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Abstract—“THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD” We study the fundamental limits in acqui-
sition and transmission of a stationary Gaussian continuous-
time process corrupted by noise. The analog signal is digitized
into discrete samples with a general analog to digital (A/D)
converter that prefilters the continuous process followed by a
pointwise sampler. We assume that the sampler, which is not
necessarily uniform, is constrained to some fixed sampling rate.
The samples are then compressed and transmitted at rateR
such that the distortion between the original source and its
reconstruction at the receiver is minimized. We first model this
problem as a remote source coding problem and characterize the
remote distortion-rate function for a fixed A/D converter. We then
find the minimum distortion for some fixed sampling structures.
We show that uniform sampling is suboptimal in general, and
multibranch sampling achieves strictly lower distortion values.
Finally, we show that if the sampling rate is sufficiently high, then
multibranch sampling achieves the lower bound on the distortion
obtained by assuming that the noisy process is directly available
at the encoder.

I. I NTRODUCTION

Sensing devices take samples of analog signals and digitize
them by an analog to digital (A/D) converter. While only
discrete samples of the continuous process are available, the
Nyquist-Shannon theorem claims that, in the absence of noise,
a bandlimited analog process can be perfectly represented from
its uniform samples as long as the sampling rate is twice the
bandwidth of the process (i.e., the Nyquist rate).

Although most practical and theoretical approaches assume
an analog signal acquired at a rate larger than or equal to
the Nyquist rate, sampling at this rate might be excessive. In
fact, Landau showed that the minimum sampling rate required
to perfectly reconstruct a signal is the Lebesgue measure of
its spectral support when this support is known, which is
below the Nyquist rate in multiband signals [1]. Recently,
sub-Nyquist sampling has received a lot of attention in the
literature. Many works have shown the possibility of perfect
recovery of certain class of signals with sub-Nyquist sampling
by exploiting the structure of the signal, [2], [3], or finiterate
of innovation [4].

In sensor networks, measurements are sent to a fusion
center through a rate-limited channel. Before transmitting,
lossy compression is applied to the sensor samples to adapt
the information to the available rate. In such a scenario
perfect recovery of the analog process at the destination is
not possible no matter how high the sampling rate is since
the compression process introduces distortion. Hence, relevant

question is whether there are better ways to acquire less
information through fewer samples rather than by having more
samples and then compressing them in a lossy manner.

Moreover, sampling capabilities of an A/D converter might
be limited by the technology or the available hardware. In
such cases, it it important to evaluate the effect of sub-Nyquist
sampling on the end-to-end distortion. The effects of over-
sampling are studied in [5], while the capacity for sub-Nyquist
sampled channels is considered in [6] and [7].

We study the acquisition of a time continuous Gaussian
process corrupted by additive noise with an A/D converter
consisting of an analog filter followed by a generalized point-
wise sampler with a given sampling rate. We study the
loss in performance for different A/D converters in terms
of the distortion-rate performance. While more general A/D
converter structures can be considered, the proposed scheme
is very general and includes most practical A/D architectures
in the literature, such as uniform and non-uniform samplers,
periodic sampling or filterbank samplers.

For a given A/D converter, the problem under consideration
is related to the remote source coding problem. In this class
of problems, the source to be compressed is not directly
observable, but is available at the encoder through a transfor-
mation. In our setting, this transformation corresponds tothe
combination of the additive noise and the A/D conversion, that
map the analog signal to a digital sequence of samples. Unlike
in usual source coding problems, the encoder is interested in
compressing its noisy observations to minimize the distortion
between the source, which is not available at the encoder, and
the reconstruction. The remote source coding problem was
first studied in a joint source-channel setting in [8] and [9]
for finite alphabet sources and for Gaussian time-continuous
processes under linear time invariant transforms. These results
are extended to discrete transformations with memory in [10].
These works show that under quadratic distortion error, the
distortion criterion can be decomposed into two terms using
the minimum mean squared error (MMSE) estimator.

The main results of this paper are the following. First,
we extend the results in [10] and characterize the remote
distortion-rate function for stationary Gaussian processes for
a given A/D structure and sampling rate constraint. In doing
so, and show that MMSE estimation followed by standard
optimal source compression on the estimated input signal is
optimal. Then, we derive the optimal analog filters for multi-



branch uniform sampling, a generalization of single-branch
uniform sampling. Finally, we show that if the sampling rate
is sufficiently high (yet, still below the Nyquist rate), then
multibranch sampling with a different sampling rate at each
branch is optimal, that is, it achieves the minimum distortion
achievable in the absence of an A/D converter.

II. PROBLEM STATEMENT

A. Sampling and time-preserving transforms

We consider sampling schemes that include both uniform
and non-uniform sampling. The notion of sampling rate is gen-
eralized for non-uniform sampling schemes using the Beurling
density, that quantifies the concentration of samples takenper
time unit. For a sampling setΛ , {tn|n ∈ Z}, such that if
y(t) is sampled withΛ, thek-th sample is given byy(tk), we
define the upper and lower Beurling density as

B+(Λ) = lim
r→∞

sup
z∈R

r−1Card(Λ
⋂

[z, z + r]), (1)

B−(Λ) = lim
r→∞

inf
z∈R

r−1Card(Λ
⋂

[z, z + r]). (2)

Here Card(·) is the cardinality of the set in the argument. If
B+(Λ) = B−(Λ), we say that the sampling set has Beurling
densityB(Λ) , B−(Λ). Note that for a uniform sampling
scheme of sampling periodTs, the Beurling density coincides
with the usual definition of sampling rate, i.e.B(Λ) = T−1

s .
In this paper, we define sampling rate as Beurling density.

In order to provide proper sampling rate definition we
use the time-preserving transforms notion from [7]. These
transforms correspond to the class of functions that do not
modify the scale of the input. This class includes most of the
blocks in communication systems such as linear time invariant
(LTI) systems, filter-banks as well as modulation operations.

B. System model

The system model, whereby a Gaussian processx(t) cor-
rupted by noise is acquired through an A/D converter con-
sisting of a time-preserving analog processor followed by
generalized pointwise sampling at a given sampling rate, is
illustrated in Fig. IV.

We assumex(t) to be a zero-mean stationary Gaussian
process with integrable spectral densitySx(f) for which
σ2 ,

∫

Sx(f)df . The process is corrupted by an analog
additive noise signal asy(t) = x(t) + n(t), wheren(t) is
modeled as a zero-mean Gaussian noise with spectral density
Sn(f), which we allow to be colored or white.

Before sampling, the noisy processy(t) undergoes a time-
preserving transform, that we model by a time-varying linear
filter T {·} characterized by its impulse responseq(s, t) which
outputs ν(t) = T {y(t)} =

∫∞

−∞ y(s)q(s, t)ds. Then, ν(t)
is sampled with a pointwise samplerΛ of fixed Beurling
density B(Λ) = fs. We defineP as the A/D converter
(Λ, q(s, t)) and we denote the samples acquired byP as
ν
P , {ν(tk) : tk ∈ Z}, where ν(tk) is the k-th sample.

SamplesνP are available at the input of an encoderf , that
transmits them over an error-free channel at a rateR bits per
second (bps). The receiver reconstructs the original process as

Fig. 1. Source Coding problem of analog process with Constrained Sampling

x̂(t) with a mappingg. We are interested in characterizing the
minimum squared error distortion of the reconstruction. For
time-continuous processes, the distortion is commonly found
as a limiting process of reconstructing the time-truncated
versions of the original signal,xT (t) , {x(t) : |t| ≤ T }

[10]. Using ||x(t)||2T , E[ 1
2T

∫ T

−T
x2(t)dt], we have

DP , lim
T→∞

DP
T = lim

T→∞
||xT (t)− x̂T (t)||

2
T . (3)

This system model includes most of the practical acquisition
schemes: multibranch sampling, non-uniform sampling, peri-
odic sampling and random sampling, among others. In fact,
any time-preserving multibranch system, with any number of
branches and non-uniform sampling, is equivalent to a single
branch system with some possibly non-uniform sampling
sequence that preserves information (see [7, Fact 1]).

We investigate three fundamental problems: first, the char-
acterization of the minimum distortion achievable for a given
A/D converterP with sampling Beurling densityfs. Second,
the optimalP minimizing the distortion over the class of A/D
convertersP with Beurling densityfs, and, third, determin-
ing similar to the Nyquist theorem, conditions sufficient to
reconstruct the analog signal from its samples as if the analog
process would be directly accessible without discretization.

III. R EMOTE GAUSSIAN SOURCES

A lower bound on the minimum distortion achievable for
any A/D converterP of sampling ratefs is given by assuming
thaty(t) is directly available at the encoder, and hence, that no
A/D sampling is applied. The remote distortion-rate function
of a Gaussian process with noise in the absence of A/D
conversion is considered in [10]. The minimum achievable
distortionDlb for a given rate source encoderR is given in
the next theorem.

Theorem 1 ( [10], p.129). The remote distortion-rate function
wheny(t) is accessible without sampling has the parametric
representation in terms of0 ≤ θ ≤ supSx(f) as

Dlb(R) =

∫ ∞

−∞

Sx(f)− Sx|y(f) + min{θ, Sx|y(f)}df, (4)

s.t.R =
1

2

∫ ∞

−∞

log+(Sx|y(f)θ
−1)df,

whereSx|y(f) ,
S2

x(f)
Sx(f)+Sn(f)

is the spectral density of the
E[x(t)|y(t)] MMSE estimator ofx(t) giveny(t).

The optimal source coding scheme estimatesx(t) from
y(t) with an MMSE estimator, and applies reverse water-
filling over the spectrum of the reconstruction,Sx|y(f), i.e.,
for θ satisfying the constraint, each frequency component
satisfyingSx|y(f) ≥ θ is transmitted while the other frequency
components are discarded.



IV. RATE DISTORTION FUNCTION WITH SAMPLING

In this section we return to the system model of Fig. to
characterize the minimum achievable distortion for a given
A/D schemeP with a sampling ratefs in terms of the
remote distortion-rate function, i.e., we findf, g minimizing
DP for given P . Results in [8] and [9] cannot be applied
to solve this problem sinceνP is not a time-finite input nor
is it jointly stationary withx(t). We show that for stationary
Gaussian processes, there is no loss in optimality in separating
the acquisition and transmission into three steps: sample the
noisy source, reconstruct the original process with an MMSE
estimator, and apply standard optimal source coding.

For a fixedT , distortion DP
T in (3) can be decomposed

into two terms using the MMSE estimator ofxT (t) given the
encoder inputνP , uP

T (t) = E[xT (t)|νP ]. Following [9] and
using the orthogonality principle of the MMSE estimator, that
is E[(xT (t)− uP

T (t))(u
P
T (t)− x̂T (t))] = 0, we have,

DP
T = ||xT (t)− uP

T (t)||
2
T + ||uP

T (t)− x̂T (t)||
2
T . (5)

The first term, which we denote byDT1, corresponds to the
distortion in reconstructingxT (t) from the samplesνP using
MMSE estimation, and depends only onP , while the second
term in (5) denoted byDT2 corresponds to the error between
uP
T (t) and x̂T (t), and hence, depends onP and onf andg.
ProcessxT (t) can be represented by the Karhunen-Loève

(KL) expansion asxT (t) =
∑∞

i=1 αiϕi(t), |t| ≤ T , where
ϕi(t) are the orthonormal eigenfunctions of the integral
equation

∫ T

−T
φx(s, t)ϕ(s)ds = λϕ(t), |t| ≤ T , and where

φx(s, t) , E[x(s)x(t)] is the covariance function ofx(t). The
expansion coefficients are given byαi ,

∫ T

−T
x(t)ϕi(t)dt, and

theαi are uncorrelated with each other. Ifx(t) is Gaussian, the
expansion coefficientsαi, i = 1, 2, ..., are independent random
variables given byαi ∼ N (0, λi) whereλi is the eigenvalue
associated toϕi(t). Similarly, uP

T (t) can be represented in
terms of the KL expansion over the eigenfunctionsϕ′

i(t) of
its covariance functionφP

u (s, t), as uP
T (t) =

∑∞
i=1 uiϕ

′
i(t),

|t| ≤ T , with independent zero mean Gaussian coefficients
ui ∼ N (0, λP

ui), whereλP
ui is the i-th eigenvalue of the KL

expansion. Then, the first term in (5) can be expressed as

DT1
(a)
= ||xT (t)||

2
T − ||uP

T (t)||
2
T

(b)
=

1

2T

∞
∑

i=1

(

λαi − λP
ui

)

,(6)

where(a) is due to the orthogonality principle;(b) is obtained
by the orthonormality ofφi(t) andφ′

i(t) in the KL expansion
of xT (t) anduP

T (t) respectively.
SincexT (t) andn(t) are Gaussian processes andν(t) is a

linear transform ofy(t), ν(t) is a Gaussian process and each
sampleν(tk) is a Gaussian random variable. Then, it can be
shown thatuP

T (t) is a sufficient statistics forxT (t) given the
samples at the encoder inputνP , i.e., thatp(xT (t)|νP) is
a function only ofuP

T (t). As a consequence, encoderf can
be decomposed without loss of optimality into two blocks: a
block that computes the MMSE estimationuP

T (t) concatenated
with a second encoderf ′, that only hasuP

T (t) as the input.
Now, for givenΛ andq(s, t), DT1 is fixed and independent

of f ′ andg. Hence,DP
T is minimized by finding the encoder

decoder pair(f ′, g) minimizingDT2. The minimum distortion
when the encoder inputuP

T (t) is a continuous process in a
Hilbert space is found in [11]. ExpandinguP

T (t) with the KL
expansion the minimumDP

T is found in terms ofθ satisfying

DP
T = DT1 +

1

2T

∞
∑

i=1

min{θ, λP
ui}, (7)

Ran(DT ) =
1

2T

∞
∑

i=1

1

2
log+(λP

uiθ
−1). (8)

Substituting (6) in (7), we have the following lemma.

Lemma 1. For a givenP of sampling ratefs, the distortion-
rate function with sampling is achieved by MMSE estimation
of xT (t) given the encoder inputνP , uP

T (t) , E[xT (t)|νP ],
concatenated optimal source coding foruP

T (t) at rateR; and
is given byDP(R, fs) = limT→∞ DP

T (RT , fs), such that

DP
T (RT , fs) =

1

2T

∞
∑

i=1

λαi −
1

2T

∞
∑

i=1

[λP
ui − θ]+, (9)

s.t.RT =
1

2T

∞
∑

i=1

1

2
log+(λP

uiθ
−1),

whereλαi, λP
ui, i = 1, 2, ..., are the eigenvalues ofqx(t, s) ,

E[xT (t)xT (s)] and qPu (t, s) , E[uP
T (t)u

P
T (s)] respectively.

WhenuP
T (t) is stationary with spectral densitySP

u (t), the
modified Szergo’s theorem in [10, Theorem 4.5.4] can be used
to show that whenT → ∞, the distortion-rate function with
sampling converges to

DP(R, fs) =

∫ ∞

∞

Sx(f)df −

∫ ∞

∞

[SP
u (f)− θ]+df, (10)

s.t.R =

∫ ∞

∞

1

2
log+(SP

u (f)θ−1).

V. ACHIEVABILITY

In this section, we use the remote distortion-rate function
derived in Section IV to characterize the minimum achievable
distortion for two given multibranch sampling schemes.

A. Multibranch LTI filtering and uniform sampling: MUS

Commonly, y(t) is filtered with a LTI filter to reduce
aliasing and noise, uniformly sampled at the Nyquist rate and
the samples are compressed and transmitted to the destination.
We consider a generalization of this scheme in whichy(t)
is processed by a filter bank ofM branches and uniformly
sampled at each branch. This multi-branch uniform sampling
(MUS) is illustrated in Fig.2.

Before sampling, the noisy signal is processed with a
bank of M LTI filters given by q(t) , [q1(t), ..., qM (t)].
Denote byνk(t), k = 1, ...,M , the output of the filter at
each branch. Let us define the vector of signal outputs as
ν(t) , [ν1(t), ..., νM (t)]. Then, each filter output is uni-
formly sampled everyTM

s = MTs at each branch, i.e. at
a sampling ratefM

s = fs
M

(such that
∑M

i=1 f
M
s = fs). Let

νk = {νk(nTM
s )}n∈Z for k = 1, ...,M be the output samples

at each branch. The set of samples available at the encoder,



Fig. 2. Multibranch uniform sampling+compressor scheme.

ν
mu , {ν1, ...,νM} are used to estimatesx(t) with an

MMSE estimator,umu(t) = E[x(t)|νmu], which is obtained
similarly to [6], and has a spectral densitySmu

u (f) given by

Smu
u (f) = Sx(f)Q

H(f)K−1(f)Q(f)Sx(f), (11)

whereQ(f) , F{q(t)} is the Fourier transform of the filters,
and K(f) ,

∑∞
l=−∞ Sν(f − lf̃s) is the aliased expansion

matrix of the spectrum of the samples given by

Sν(f) = (Sx(f) + Sn(f))Q(f)QH(f). (12)

Then,umu(t) is compressed using the optimal source code.
Sinceumu(t) is stationary the distortion-rate for multibranch
sampling for any given bank of filtersq(t), which we denote
by Dmu(R,q(t)), is obtained by substitutingSmu

u (f) in (10).
SinceDmu(R,q(t)) characterizes the minimum distortion

for fixed P , filters q(t) can be optimized to jointly minimize
the distortion in both the MMSE step and in the compression
step. In general, the solution to the filters depends on the
water levelθ in (10). Fortunately, the set of optimal filters
are independent of the value ofθ and a general solution can
be given, as shown in the next lemma.

Lemma 2. The minimum distortion achievable with MUS with
M branches and sampling ratefM

s = fs
M

is given by

Dmu
M (R, fs) = σ2 −

∫ − fs
2

− fs
2

M
∑

i=1

[λi(Sx|y(f))− θ]+df,(13)

s.t.R =

∫ − fs
2

− fs
2

1

2

M
∑

i=1

log+
(

λi(Sx|y(f))θ
−1

)

df, (14)

where we define the infinite diagonal matrix[Sx|y(f)]l,l =
Sx|y(f − lfM

s ), l ∈ Z; and Sx|y(f) is the spectral density in
Theorem 1. The distortion-rate function is minimized by the
filters qk(t) = F−1{Qk(f)}, k = 1, ...,M , satisfying

Qk(f − lfM
s ) =

{

1, if Sx|y(f − lfM
s ) = λk(Sx|y(f)),

0 otherwise.
(15)

This is equivalent to performing reverse water-filling over
the M largest components of the aliased spectrumSx|y(f).
Interestingly, these optimal filters coincide with the filters
minimizing the distortion betweenx(t) andumb(t) [6].

B. Multibranch LTI filtering and nonuniform sampling: MNUS

We now propose a multibranch nonuniform sampling
(MNUS) scheme that uses uniform sampling at different
sampling rates at each branch, determines the spectrum support
with Lebesgue measurefs containing the largest spectral

components ofSx|y(f), recoversSy(f) for this set, and
obtainsSx|y(f) with MMSE estimation, and finally applies
reverse water-filling over it.

Let us define the set of frequenciesS(fs) as the frequency
set containing the larger components ofSx|y(f) of measure
µ(S(fs)) = fs, given by

S(fs) ,

{

f :

∫

f∈S(f)

Sx|y(f)df = sup
B:µ(B)=fs

∫

f∈B

Sx|y(f)df

}

.

For a given spectrumSx|y(f), the encoder calculates the
reverse-water filling thresholdγ(fs) , inf S(fs). Then, set
S(fs) can be expressed as a union of non-overlapping fre-
quency bandsS(fs) =

⋃

i Si∈X such thatSi , {f : |f | ∈
[ai, bi]} is each of the non-overlapping frequency sets for
which Sx|y(f) ≥ γ(fs) and X is a countable set indexing
Si. Note that the number of intervalsSi depends onγ(fs).

Let zi(t) be a Gaussian process with spectrumSzi(f) =
Sy(f) if f ∈ Si andSzi(f) = 0 otherwise. By the Nyquist
theorem, eachzi(t) can be perfectly reconstructed fromy(t)
by extracting the frequency componentsSi with an ideal
bandlimited filter and then uniformly sampling the output at
ratefs,i = 2(bi−ai) at each branch. The number of branches
is given by the cardinality ofX and a countable number of
branches might be required ifX is not finite. From the defini-
tion of γ(fs), we have

∑

X fs,i = fs. Then, MMSE estimation
is applied asumn

T (t) = E[x(t)|zi(t), i ∈ X ]. The spectral
density of the reconstruction is given bySmn

u (f) = Sx|y(f)
if f ∈ S(fs) andSmn

u (f) = 0 if f /∈ S(fs). Thenumn
T (t) is

transmitted using the optimal source code. The distortion-rate
function for MNUS is given next.

Lemma 3. The distortion-rate function for MNUS is given by

Dmn(R, fs) =

∫ ∞

−∞

Sx(f)df −

∫

S(fs)

[Sx(f)− θ]+df,

s.t.R =
1

2

∫

S(fs)

log+
(

Sx|y(f)θ
−1

)

df.

VI. N UMERICAL RESULTS

In this section we compare the performance of the pro-
posed MUS and MNUS schemes with the lower bound on
the distortion. We consider the acquisition and transmission
of a stationary Gaussian process with spectrumSx(f) with
σ2 = 1, bandlimited to|f | ≤ 20MHz and corrupted by colored
Gaussian noise with spectrumSn(f), as shown in Fig. 3. The
spectrum ofy(t), Sy(f) = Sx(f) + Sn(f) is also shown.

In Fig. 3 we show the minimum achievable distortion
as a function of the available sampling ratefs for a fixed
compression rate ofR = 30bps. The minimum distortion for
single branch uniform sampling is given by Lemma 2 with
M = 1. MNUS for single-branch sampling and the lower
boundDlb(R) from Theorem 1 are also shown in this figure.
It can be observed that for small sampling ratesfs, both
schemes exhibit distortion far from the lower bound and they
perform closer to it asfs increases. Moreover, we see that
single branch uniform sampling is outperformed by MNUS
although their performance gets very close for somefs. It is



Fig. 3. Upper and lower bounds on the distortion versus sampling ratefs and
rateR = 30bps. The upper right corner shows the spectrum of the transmit
signal and the noise.

shown in Lemma 2 that for each frequency, the optimal filter
selects the best spectral component possible over the aliased
MMSE reconstruction. While intuitively a larger sampling rate
should imply less distortion, interestingly, due to the aliasing,
the distortion is not monotonically decreasing infs since the
aliasedSx|y(f) might have worse spectral components.

In Fig.4 the minimum distortion for the MUS scheme is
shown forM = 1, 2, 3, 4 branches. While in general using
an increasing number of branches achieves lower distortion,
it is observed that in some regimes, using less branches
and sampling at a higher rate at each branch achieves lower
distortions due to the aliasing suffered by sampling at a lower
rate at each branch. We also observe that when the sampling
ratefs is larger that a certain threshold, the lower bound (4) is
achieved by MNUS, achieving the lowest distortion achievable
by any general A/D scheme, as given in the next lemma.

Lemma 4. Let θ∗ be the parameterθ satisfying equation
(4), γ(fs) , inf{S(fs)} and f∗

s be the frequency satisfying
γ(f∗

s ) = θ∗. If fs ≥ f∗
s , MNUS achieves the lower bound on

the distortion-rate function, i.e.Dmn(R, fs) = Dlb(R).

Wheny(t) is directly available at the encoder, only the set of
spectral components satisfyingSx|y(f) ≥ θ∗ are transmitted.
Hence, to achieve the minimum distortion it is sufficient to
reconstruct these bands ofSx|y(f). Since,f∗

s is the measure
of these bands by definition, whenfs ≥ f∗

s , MNUS is
able to perfectly reconstruct the required frequency set of
Sy(f) of measuref∗

s and achieve the lower bound. However,
when fs < f∗

s , only a set of measurefs is recovered with
MNUS. The acquisition problem becomes that of recovering
an unknown spectral support ofSy(f) to minimize distortion.
In a way,f∗

s is a general Nyquist condition in the sense that,
whenfs ≥ f∗

s , the digital samples are sufficient to characterize
the continuous process at the lowest possible distortion asif
the A/D scheme were not present. In general,f∗

s is much
lower the Nyquist ratefNy, required to reconstruct the process
perfectly (in the absence of noise), for examplef∗

s = 14MHz
andfNy = 40MHz in Fig. 3, and the sampling rate required
for optimal reconstruction is significantly reduced.

Fig. 4. Upper and lower bounds on the distortion for MU withM = 1, 2, 3, 4
for a givenfs and rateR = 30. The upper right shows the minimum distortion
for MU for eachM .

VII. C ONCLUSIONS

We have considered the acquisition and transmission of
a stationary Gaussian time-continuous process corrupted by
noise with a general A/D structure consisting of analog
processing and a pointwise sampler of constrained sampling
rate. We characterized the minimum distortion achievable by
any A/D by means of the remote distortion-rate function.
We have shown that MMSE estimation followed by standard
optimal source compression on the input signal is optimal for
stationary Gaussian processes. Then, we have characterized
the minimum achievable distortion by multibranch uniform
sampling and found the optimal filters minimizing distortion.
Finally, we showed that for sufficiently large sampling rates
(below the Nyquist rate) multibranch sampling with different
sampling rates at each branch is optimal since it achieves
the minimum distortion achievable in the absence of A/D
conversion.
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