy € S correspond to
V= (ijfgl )* = S(W*S) 1. We have already seen in Section 3.2 that the vectors
vy form a basis for S, and since (W*S) ™! is bounded, these vectors form a Riesz
basis. Since V*W = (S*W) 1S*W = I, these basis vectors have the property
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that they are biorthogonal to wy: (vg, wm) = Ogm. Therefore Fig. 8 provides an
explicit method for constructing (Riesz) basis vectors for an arbitrary space S
with W @ St = H, that are biorthogonal to the (Riesz) basis vectors wy,.

Alternatively, any f € W can be represented as f = ), c[k]grx where the
vectors gy € W correspond to Q = (S*)fvg = W(S*W)~L. Since @ is bounded
and S*Q = I, these vectors form a (Riesz) basis for W that is biorthogonal to
the (Riesz) basis vectors sy.

To illustrate the details of the sampling and reconstruction scheme of Fig. 8 we
now consider two examples. Specifically, reconstruction in shift invariant spaces,
and bandlimited sampling of time-limited sequences.

5.1 Reconstruction In Shift Invariant Spaces

We first consider the sampling procedure of Fig. 8 for the special case in which
f = f(t) liesin Ly, and S and W are shift invariant spaces generated by integer
translates of appropriately chosen functions. Thus W = {f(t) = >,z @[k]w(t —
k)} and S = {f(t) = X ez z[k]s(t — k)}. To ensure that the vectors {si(t) =
s(t—k)} and {wg(t) = w(t — k)} form Riesz bases for S and W respectively,
we must have that [3] @ < Y, [W(w — 27k)]> < 8 where 0 < a < 3 and
7 < 3 18w — 27k)|? < & where 0 < v < 8. Here W (w) and S(w) denote the
continuous-time Fourier transforms of w(t) and s(t), respectively. The sampling
procedure in this case was first considered by Unser and Aldroubi in [29].

The measurements c[k] = (sx(t), f(t)) = [ s(t—Fk)f(t)dt correspond to samples
at times ¢ = k of the output of a filter with impulse response s(—t) with f(t)
as its input. The reconstructed signal corresponds to the output of a filter with
impulse response w(t), with an impulse train whose values are the corrected
measurements d[k] as its input, where d = (S*W)~'c and S and W are the set
transformations corresponding to the vectors s (t) and wy (t) respectively. Since
(si(t), wr(t)) = g(k — i), where g(t) = [ s(r)w(r — t)dr = s(t) * w(—t), S*W is
an infinite Toeplitz matrix, and is therefore equivalent to a filtering operation
with a discrete-time filter whose impulse response is given by p[k] = g(k) =
J s(t)w(t — k)dt. The frequency response of the filter is

Plw)= > gk)e ™ =21 > S(w+ 2rk)W*(w + 27k), (5.29)
k=—o0 k=—o00
where we used the Poisson sum formula [23]. Since d = (S*W) !¢, d is obtained
by filtering the sequence ¢ with a discrete-time filter with frequency response
1 1

T = P) " ey S@ 2w+ 20k

(5.30)

Therefore, the sampling scheme of Fig. 8 reduces to the sampling scheme depicted
in Fig. 9, which is equivalent to that proposed in [29].

Note that from Proposition 5.1 it follows that the filter P(w) is invertible if
and only if H = W @ S+, or alternatively, if and only if cos(d(W, S)) > 0.
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clk dlk
10— s@ X B w) % W) [ o)
Zzo:—oo6(t_k)

FIGURE 9. Consistent reconstruction of f(t) in shift invariant spaces.

5.2 Bandlimited Sampling of Time-Limited Sequences

We now consider an example that was also considered in [8, 11], in which # is
the space of sequences z[n] such that z[n] = 0 for n < 0,n > N, W is the space
of sequences z[n] such that z[n] = 0 for n < 0,n > M where M = 2M'+1 < N,
and S is the space of “bandlimited” sequences z[n] such that X[k] = 0 for
M' <k < N— M' where X[k],0 < k < N — 1 denotes the N point DFT of
z[n]. The bases for S and W are chosen as the sequences sg[n],0 < k< M —1
and wg[n],0 < k < M — 1 respectively, given by si[n] = ei2m(k=Mn/N for
0 <n <N —1 and 0 otherwise, and wg[n] = d[k — n].

Consider an arbitrary sequence f[n] in H. The measurements c[k],0 < k <
M —1 of f[n] are

N-1

ckl =) silnlf[n] = Z fln)em =N = F((k = M")N],  (5.31)

n=0

where F[k],0 < k < N — 1 is the N point DFT of f[n], and ((p))ny = pmod N.
Thus, the measurements c[k] are the M lowpass DFT coefficients of the N point
DFT of f[n]. To obtain a consistent reconstruction of f[n] we need to determine
(S*W)~L. The kmth element of S*W is

N-1

(sk,wm) = Y si[n]wm[n] = stfm] = Z*"B™, (5.32)
n=0

where Z = e 927/N and B = e/2™M'/N We can therefore express S*W as

1 1 1 1
1 Z Z? ZM-1

S*W = : D. (5.33)
1 gZM-1 ZZ(J;/I—I) e g(M-1)?

Eq. (5.33) is the product of a Vandermonde matrix and a diagonal matrix D
with nonzero diagonal elements B™,0 < m < M — 1. Therefore, S*W is always
invertible which implies by Proposition 5.1 that WNS+ = {0}. We can compute
the inverse of S*W using any of the formulas for the inverse of a Vandermonde
matrix (see e.g., [19, 24]). The corrected measurements d[k] are then given by
the elements of d = (S*W) ¢ where c is the vector with elements c[k] given by
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(5.31), and f[n] = b _0 wg[n]d[k] = d[n] for 0 < n < M — 1 and 0 otherwise.
The consistency requirement implies that El((k — M")n] = F[((k — M")n]
for 0 < k < M — 1, where F[k] is the N point DFT of f[n]. Thus f[n] is a
time-limited sequence that has the same lowpass DFT coefficients as f[n].

In Section 7 we develop a systematic method for constructing signals in a
subspace W with specified properties in a subspace S. We also consider the
more general problem of constructing a signal in H with specified properties in
both W and S. Using these methods we can generalize our construction here
to produce a signal with specified lowpass coefficients and specified values on a
given time interval.

Now, suppose that f[n] is a length M sequence in W, and we are given M
lowpass DFT coefficients F[((k— M'))n], 0 < k < M —1. We can then perfectly
reconstruct f[n] from these coefficients using the method described above. This
implies the intuitive result that a time-limited discrete-time sequence can be
reconstructed from a lowpass segment of its DFT transform. This result is the
analogue for the finite length discrete-time case of Papoulis’ theorem [22], which
implies that a time-limited function can be recovered from a lowpass segment of
its Fourier transform. The reconstruction based on Papoulis’ theorem is typically
obtained using iterative algorithms such as those discussed in [22, 25]. By choos-
ing appropriate sampling and reconstruction vectors in the general scheme of
Fig. 8, we obtained a finite length discrete-time version of this theorem together
with a simple non-iterative reconstruction method. This example illustrates the
type of procedure that might be followed in using our framework to generate
new sampling theorems.

6 Reconstruction From Redundant Measurements

Suppose now that we are given a set of redundant measurements é[k] = (zy, f)
of a signal f € H, where the vectors {zy,1 < k < N} form a frame for S and
reconstruction is obtained using the reconstruction vectors {yg,1 < k < N}
which form a frame for W. From the general reconstruction formula (3.8), f is
obtained using the frame vectors y by transforming the measurements ¢[£] into
corrected measurements d = (X*Y)'é, as depicted in Fig. 10.

clk] d[k] R
f— X (X*Y)! Y i— f=BEpys:f

FIGURE 10. Consistent reconstruction of f using redundant sampling vectors z; and
redundant reconstruction vectors yx, with H =W @& S*.

One of the reasons for using redundant measurements is to reduce the average
power of the quantization error, when quantizing the corrected measurements
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d[k] prior to reconstruction. If S = W), then it is well known that using a redun-
dant procedure the quantization error can be reduced by the redundancy of the
frame [6, 13]. In [8] this result is extended to the case in which S # W, so that
we can choose a frame y;, for W such that when using the redundant sampling
procedure of Fig. 10 we can reduce the average power of the reconstruction error
by the redundancy, in comparison with the nonredundant scheme of Fig. 8.

In the next section we show that the redundant sampling scheme of Fig. 10
can be interpreted as a frame expansion of f € W in terms of the oblique dual
frame vectors of y on S. Alternatively, we can interpret the redundant sampling
scheme as a frame expansion of f € W in terms of the oblique dual frame
vectors of zj on Y. Based on the properties of the oblique dual frame vectors,
in Section 6.2 we show that our reconstruction algorithm has some desirable
properties. Specifically, the coefficients d[k] in Fig. 10 have minimal l,-norm from
all possible coefficients leading to consistent reconstruction. Furthermore, if the
measurements ¢[k] are perturbed, then the sampling scheme of Fig. 10 results in
a reconstruction f whose measurements using the measurement vectors x; are
as close as possible to the measurements ¢[k] of f, in an l3-norm sense.

6.1 Oblique Dual Frame Vectors

Definition 6.1. [8] Let the vectors {yx € W,1 < k < N} corresponding to ¥
denote a frame for an M-dimensional subspace W of H, and let S be an M-
dimensional subspace of H with H = W @& S*. Then the oblique dual frame
vectors of y; on S are the frame vectors {§5 € S,1 < k < N} corresponding to

the oblique dual frame operator (Y7, )* where V = N(Y)~.

VS+

Note that from the discussion following Proposition 3.2, the vectors gj,f form a
frame for S. As we show in the next section, these frame vectors have properties
which are analogous to the properties of the conventional dual frame vectors
[17, 6], and therefore justify our choice of terminology.

From (3.8) and Proposition 3.2, the corrected measurements d[k] in Fig. 10
are the inner products of f with the oblique dual frame vectors of y, on S:
dk] = (§S, f)- Since YYJEL = E\yst, any f € W can be expressed as

N
f=Ewse =Y (5, s (6.34)

k=1

Eq. (6.34) is just a frame expansion of a signal f € W. However, in contrast
with conventional frame expansions, here the synthesis frame vectors y; lie in

W, while the analysis frame vectors §§ lie in an arbitrary space S, such that
H =W @ S*. In the special case in which S = W, stl =Y and the oblique
dual frame operator reduces to the conventional dual frame operator [6]. Then
any f € W can be expressed as f = Zgzl Gk, f)yr, where g € W are the dual

frame vectors [6] of yy in W, corresponding to (Y'1)*.
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Alternatively, we can express f in Fig. 10 as f = Zszl élk)z}V, where from
Proposition 3.2 the vectors )V are the frame vectors corresponding to (X *)3, o=
W(S*W)t, with @ = N(X). From the properties of the oblique pseudoinverse

we have that (X*)},o = (X ngl )*, so that from Definition 6.1, the vectors %)V

are the oblique dual frame vectors of 2 on W. Since (X *)#VQX * = Eyst, any
f € W can also be expressed as a frame expansion,

N
f=Ewsif=Y (o N3 (6.35)

k=1

Eq. (6.35) and (6.34) generalize the concept of a frame expansion to the case
in which the analysis and synthesis vectors are not constrained to lie in the same
space. Specifically, given a frame {y} for W, any f € W can be expressed as
[ =X, (G5, f)yr where § are the oblique dual frame vectors of yx on S, and S
is an arbitrary subspace such that # = W @ S*. Similarly, given a frame {z)}
for S, any f € W can be expressed as f = Y., {zy, f)Z}’ where %)V are the
oblique dual frame vectors of z on W, and W is an arbitrary subspace such
that #H =S @ W+, or equivalently, H = W & S+.

6.2 Properties of the Oblique Dual Frame Vectors

Given a frame y;, for W, there are many choices of coefficients d[k] that cor-
respond to measurements of f using a frame for S, and such that Eyyge f =
>4 dk]yk. The particular choice d[k] = (g, f) has the minimal ly-norm from
all possible coefficients, as incorporated in the following proposition.

Proposition 6.1 ([8]). Let {yx,1 < k < N} denote a frame for an M-
dimensional subspace W C H, and let S C H denote an M -dimensional sub-
space such that H = W@ S*t. Then from all possible coefficients d[k] that satisfy
Eywsif = Z;V:l dElyrx for all f € H, the coefficients d[k] corresponding to
d= Yj’;lf with V = N (V)1 have minimal ly-norm.

Since in Fig. 10, d[k] = (g, f), from Proposition 6.1 these coefficients have
minimal l;-norm from all possible coefficients leading to consistent reconstruc-
tion.

We can consider the property stated in Proposition 6.1 from a slightly differ-
ent point of view. Since the vectors y, form a frame for W, any f € W can be
expressed as f = Yd for some d. However, since the vectors yy, are linearly depen-
dent, d is not unique. The minimal norm coefficients are the unique coefficients
that lie in A'(Y)* = V. We may express these coefficients as d = Y f; indeed
Yd =YYtf = Pyf = f. Alternatively, d = YfSL f where St is an arbitrary
subspace of H such that W N St = {0}; indeed Yd = YY‘fgLf =Eys.f = f.
Thus, although the minimal norm coefficients d[k] are unique, the resulting sam-
pling vectors #;, such that d[k] = (t, f) are not unique. If in addition we impose
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the constraint that ¢ € S, then the unique sampling vectors that result in coef-
ficients with minimal norm correspond to (Y;‘*f,sL )*. This interpretation is useful
in applications in which a signal f € W is corrupted by noise that is known to lie
in some subspace S*. By using appropriate sampling vectors in S, we can totally
eliminate this noise and at the same time recover the minimal norm coefficients.

Given measurements ¢[k] = (x, f) using a set of frame vectors z;, for S, there
are many choices of frame vectors g for W such that Eyys. f = >, ¢[k]qx. The
particular choice ¢ = ;Tc}ﬁ’v has the property that if the measurements ¢[k] are
perturbed, then the measurements of the reconstruction f will be as close as
possible to the measurements ¢[k] of f, in an l3-norm sense.

Proposition 6.2 ([8]). Let f = Ei\;l blklwy for some vectors {wy,1 < k <

N} that form a frame for W, and are to be determined. Let {t;,1 < k < N}

denote a given set of sampling vectors corresponding to T. Then the vectors
; # * __ *\ 7 ..

wy corresponding to (TN(T)LWL) = (T™)}, w(r) result in f with measurements

A

(tk, f) that are as close as possible to b[k] in an ly-norm sense.

It follows from Proposition 6.2 that if the coefficients ¢[k] in Fig. 10 are per-
turbed, then our reconstruction algorithm will lead to a reconstruction f whose
measurements using the given sampling vectors xj, are as close as possible to the
measurements ¢é[k] of f in an ly-norm sense.

It is interesting to note that the oblique dual frame vectors of §§ on W are the
vectors yg [8]- Thus not only do we have f = chvzl (G, f)yx for any f € W but
also f = Egﬂ (yk, [)§$ for any f € S. Similarly, the oblique dual frame vectors
of £V on 8 are the vectors xy, so that f = S | (Z)Y, f)zy, for any f € S.

7 Constructing Signals With Prescribed Properties

A potential class of interesting applications of the consistent sampling procedures
we developed in the previous sections is to the problem of constructing signals
with prescribed properties that can be described in terms of inner products of the
signal with a set of vectors. For example, we may consider constructing an odd
signal with specified local averages, or constructing a signal with specified odd
part and specified local averages. Exploiting the results we derived in the context
of consistent reconstruction, in this section we develop a general framework for
constructing signals of this form.

We first consider the simpler case in which we wish to construct a signal f to
lie in a subspace W, and to have some additional properties in a subspace S that
can be described in terms of a set of mathematical constraints of the form (s, f)
for a set of vectors sy, that span §. We then consider the problem of constructing
a signal f with properties in two subspaces W and S that can be described in
terms of mathematical constraints of the form (s, f) for a set of vectors sy that
span S, and (wy, f) for a set of vectors wy, that span W.
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We assume for simplicity that the constraints are nonredundant, and that the
vectors s and wy, form Riesz bases for S and W, respectively. Using the oblique
dual frame vectors, the results extend in a straightforward way to the redundant
case.

Our first problem can be solved immediately by noting that it is equivalent
to a consistent reconstruction problem. Specifically, let c[k] = (sg, f) denote the
constraints on the signal f. Then the problem is to construct a signal f € W so
that its measurements taken with respect to the sampling vectors s are equal to
c[k]. ¥ H = W @ 81, then the unique signal f follows immediately from (5.28),

F=W(S*W) e, (7.36)

where W is a set transformation corresponding to a Riesz basis for W, and S is
the set transformation corresponding to the vectors sy.

Next, suppose that we want to construct a signal f with specific properties
in two spaces W and S with W NS = {0}, i.e., we want to construct f such
that (sg, f) = c[k] and (wg, f) = d[k]. In view of the geometric interpretation
of Fig. 2 it follows that constructing f such that (sg, f) = c[k] and {(wy, f) =
d[k] is equivalent to constructing f to have a specified orthogonal projection
fs onto S and a specified orthogonal projection fy, onto W. Fig. 3(a) depicts
the orthogonal projections of an unknown signal f onto S and W. The problem
then is to construct a signal f with these orthogonal projections. With ¢ =
W @ S, it is obvious that f can be arbitrary on /. However, there is a unique
vector f € U compatible with the given projections; this vector is illustrated in
Fig. 3(b). From this geometrical interpretation we conclude that for WNS = {0},
we can always construct a signal with the desired properties. Furthermore, the
orthogonal projection of this signal onto I/ is unique.

St S+

fw

(a)

FIGURE 11. Illustration of a construction of a signal f with specified orthogonal pro-
jections fs = Psf and fiy = Pwf with WNS = {0} (a) orthogonal projection of
unknown signal onto § and W (b) unique signal in &/ = W & S with the given projec-
tions.

We now explicitly construct the unique vector f € U satisfying the required
constraints. First we note that any signal f € U/ can be written as f = s+ v



22 Y. C. Eldar

where s € S and v € S with S = S N Y. Then, since (s, f) = (s, s) for all
k, constructing a signal f such that (sg, f)} = c[k] is equivalent to constructing
a signal s € S such that (s, s) = c[k]. Since the vectors s; form a Riesz basis
for §, S*S is invertible and the unique vector s € S such that S*s = c is
given by s = S(S*S)~lc. Once we determined s, the problem reduces to finding
v € S such that (wy,v) = d[k] — (wk,s)éd' [k], which is again equivalent to a
consistent reconstruction problem: We need to construct a signal v € S so that
its measurements using the sampling vectors wy, are equal to d'[k]. Since the
orthogonal complement StofSinlis equal to S, U = St W, and we can
apply (7.36) to obtain v = V(W*V)~1d = V(W*V)~1(d — W*s), where V is
a set transformation corresponding to a basis for S. Finally, the unique f € U
satisfying the desired constraints is

f=25(S*S)" e+ V(W*V)~ (d — W*S(S*S) o). (7.37)

We can immediately verify that indeed S*f = ¢ and W*f = d.

Note that there are many alternative methods of constructing f. Specifically,
instead of utilizing the decomposition f = s+wv we can decompose f as f = z+v
where v € S and z is a subspace X such that X & S = U/. We then construct
f by first finding the unique vector z € X such that (si,z) = c[k], and then
finding the unique v € S such that (wy,v) = d[k] — (wg, z). We may also change
the roles of S and W and utilize a decomposition of the form f = w + y where
now w € W and y € Wt nu.

As a final comment, we can also construct f by defining the combined basis
{t;} for W S, consisting of the vectors {s;} and {w;}. Then with T denoting
the set transformation corresponding to the vectors t;,

f=T(T*T) a, (7.38)

where a is the concatenation of ¢ and d. Although our construction scheme is
mathematically equivalent to (7.38), it provides further insight into the construc-
tion, so that in many cases f can be constructed simply by inspection, without
having to formally employ (7.38).

In Section 5.2 we considered an application of consistent sampling to the con-
struction of a time-limited signal with specified lowpass coefficients. Using (7.37)
we can now extend this construction to produce a signal with specified lowpass
coefficients and specified values on a time interval. By choosing different spaces
W and S and using (7.37), we can construct signals with a variety of different
properties. We consider some specific examples in the next section.
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7.1 Examples of Signal Construction

To illustrate the details of the framework for constructing signals with prescribed
properties, in this section we consider the problem of constructing a signal with
prescribed local averages and prescribed odd part, the problem of construct-
ing a signal with prescribed recurrent nonuniform samples, and the problem of
constructing a signal with prescribed samples using a given reconstruction filter.

Constructing a signal with prescribed local averages and prescribed odd part

As an illustration of the framework, we consider an example in which we wish
to construct a sequence f € ly with local averages f[2k] + f[2k + 1] = c[¥],
where ¢[—1] = ¢[0] = ¢[1] = 1 and c[k] = 0 otherwise, and with odd part
flk] — f[—k] = d[k], where d[1] = 1,d[2] = 2,d[3] =1 and d[k] =0,k > 4.

To this end we first determine a set of vectors s, and a set of vectors wy, such
that the desired properties can be expressed in the form (s, f) = é[k],k > 1 and
(wg, fy = d[k],k > 1 where ¢[k] is a reordering? of c[k]:

_ Ak —1)/2], k> 1,k odd;
olk] = { c{(—k/Z],) & ES 2k ovon, (7.39)

Let

0n—k+1]+6n—k], k>1,k odd;

skln] = { 6{n+k—1}+6%n+k}, k > 2,k even, (7.40)

and wg[n] = 6[n — k] — d8[n + k]. Then, ¢[k] = (sk, f) and d[k] = (wy, f) for k > 1.

In this example, S is the subspace of signals z that satisfy z[2n] = z[2n+ 1] for

all n, and W is the subspace of odd signals. It is immediate that SN W = {0}.

To apply (7.37) we need to select a basis vj, for S*, which is the subspace of
signals z that satisfy z[2n] = —z[2n + 1] for all n. A possible basis is

dn—k+1]—60n—k], k>1,k odd;
vk[n] = { 6%n+k—1}—6%n+k}, k> 2,k even. (7.41)
To determine f we need to calculate the semi-infinite matrices (S*S)~!,
(W*V)~1, and W*S, where S,W and V are the set transformations correspond-
ing to the vectors s, wy and v, respectively. Since W @ S is not closed, the
inverse (W*V)~! exists but is not bounded. We may still apply our framework
to construct a signal of the desired form as long as the sequences ¢ and d are
absolutely summable, as they are in our example.
Since S*S = 21, (§*S)~! = (1/2)I. Now,

(wi,v5) = (=1)" T (Op,jo1 — Orj), k,j > 1, (7.42)

2The purpose of the reordering is to ensure that the index set of the vectors s; and the
vectors wy, is the same.
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so that
-1 -1 0 0 0
0 1 1 0 0
ww=| 0 0 -1 -120 , (7.43)
0 0 0 11
and
-1 -1 -1 -1 -1
0 1 1 1 1
w*vy't=| 0 0 -1 -1 =1 -t (7.44)
0 0 0 1 1
Finally,
(wr, 55) = (1) (Op,j-1 + 015), ki =21, (7.45)
so that
1 -1 0 0 0
0 -1 1 0 0
ws=]0 01 -10 (7.46)
0 00 -1 1
Applying (7.37) results in
1
f=358e+Vy, (7.47)

where ¢ = (W*V)~"'h with h = d — (1/2)e and e = W*Sé Thus, f[n] =
fi[n]+ f2[n] where fi[n] = (1/2) Yp, &[n]sk[n] and fo[n] = >"7°, g[n]uk[n]. The
sequence f; lies in S and has the desired local averages: f1[2n]+ f1[2n+1] = ¢[n]
for all n. The sequence f, lies in S*, and completes the odd part of f; to the
desired odd part.

In our example, ¢[1] = ¢[2] = ¢[3] = 1 and é[k] = Ofor k > 4. Thene[l] = ¢[2] =
0, e[3] = 1, and e[k] = 0 for k > 4. Finally, g[1] = — 2221 (d[k]—1/2e[k]) = —3.5,
9121 = 3 _, (d[k] — 1/2¢[k]) = 2.5, g[3] = —d[3] + 1/2¢[3] = —0.5. Thus, f is the
sum of the two sequences depicted in Fig. 12. Fig. 12(a) depicts the unique signal
fi € S with the desired local averages, so that fi[2k]+ f1[2k+1] = c[k]. Fig. 12(b)
depicts the unique signal fo € S+ with odd part satisfying fa[k] — fo[—k] =
d[k] — z[k], where x = W* f; is the odd part of f;. Note that, as we expect, the
local averages of fo are all equal 0. Fig. 12(c) depicts f = fi + fo which is the
unique sequence with the desired local averages and the desired odd part.



Sampling Without Input Constraints: Consistent Reconstruction in Arbitrary Spaces 25

s 33 3 %
5.5.5.5.5.5 1
TTTTTY —2[0[2? —2“‘ i
—4-3-2-10 1 2 3 4 747317111__‘534 7473171J1234
2.5 2
-3.5
(2) (b) (c)

FIGURE 12. Constructing a sequence f with specified local averages and specified odd
part (a) unique signal f1 € § with required local averages (b) unique signal fo € S*
with odd part equal to the difference between the required odd part and the odd part of
f1 (c) unique signal f = fi + fo with both the required local averages and the required
odd part.

Constructing a signal with prescribed recurrent nonuniform samples

As a second illustration of the framework, suppose we want to construct a
continuous-time signal f(t¢) bandlimited to wy = 7/Tg with specified samples,
where the sampling points are divided into groups of N points each, and the
group has a recurrent period T' = NTg. Each period consists of N nonuniform
sampling points. Denoting the points in one period by t;,¢ = 1,2,...N, the
complete set of sampling points is

t;+1T, i=1,2,...N, l€Z. (7.48)

Thus our problem is to find an f € W where W is the space of all signals
bandlimited to wo = m/Tg, such that (sg, f) = c[k] where sk( ) =6(t—IT —t;)
with kK = IN 44,0 < i < N —1 and (sg, f) = [ sx(t)f(t)dt. The unique f
with these samples is the signal given by f = ( W)~ le where S is the set
transformation corresponding to the signals s (), and W is a set transformation
corresponding to a basis wy(t) for W. A possible choice is wy(t) = sin(wo(t —
kTg))/(wo(t — kTg)). With this choice, if y = S*We, then y can be obtained as
the output of the filter bank depicted in Fig. 13, where the filters H;(w) have
impulse response h;[n] = (=1)" sin(wot;) /(wot; — n).

To determine (S*W)~! we need to invert the filter bank of Fig. 13. The inverse
filter bank has the form depicted in Fig. 14, where the filters G;(w) have been
determined in [10] and are equal to the filters in [10, Fig. 9] given by G;(w) =
(1/Tg)Ri(w/Tg)e~3%“/Ta  for |w| < m, where R;(w) is the frequency response
of the filter with impulse response

ri(t) =a~TM ]\ﬁlsin(w(t+t-—t )/T) (7.49)
’ ’ mt =0 ’ 1 ’ '
qFi
and
1
a; = —x— (7.50)
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H;(w) IN tN e v

c[k] Hs(w) l N T N e J2w —’C":‘)—' y[k]

HN(W) lN TN e INw

FIGURE 13. Filter bank implementation of y = S*We.

eJw lN TN Gy (w)

ylK] LNt N ] Gaw) F~— c[A]

Y

CAL PN N G (w)

FIGURE 14. Filter bank implementation of ¢ = (S*W)™'y.

Therefore to construct f(t), we first obtain y using the filter bank of Fig. 14.
Then f(t) = ), y[k]wk(t) which can be implemented by modulating the samples
y[k] onto a uniformly spaced impulse train with period T, and then filtering
the modulated impulse train with a continuous-time lowpass filter with cutoff
frequency m/wo.

Constructing signals with prescribed samples

As a third illustration of our framework, suppose we wish to construct a
continuous-time signal f(t) to have prescribed samples so that f(k) = c[k], k € Z,
where f(k) denotes the value of f(t) at t = k. The signal f(t) is constrained to
lie in the subspace W generated by the integer translates {w(t — k),€ Z} of a
given function w(t), so that f(t) = Y, z[klw(t — k) for some coefficients z[k].
We assume that @ < Y, [W(w — 27k)[*> < 3 where 0 < @ < 8 and W (w) is
the continuous-time Fourier transform of w(t), which ensures that {w(t — k)}
forms a Riesz basis for W [3]. The signal f(t) can be obtained as the output of
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a filter with impulse response w(t), with an impulse train whose values are the
coefficients z[k] as its input. The problem then is to find the coefficients z[k] so
that f(k) = c[k].

We can express f(k) as f(k) = (sg(t), f(t)) where si(t) = 0(t — k) and
(y(t),r(t)) = [y(t)r(t)dt. Note that s(t) = d(t) does not generate a Riesz basis.
However, a sufficient condition for the coefficients f[k] to be in Iz is that f(t)
is continuous and decays sufficiently fast [29]. From (7.36) it then follows that
x = (S*W)~1lc where S and W are the set transformations corresponding to
the vectors s (t) and wy(t) respectively. Since (s;(t), wg (t)) = w(i — k), S*W is
an infinite Toeplitz matrix, and is therefore equivalent to a filtering operation
with a filter whose impulse response is given by (s¢(t), wi(t)) = w(k). Using the
Poisson sum formula [23], the frequency response of the filter is

i w(k)e 7F = 27 i W (w + 27k). (7.51)

k=—o0 k=—o0

It follows that if z = (S*W)~!¢, then z is obtained by filtering the sequence c
with a discrete-time filter with frequency response

1

Glw) = 2wy, W(w + 27k)’ (7.52)
as depicted in Fig. 15.
k] —  GW) w[k]‘? W) — 1)
ZZi—oo 5(t - k)

FIGURE 15. Constructing a signal f(t) with samples f(k) = c[k] using a given filter
with frequency response W (w), where G(w) is given by (7.52).

In the special case in which W (w) is the frequency response of an ideal lowpass
filter with cutoff frequency wg = 7, G(w) = 1 so that z[k] = c[k].
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