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Abstract
We study parameter estimation for sparse nonlin-
ear regression. More specifically, we assume the
data are given by y = f(x�β∗) + �, where f
is nonlinear. To recover β∗, we propose an �1-
regularized least-squares estimator. Unlike classi-
cal linear regression, the corresponding optimiza-
tion problem is nonconvex because of the nonlin-
earity of f . In spite of the nonconvexity, we prove
that under mild conditions, every stationary point
of the objective enjoys an optimal statistical rate
of convergence. Detailed numerical results are
provided to back up our theory.

1. Introduction
We study a family of sparse nonlinear regression models.
Let β∗ = (β∗

1 , . . . ,β
∗
d)

� ∈ Rd be the sparse parameter
vector of interest. We consider the model

y = f(x�β∗) + �, (1.1)

where y ∈ R is a response variable, x ∈ Rd is the covariate
and � ∈ R is the exogenous noise. When f is the iden-
tity function, model (1.1) reduces to the well studied linear
model. Given independent and identically distributed obser-
vations {yi,xi}ni=1, our goal is to estimate β∗ even when
d � n.

We can view (1.1) as a perceptron with noise, which is
the basic building block of a feed forward neural network
(Rumelhart et al., 1986). Establishing the theoretical guaran-
tees of the estimation in (1.1) may provide insight on more
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complicated neural networks. Our model is also inspired
by the nonlinear sparse recovery problems (Beck & Eldar,
2013b;a; Aksoylar & Saligrama, 2014) which aim to recover
a sparse parameter from a nonlinear system.

1.1. Main Results

Assuming f is monotonic, a straightforward way to es-
timate β∗ is to solve a sparse linear regression prob-
lem (Eldar & Kutyniok, 2012) using the transformed data
{f−1(yi),xi}ni=1. However, this approach works well only
in the noiseless case with � = 0. Otherwise, it results in inac-
curate parameter estimation and high prediction error due to
the inverse operation. In this paper, we propose estimating
the parameter β∗ by solving the following �1-regularized
least-squares problem:

minimize
β∈Rd

1

n

n�

i=1

�
yi − f(x�

i β)
�2

+ λ�β�1, (1.2)

where λ is a regularization parameter and � · �1 is the vector
�1-norm. Unlike the linear model for which (1.2) is a con-
vex optimization problem, in general settings (1.2) could be
highly nonconvex due to the nonlinearity of f , which pre-
vents us from obtaining the global optimum. The existence
of f also prevents us from having the restricted strongly
convex property of the loss function.

In spite of the challenge of nonconvexity, we prove that any
stationary point �β of (1.2) enjoys optimal statistical rates
of convergence under suitable conditions, i.e., with high
probability

���β − β∗��
2
≤ C1 ·

�
s∗ log d/n and

���β − β∗��
1
≤ C2 · s∗

�
log d/n,

where s∗ is the number of nonzero entries of β∗ and C1,
C2 are some absolute constants which do not depend on



Sparse Nonlinear Regression: Parameter Estimation under Nonconvexity

n, d or s∗. The statistical rates of convergence cannot be
improved even when f is the identity function. In addition,
we require a scaling of n = O(s∗ log d) samples to obtain
a vanishing error, which is also needed for linear sparse
recovery problems (Eldar & Kutyniok, 2012). Next, we
provide an efficient gradient-based algorithm that provably
converges to a stationary point. Our method is iterative and
consist of soft-thresholding after a gradient descent step.
This approach can be viewed as a generalization of the ISTA
algorithm (Beck & Teboulle, 2009) to the nonlinear setting.

1.2. Related Work

The model in (1.1) is closely related to the single index
model, which assumes (y,x) satisfy y = f(x�β∗)+ � with
an unknown f . The single index model is well studied in
low dimensional settings where d � n. See, e.g., (Mc-
Cullagh et al., 1989; Horowitz, 2000; Härdle et al., 1993;
Ichimura, 1993; Sherman, 1994; Xia & Li, 1999; Xia et al.,
1999; Delecroix et al., 2000; 2006) and references therein.
They mostly consider M -estimators that simultaneously es-
timate f and β∗. However, these M -estimators are defined
as the global optima of nonconvex minimization problems
which are intractable to obtain. In high-dimensional settings
where β∗ is sparse, (Alquier & Biau, 2013) establish PAC-
Bayesian analysis for sparse single index models. (Plan
et al., 2014; Plan & Vershynin, 2015) propose marginal re-
gression and generalized Lasso estimators which attain fast
statistical rates of convergence. Nevertheless, the flexibility
of the unknown link function f comes at a price. In detail,
(Plan et al., 2014; Plan & Vershynin, 2015) require x to be
exactly Gaussian for their methods to succeed, even if f
is known a priori. Also, unknown f raises identifiability
issues, since the magnitude of β∗ can be incorporated into
f . As a result, these methods only estimate the direction of
β∗.

Another related line of work is sufficient dimension reduc-
tion, for which we aim to recover a subspace U such that
y only depends on the projection of x onto U . Both single
index model and our problem can be viewed as special cases
of the framework in which U is a one-dimensional subspace.
See (Li, 1991; 1992; Cook, 1998; Cook & Lee, 1999; Li,
2007) and the references therein. Most works in this direc-
tion use spectral methods, which also rely on the Gaussian
assumption and can only estimate the direction of β∗. In
comparison, we assume f is known. In this setting, we al-
low x to follow more general distributions and can directly
estimate β∗. (Kalai & Sastry, 2009; Kakade et al., 2011)
propose iterative algorithms that alternatively estimate f
and β∗ based on the isotonic regression in the setting with
d � n. However, their analysis focuses on generalization
error instead of estimation error, which is the primary goal
in this paper.

Our work is also related to problems of phase retrieval where
the goal is to recover a signal β∗ ∈ Cd from the magnitude
of its linear measurements contaminated by random noise.
More specifically, the model of phase retrieval is given by
y = |x�β|2+�. For high-dimensional settings, this problem
is extensively studied under noisy or noiseless settings. See,
e.g., (Jaganathan et al., 2012; Ohlsson et al., 2012; Li &
Voroninski, 2013; Candès et al., 2013; Eldar & Mendelson,
2014; Shechtman et al., 2014; 2015; Ohlsson & Eldar, 2014;
Candès et al., 2015; Waldspurger et al., 2015; Eldar et al.,
2015; Cai et al., 2015; Tu et al., 2015). These works show
that a high dimensional signal can be accurately estimated
up to global phase under restrictive assumptions on x, e.g.,
x is Gaussian or certain classes of measurements. However,
our work considers general measurements. Note that phase
retrieval does not fall in the model under (1.1) because it
uses a quadratic function, which is not monotonic. See §4
for a more detailed discussion.

1.3. Main Contribution

Our contribution is twofold. First, we propose an �1-
regularized least-squares estimator for parameter estimation.
We prove that every stationary point of the optimization
problem in (1.2) converges to the true parameter, which
explains the empirical success of regularized least-squares
in the presence of nonlinear transforms. In the noiseless
setting, as long as the number of samples is proportional
to s∗ log d, we are able to exactly recover β∗. To the best
of our knowledge, this is the first parameter estimation re-
sult for the model (1.1) in high dimensional settings that
does not rely on the normality of x, and recovers both the
magnitude and direction of β∗. Our analysis for the sta-
tionary points of nonconvex optimization problems is of
independent interest. Second, we establish the minimax rate
of parameter estimation for the model (1.1), which estab-
lishes the minimax optimality of the stationary points of the
proposed optimization problem in (1.2).

Organization of the rest of this paper In §2 we present
our method for parameter estimation. We lay out the theory
in §3. We discuss the connection to prior work with more
details in §4. We corroborate our theoretical results with
thorough numerical results in §5. In addition, we sketch the
proof the statistical rates in §6. We conclude the paper in
§7.

2. High-dimensional Estimation
In this section, we introduce the proposed methods for pa-
rameter estimation. In addition, we present the intuition
behind our methods and compare our estimation procedures
with the one that inverts the nonlinear function f directly.

Recall that we observe {(yi,xi)}ni=1 satisfying yi =
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f(x�
i β

∗) + �i. We assume the function f is monotonic
and continuously differentiable. We define the least-square
loss function as

L(β) =
1

2n

n�

i=1

[yi − f(x�
i β)]

2. (2.1)

We assume β∗ is sparse and estimate it by solving the �1-
regularized optimization problem in (1.2).

Due to the nonlinearity of f , L(β) can be nonconvex. As
a result, we can only find a stationary point �β satisfying
∇L

� �β
�
+ λ · ξ = 0, where ξ ∈ ∂��β�1 and ∇L(β) is the

gradient of L(β). To obtain a stationary point, we apply
the proximal gradient method, which generates an iterative
sequence {β(t), t ≥ 0} satisfying

β(t+1) = argmin
β∈Rd

�
�∇L(β(t)),β − β(t)�+

αt/2 · �β − β(t)�22 + λ�β�1
�
, (2.2)

where 1/αt > 0 is the stepsize at the t-th iteration. In our
setting, ∇L(β(t)) is given by

∇L(β(t)) = − 1

n

n�

i=1

[yi − f(x�
i β

(t))]f �(x�
i β

(t))xi.

We denote u(t) is given by u(t) := β(t) − 1/αt ·∇L(β(t)).
then (2.2) has an explicit solution given by

β
(t+1)
i = soft(u(t)

i ,λ/αt) for 1 ≤ i ≤ d, (2.3)

where soft(u, a) := sign(u)max
�
|u| − a, 0

�
is the soft-

thresholding operator.

The resulting algorithm is given in Algorithm 1, which is
an application of the SpaRSA method proposed by (Wright
et al., 2009) to our nonconvex problem. The main step
is given in (2.3), which performs a soft-thresholding step
on a gradient-descent update. This algorithm reduces to
ISTA (Beck & Teboulle, 2009) when f is the identity. For
nonlinear sparse recovery problems, this technique is also
similar to the thresholded Wirtinger flow algorithm proposed
for phase retrieval (Candès et al., 2015; Cai et al., 2015).

To pick a suitable αt, we use the line search procedure de-
scribed in Algorithm 2. It iteratively increases αt by a factor
of η to ensure that β(t+1) satisfies the acceptance criterion,
which guarantees sufficient decrease of the objective func-
tion. To choose the initial αt at the beginning of each line
search iteration, we use the Barzilai-Borwein (BB) spectral
method (Barzilai & Borwein, 1988) in Algorithm 2, which
guarantees that the initial value of each stepsize αt lies in
the interval [αmin,αmax]. Using the theory of (Wright et al.,
2009), we establish the numerical convergence of the iter-
ative sequence to a stationary point of (1.2) . However, it

is challenging to establish the statistical properties of the
stationary points. Our theory in §3 shows that, surprisingly,
any stationary point enjoys satisfactory statistical guaran-
tees. Consequently, Algorithm 1 yields a stationary point
that is desired for parameter estimation.

Algorithm 1 Proximal gradient algorithm for solving the
�1-regularized problem in (1.2).

1: Input: regularization parameter λ > 0, update factor
η > 1, constants ζ > 0, αmin,αmax with 0 < αmin <
1 < αmax, integer M > 0, and φ(β) := L(β)+λ�β�1

2: Initialization: set the iteration counter t ← 0 and
choose β(0)∈Rd

3: Repeat
4: Choose stepsize αt according to Algorithm 2
5: Repeat
6: u(t) ← β(t) + 1

nαt
· �n

i=1

�
yi −

f
�
x�
i β

(t)
��
f ��x�

i β
(t)
�
xi.

7: β
(t+1)
i ← soft(u(t)

i ,λ/αt) for 1 ≤ i ≤ d.
8: αt ← η · αt

9: Until β(t+1) satisfies the acceptance criterion:
10: φ(β(t+1)) ≤ max

�
φ(β(j))− ζ ·αt/2 ·�β(t+1)−

β(t)�22 : max(t−M, 0) ≤ j ≤ t
�

11: Update the iteration counter t ← t+ 1
12: Until �β(t) − β(t−1)�2/�β(t)�2 is sufficiently small
13: Output: �β ← β(t)

Algorithm 2 The Barzilai-Borwein (BB) spectral approach
for choosing αt in Line 1 of Algorithm 1.

1: Input: the iteration counter t, δ(t) = β(t)−β(t−1) and
g(t) = ∇L(β(t))−∇L(β(t−1))

2: if t = 0 then
3: Output: αt = 1
4: else
5: Output: αt = �δ(t), g(t)�

�
�δ(t), δ(t)� or αt =

�g(t), g(t)�
�
�δ(t), g(t)�

6: end if

When f is known, it seems tempting to apply linear com-
pressed sensing procedures to the inverted data {zi,xi}
where zi = f−1(yi). If f is linear, say f(u) = au+ b, then
f−1(u) = a−1(u− b). In this case we have z = f−1(y) =
x�β∗ + a−1�, which is exactly a linear model. However,
this method does not work well for general nonlinear f .
To see this, denote z = f−1(y) = f−1[f(x�β∗) + �] and
µ = E[z|x]− x�β∗. Then we have model

z = x�β∗ + µ+ ξ, (2.4)

where ξ is the remaining term that satisfies E[ξ|x] = 0.
Note that both µ and ξ depend on β∗ implicitly. When
treating (2.4) as a sparse linear model with intercept, we
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discard such dependency and thus incur large estimation
error. We numerically compare the proposed method with
the linear approach that inverts f in §5 and show that our
approach outperforms the linear framework.

3. Theoretical Results
In this section, we present the main theoretical results. The
statistical model is defined in (1.1). Hereafter we assume
that � is sub-Gaussian with variance proxy σ2. By saying
that a random vector z ∈ Rk is sub-Gaussian with zero
mean and variance proxy τ2 ≥ 0, we mean that E[z] = 0
and

E[exp(θ�z)] ≤ exp(�θ�22τ2/2) for all θ ∈ Rk.

3.1. Theory of Parameter Estimation

Before presenting the main results for parameter estima-
tion, we first state the following assumptions on �Σ =
n−1

�n
i=1 xix

�
i , which are standard for sparse linear re-

gression problems with fixed design.

Assumption 1. Sparse-Eigenvalue(s∗, k∗). For k ∈
{1, . . . , d}, we denote the k-sparse eigenvalues of �Σ as
ρ−(k) and ρ+(k) respectively, which are defined as

ρ−(k) := inf
�
v� �Σv : �v�0 ≤ k, �v�2 = 1

�
and

ρ+(k) := sup
�
v� �Σv : �v�0 ≤ k, �v�2 = 1

�
.

We assume that, for s∗ = �β∗�0, there exists a k∗ ∈ N such
that k∗ ≥ 2s∗ and

ρ+(k
∗)/ρ−(2k

∗ + s∗) ≤ 1 + 0.5k∗/s∗. (3.1)

The condition ρ+(k
∗)/ρ−(2k∗ + s∗) ≤ 1 + 0.5k∗/s∗ re-

quires that the eigenvalue ratio ρ+(k)/ρ−(2k + s∗) grows
sub-linearly in k. This condition, commonly referred to as
sparse eigenvalue condition, is standard in sparse estima-
tion problems and has been studied by (Zhang, 2010). This
condition is weaker than the well-known restricted isome-
try property (RIP) in compressed sensing (Candès & Tao,
2005), which states that there exists a constant δ ∈ (0, 1)
and integer s ∈ {1, . . . , d} such that for all s-sparse v ∈ Rd,
we have

(1− δ)�v�22 ≤ v� �Σv ≤ (1 + δ)�v�22. (3.2)

Comparing (3.1) and (3.2), we see that (3.1) holds with
k∗ = (s − s∗)/2 if the RIP condition holds with s ≥ 5s∗

and δ = 1/3. As is shown in (Vershynin, 2010), RIP holds
with high probability for sub-Gaussian random matrices.
Therefore Assumption 1 holds at least when x1, . . . ,xn

are i.i.d. sub-Gaussian, which contains many well-known
distributions as special cases.

We note that although Assumption 3.1 holds since it does
not depend on the nonlinear transfmration f , the restricted
strong convexity (RSC) condition defined in (Loh & Wain-
wright, 2014; 2015) on the loss function L(β) does not
directly hold in general in our setting since L(β) depends
on the nonlinear transformation f .

In addition to the sparse eigenvalue assumption, we need a
regularity condition, which states that the elements of �Σ are
uniformly bounded.

Assumption 2. Bounded-Design(D). We assume there ex-
ists an absolute constant D that does not depends on n, d,
or s∗ such that ��Σ�∞ ≤ D, where � · �∞ is the matrix
elementwise �∞-norm.

If the population version of �Σ, i.e., Σ := E(xx�),
has bounded elements and x has sub-Gaussian or sub-
exponential tails, then by concentration inequalities we can
prove that Assumption 2 holds with high probability with
D = 2�Σ�∞. We verify this assumption for sub-Gaussian
x in the appendix. This assumption is generally unneces-
sary for high dimensional linear regression. However, it is
required in our setting where it is used to control the effect
of the nonlinear transform.

We note that we do not make any further assumptions except
Assumptions 1 and 2 on the distribution of x for the theory
of parameter estimation to hold. These two assumptions are
shown to be true when x is sub-Gaussian.

We are now ready to present our main theorem for parame-
ter estimation, which states that any stationary point of the
�1-regularized optimization problem enjoys optimal statisti-
cal rates of convergence and that Algorithm 1 successfully
converges to a stationary point.

Theorem 1. We assume that the univariate function f sat-
isfies f(0) = 0 and is continuously differentiable with
f �(x) ∈ [a, b], ∀x ∈ R for some 0 < a < b. We further
assume that Assumptions 1 and 2 hold. Then there exists
a constant B such that �∇L(β∗)�∞ ≤ Bσ ·

�
log d/n

with probability tending to one. Suppose we choose the
regularization parameter λ in (1.2) as

λ = Cσ
�

log d/n with C ≥ max {L1B,L2}, (3.3)

where L1 and L2 satisfy L−1
1 +3b

√
DL−1

2 ≤ 0.1. Then for
any stationary point �β satisfying ∇L

� �β
�
+ λ · ξ = 0 with

ξ ∈ ∂��β�1, it holds with probability at least 1− d−1 that

��β − β∗�2 ≤ 25/ρ−(k
∗ + s∗) · a−2

√
s∗λ; (3.4)

��β − β∗�1 ≤ 25/ρ−(k
∗ + s∗) · a−2s∗λ. (3.5)

Furthermore, Algorithm 1 attains a stationary point with the
statistical rates in (3.4).
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By our discussion under Assumption 1, we can take k∗ =
Cs∗ for some constant C > 0. Then plugging (3.3) into
(3.4), we obtain the rate of

�
s∗ log d/n in �2-norm and

the rate of s∗
�
log d/n in �1-norm. Similar results are also

established for sparse linear regression, and more generally,
high-dimensional generalized linear models (Candès & Tao,
2007; Zhang & Huang, 2008; Kakade et al., 2010). These
rates are optimal in the sense that they cannot be improved
even if f equals to the identity. Note that the lower bound
a of f � shows up in the statistical rates of convergence in
(3.4). If a is close to zero, we obtain a large statistical error.
To see the intuition, we consider a worst case where f is
constant, i.e., a = 0. Then it is impossible to consistently
estimate β∗, since in this case the observations {yi,xi}ni=1

provide no information on β∗.

The statistical rates of convergence are proportional to the
noise level σ, which implies that the proposed method ex-
actly recovers β∗ in the noiseless setting. In the noisy
case, by (3.4), to get � accuracy of estimating β∗ in
�2-norm with high probability, the sample complexity is
n = O(�−2s∗ log d), which is of the same order as that of
high-dimensional linear models.

3.2. Minimax Lower Bound

To understand the optimality of the estimation result, we
study the minimax lower bound of parameter estimation
in our model, which reveals the fundamental limits of the
estimation problem. We define the minimax risk as

R∗
f (s, n, d) = inf

�β
sup

β∈B0(s)

Eβ��β − β�22, (3.6)

where the expectation is taken over the probability model
in (1.1) with parameter β and B0(s) :=

�
β ∈ Rd : �β�0 ≤

s
�

. Here the supremum is taken over all s-sparse parame-
ters and the infimum is taken over all estimators �β based on
samples {(yi,xi)}ni=1. We assume f is continuously differ-
entiable with f �(u) ∈ [a, b], ∀u ∈ R. The following theo-
rem gives a lower bound on the minimax risk Rf (s, n, d),
which implies the optimality of the proposed estimator.

Theorem 2. For integer s and d satisfying 1 ≤ s ≤ d/8,
the minimax risk defined in (3.6) has the following lower
bound

R∗
f (s, n, d) ≥

σ2

192b2ρ+(2s)

s log[1 + d/(2s)]

n
. (3.7)

By Theorem 2, if we consider a, b as constants and assume
that k∗/s∗ is bounded, then the �2-statistical rate of conver-
gence of �β in (3.4) matches the minimax lower bound in
(3.7) in terms of order. This establishes the optimality of
the proposed estimator.

4. Connection to Prior Work
The model we consider is closely related to the single index
model where the function f is unknown. Both of these two
models fall in the framework of sufficient dimension reduc-
tion with a one-dimensional subspace U (Li, 1991; 1992;
Cook, 1998; Cook & Lee, 1999; Li, 2007). In low dimen-
sional settings, most works in this direction use spectral
methods, which rely on the Gaussian assumption and can
only estimate θ∗ = β∗�β∗�−1

2 because the norm of β∗ is
not identifiable when f is unknown. As introduced in (Li,
2007), many moment based sufficient dimension reduction
methods can be stated as a generalized eigenvalue problem
Mnθi = λiNnθi for i = 1, . . . , d, where Mn and Nn are
symmetric matrices computed from the data; θ1, . . . ,θd are
generalized eigenvectors such that θ�

i Nnθj = 1{i=j} and
λ1 ≥ · · · ≥ λd are the generalized eigenvalues. In addition,
it is required that Mn and Nn are positive semidefinite and
positive definite, respectively. Here Mn and Nn are the sam-
ple versions of the corresponding population quantities M
and N. For example, in sliced inverse regression (Li, 1991),
we have M = Cov{E[x− E(x)|y]

�
and N = Cov(x) and

Mn and Nn are their population analogs. When U is one-
dimensional, θ∗ corresponds to the generalized eigenvector
with the largest eigenvalue. In low dimensional settings, (Li,
2007) showed that θ∗ can be estimated by the following
optimization problem:

maximize
θ∈Rd

θ�Mnθ subject to θ�Nnθ. (4.1)

Since the works in this direction all require the matrix Nn,
which is the sample covariance matrix of x in most cases,
to be invertible, such methods cannot be generalized to
high-dimensional settings where Nn is not invertible.

For high-dimensional single index models, (Plan et al.,
2014) proposes an estimator by projecting n−1

�n
i=1 yixi

onto a fixed star-shaped closed subset K of Rd. Similarly,
(Plan & Vershynin, 2015) propose a least-squares estimator
with a geometric constraint:

minimize

n�

i=1

(x�
i θ − yi)

2 subject to θ ∈ K. (4.2)

Both of these methods rely on the assumption that xi is
Gaussian to have good estimation of E(y · x). Under the
Gaussian assumption, we achieve the same statistical rate,
which is optimal. When x is not Gaussian, as shown in
(Ai et al., 2014), their methods will have some extra terms
in the error bound that may or may not tend to zero. Our
method, however, works when x has a general distribution
with optimal statistical rates of convergence.
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5. Numerical Experiments
In this section, we evaluate the finite sample performance
of parameter estimation on both simulated data and a real-
world dataset.

For parameter estimation, we compute the �2-error ��β −
β∗�2, where �β is the solution of Algorithm 1. In addition,
we compare our method with the linear approach that inverts
the nonlinear function. For the linear framework we apply
the �1-regularized regresion (Lasso) (Tibshirani, 1996).

5.1. Simulated Data

Throughout this section, we sample independent data from
model (1.1) with � ∼ N(0, 1) and x ∼ N(0,Σ) where Σ ∈
Rd×d is a Toeplitz matrix with Σjk = 0.95|j−k|. The sparse
parameter vector β∗ ∈ Rd is set to have nonzero values in
the first s∗ entries. That is, β∗

j �= 0 for 1 ≤ j ≤ s∗ and
β∗
j = 0 otherwise. In addition, we consider the nonlinear

function f(x) = 2x + cos(x). In this case the derivative
f �(·) is bounded by a = 1 and b = 4.

For parameter estimation, we compare the �2-error ��β −
β∗�2 with

�
s∗ log d/n under two settings: (i) we fix

d = 256, s∗ = 6, 8, or 10, and vary n, and (2) fix s∗ = 10,
d = 128, 256 or 512, and vary n. For the parameter β∗, the
first s∗ entries are sampled independently from the uniform
distribution on the interval [0, 2]. That is, β∗

j ∼ U(0, 2)
for 1 ≤ j ≤ s∗ and β∗

j = 0 for j > s∗. We set the regu-
larization parameter λ = 3σ ·

�
log d/n. The parameters

of Algorithm 1 are chosen as αmin = 1/αmax = 1030,
η = 2, M = 5, and ζ = tol = 10−5. The �2-errors re-
ported are based on 100 independent experiments. We plot
the �2-errors against the effective sample size

�
s∗ log d/n

in Figure 1. The figure illustrates that ��β − β∗�2 grows
sublinearly with

�
s∗ log d/n, which corroborates with our

argument that ��β − β∗�2 ≤ C
�
s∗ log d/n for some abso-

lute constant C.

To compare Algorithm 1 with inverting f , we consider the
settings where d = 256, s∗ = 8. We then apply Lasso to
the inverted data {f−1(yi),xi}ni=1 where the regularization
parameter of Lasso is selected via 5-fold cross-validation.
The optimization problem of Lasso is also solved using Al-
gorithm 1. We plot the �2-errors of these two techniques
against the effective sample size in Figure 1-(c), which
shows that the proposed method outperforms the linear ap-
proach.

5.2. Real Data Analysis

To show the effectiveness of the proposed method, we study
the Computer Audition Lab 500-Song (CAL500) dataset
(Turnbull et al., 2008), which can be obtained from the pub-
licly available Mulan data library (Tsoumakas et al., 2011).

The CAL500 dataset consists of music annotations of 502
popular music tracks. The attributes of this dataset consist of
both continuous and binary subsets. The continuous features
are obtained from the coefficients of short time Fourier trans-
forms on each music track. In specific, there are four types
of continuous features: spectral centroids, spectral flux, zero
crossings and a time series of Mel-frequency cepstral coeffi-
cient (MFCC). In addition, for each music track, the values
of the binary features are assigned by human listeners to
give semantic descriptions. For accuracy, each music track
is annotated by at least three human listeners. See (Turnbull
et al., 2008) for a more detailed introduction of the CAL500
dataset. This dataset is previously analyzed in (Cheng et al.,
2013; Yang et al., 2014), where they study the conditional
independence of the attributes by fitting graphical models.
Similar to (Cheng et al., 2013), we study model (1.1) only
using the continuous features. In specific, we use n random
subsamples of the 502 instances of d = 68 continuous at-
tributes, where n is an integer that will be specified later.
We generate the response according model (1.1) with σ = 1,
f(x) = 4x+ cos(x). Moreover, we choose support of β∗

uniformly over {1, . . . , d}.

Given the response and the design matrix, we study the per-
formance of the proposed estimator. Specifically, we com-
pare the �2-error ��β − β∗�2 with

�
s∗ log d/n under the

setting where we fix d = 68, s∗ = 4, 6, or 8, and vary n. In
this setting, the nonzero entries of β∗ are sampled indepen-
dently from the uniform distribution over [0, 2]. We set the
regularization parameter to be λ = 2σ

�
log d/n and the pa-

rameters of Algorithm 1 the same as those in the simulation
studies in §5.1. We plot the �2-errors against the effective
sample size

�
s∗ log d/n in Figure 2-(a) based on 100 ran-

dom experiments . The figure also shows that the estimation
error ��β − β∗�2 grows sublinearly with

�
s∗ log d/n.

In addition, we also study the setting where the nonzero
entries of β∗ are set to a constant β0 > 0. In addition, we
fix d = 68, n = 50, and s∗ = 4, 6, or 8. The regularization
parameter λ and the parameters of Algorithm 1 remain
the same. In this case, the value of β0 corresponds to the
magnitude of the signal parameter. Thus, estimation is
easier for large β0 whereas the error is large for small β0.
For presentation, we plot the �2-error ��β − β∗�2 against
β0 based on 100 independent trials. As show in in Figure
2-(b), as β0 grows, the estimation error gradually decreases,
which coincides with the intuition.

Moreover, similar to the simulation studies, we also com-
pare the proposed method with the linear framework which
inverts f . In particular, we fix d = 68, s∗ = 4 and vary
n. The support of β∗ is chosen uniformly with the nonzero
entries sampled independently from U(0, 2). We compute
the �2-error ��β − β∗�2 of the Lasso estimator obtained us-
ing 5-fold cross-validation. In addition, for the proposed
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Figure 1: Statistical errors ��β − β∗�2 plotted against the effective sample size
�
s∗ log d/n with d or s∗ fixed and n varied

are shown in (a) and (b), respectively. The comparison between the method of inverting f and the proposed method is shown
in (c).

method, the regularization parameter λ and the parameters
of Algorithm 1 is the same as in the previous setting. In
Figure 2-(c) we plot the �2-errors of these two estimators
against the effective sample size

�
s∗ log d/n based on 100

independent experiments. It clear that the error of the esti-
mator constructed by the linear framework is much larger,
which shows the superiority of the proposed method.

6. Proof of the Statistical Rates
In this section we sketch the proof of the statistical rates of
convergence for the proposed estimator. We defer a more
detailed proofs the main results in the appendix.

Similar to the analysis of Lasso estimator, a main step of
the proof is to show that the error vector lies in an �1-cone.
In specific, for any stationary point �β of the optimization
problem in (1.2), we denote δ = �β − β∗. Let S be the
support of β∗, we show that

�δSc�1 ≤ γ · �δS�1
for some constant γ > 0. This is established by combining
a upper and an lower bound for

�∇L( �β)−∇L(β∗),β − β∗�. (6.1)

For an upper bound, by the optimality of �β we have
∇L( �β) + λ · ξ = 0, where ξ ∈ ∂��β�1. Note that the
support of β∗ is S, that is, S = {j : β∗

j �= 0}. Also note
that the optimality of �β implies that

�ξSc , �βSc� = ��βSc�1 = �δSc�1.
By Hölder’s inequality, since �ξ�∞ ≤ 1 and β∗

S = 0, (6.1)
is bounded by

�∇L( �β)−∇L(β∗), �β − β∗�
≤ −λ�δSc�1 + λ�δS

��
1
+ �∇L(β∗)�∞�δ�1. (6.2)

Moreover, by calculation, we have

∇L(β∗) = − 1

n

n�

i=1

[yi − f(x�
i β

∗)] · f �(x�
i β

∗) · xi

= − 1

n

n�

i=1

f �(x�
i β

∗) · xi · �i.

Since f � is bounded and that �i’s are i.i.d. sub-Gaussian
random variables, conditioning on {xi}ni=1, ∇L(β∗) is the
mean of i.i.d. sub-Gaussian random variables (Vershynin,
2010). Concentration of measure guarantees that ∇L(β∗)
is not far away from its mean, which is 0. The following
lemma shows that �∇L(β∗)�∞ is of order σ ·

�
log d/n

with high probability.

Lemma 3. Let L(β) be the least-square loss function de-
fined in (2.1), there exist an absolute constant B > 0
that does not depend on n, d or s∗ and δ = δ(n, d) that
tends to 0 as n → ∞ such that δ ≤ (2d)−1 and that
�∇L(β∗)�∞ ≤ Bσ ·

�
log d/n with probability 1− δ.

In what follows, we condition on the event that
�∇L(β∗)�∞ ≤ Bσ ·

�
log d/n, which holds with prob-

ability at least 1− (2d)−1 by Lemma 3. By the definition
of λ and (6.2) we have

�∇L( �β)−∇L(β∗), �β − β∗�
≤ −λ�δSc�1 + λ�δS�1 + L−1

1 λ�δ�1. (6.3)

Thus we derive an upper bound for (6.1). Moreover, the
lemma establishes a lower bound (6.1).

Lemma 4. Recall that �Σ := n−1
�n

i=1 xix
�
i . Under the

Assumption Bounded-Design(D), it holds with probability
at least 1− (2d)−1 that, for any β ∈ Rd,

�∇L(β)−∇L(β∗),β−β∗� ≥ a2(β − β∗)� �Σ(β − β∗)

− 3bσ
�

D log d/n�β − β∗�1.
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Figure 2: Statistical errors ��β − β∗�2 plotted against the effective sample size
�
s∗ log d/n and the magnitude of signal

parameter β0 are shown in (a) and (b), respectively. We fix s∗ and vary n in (a) and fix s∗ = 4, n = 50 in (b). The
comparison between the method of inverting f and the proposed method with s∗ = 4 and n varied is shown in (c).

Thus combining the upper bound and the lower bound for
(6.1), we obtain that

a2δ� �Σδ ≤ −λ(1− µ)�δSc�1 + λ(1 + µ)�δS�1, (6.4)

where µ = L−1
1 + 3b

√
DL−1

2 ≤ 0.1. Hence it follows that��δSc�1 ≤ (1+µ)/(1−µ)�δS�1 ≤ 1.23�δS�1. This shows
that the error vector lies in the �1-cone

{v ∈ Rd : �vSc�1 ≤ 1.23�vS�1}.

Note that by (6.4) we have a2δ� �Σδ ≤ λ(1+µ)�δS�1. The
final part of the proof is to compare this upper bound with a
bound of δ� �Σδ from below, which is given in the following
lemma to bound δ� �Σδ from below.

Lemma 5. For any η ∈ Rd and any index set S with |S| =
s∗, let J be the set of indices of the largest k∗ entries of ηSc

in absolute value and let I = J ∪ S. Here s∗ and k∗ are
the same as those in Assumption Sparse-Eigenvalue(s∗, k∗).
Assume that �ηSc�1 ≤ γ�ηS�1 for some γ > 0. Then we
obtain that �η�2 ≤ (1 + γ)�ηI�2 and that

η� �Ση ≥ ρ−(s
∗+k∗) ·

�
�ηI�2−γ

�
s∗/k∗·

�
ρ+(k∗)/ρ−(s∗+2k∗)− 1 · �ηS�2

�
· �ηI�2. (6.5)

Under Assumption 1, we have ρ+(k∗)/ρ−(s∗+2k∗) ≤ 1+
0.5k∗/s∗. By Lemma 5 we obtain that �δ�2 ≤ 2.23�δI�2
and that

δ� �Σδ ≥
�
1− 1.23

√
0.5

�
· ρ−(s∗ + k∗) · �δI�22

≥ 0.1 · ρ−(s∗ + k∗) · �δI�22, (6.6)

where J is the set of indices of the largest k∗ entries of δSc

in absolute value and I = J ∪S . Combining the upper and
lower bounds for δ� �Σδ we obtain

�δI�2 ≤ 11/ρ−(s
∗ + k∗) · a−2

√
s∗λ.

Therefore we have

��β − β∗�1 = �δ�1 ≤ 2.23�δS�1 ≤ 2.23
√
s∗�δS�2

≤ 25/ρ−(s
∗ + k∗) · a−2s∗λ;

��β − β∗�2 = �δ�2 ≤ 2.23�δI�2
≤ 25/ρ−(s

∗ + k∗) · a−2
√
s∗λ.

Thus we establish the statistical rates of convergence for the
proposed estimator.

7. Conclusion
We study parameter estimation for high dimensional re-
gression under known nonlinear transform. We propose
an �1-regularized least-square estimator for estimation. Al-
though the optimization problem is non-convex, we show
that every stationary point converges to the true signal with
the optimal statistical rate of convergence. We establish
the optimality by deriving a minimax lower bound for the
regression model. In addition, we propose an efficient algo-
rithm that successfully converges to a stationary point. Both
simulation experiments and real data analysis are provided
to back up the developed theory.
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