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Abstract—“THIS PAPER IS ELIGIBLE FOR THE STUDENT guestion is whether there are better ways to acquire less
PAPER AWARD” We study the fundamental limits in acqui-  information through fewer samples rather than by havingemor
sition and transmission of a stationary Gaussian continuost  gamples and then compressing them in a lossy manner.
time process corrupted by noise. The analog signal is digzed M i biliti f AD ) iaht
into discrete samples with a general analog to digital (A/D) pr(?over, Sampling capabiiiies or an . converter mig
converter that prefilters the continuous process followed § a be limited by the technology or the available hardware. In
pointwise sampler. We assume that the sampler, which is not such cases, it it important to evaluate the effect of subtlistq

necessarily uniform, is constrained to some fixed samplingate. sampling on the end-to-end distortion. The effects of over-

The samples are then compressed and transmitted at rateR ; ind i ; ; 1

. . i * sampling are st -
such that the distortion between the original source and its pl 3 h u?lgd n [5]2(;Nhllg t.heé:apaglt);for sub-Nggu
reconstruction at the receiver is minimized. We first model his S@MPi€d channeis Is C.o.n_s' ere 'n.[ ] an [, 1 )
problem as a remote source coding problem and characterizene We study the acquisition of a time continuous Gaussian

remote distortion-rate function for a fixed A/D converter. We then process corrupted by additive noise with an A/D converter
find the minimum distortion for some fixed sampling structures.  consisting of an analog filter followed by a generalized poin
We show that uniform sampling is suboptimal in general, and \ise sampler with a given sampling rate. We study the
m_ultlbranch sampllng_ achieves _strlctly Ipwer ph_stortlon. values. | . f for diff t AID ¢ in t
Finally, we show that if the sampling rate is sufficiently hidh, then 0Ss In per o.rmance or ditreren .conver ers In terms
multibranch sampling achieves the lower bound on the distaion  Of the distortion-rate performance. While more general A/D
obtained by assuming that the noisy process is directly avisible converter structures can be considered, the proposed schem
at the encoder. is very general and includes most practical A/D architestur

|. INTRODUCTION in the literature, such as uniform and non-uniform samplers

Sensing devices take samples of analog signals and digitziodic sampling or filterbank samplers.
them by an analog to digital (A/D) converter. While only For a given A/D converter, the problem under consideration
discrete samples of the continuous process are availdige, is related to the remote source coding problem. In this class
Nyquist-Shannon theorem claims that, in the absence oénoief problems, the source to be compressed is not directly
a bandlimited analog process can be perfectly represemtad f observable, but is available at the encoder through a tansf
its uniform samples as long as the sampling rate is twice th&tion. In our setting, this transformation correspondthio
bandwidth of the process (i.e., the Nyquist rate). combination of the additive noise and the A/D conversioat th

Although most practical and theoretical approaches assumap the analog signal to a digital sequence of samples. &nlik
an analog signal acquired at a rate larger than or equalitousual source coding problems, the encoder is interested i
the Nyquist rate, sampling at this rate might be excessive. dompressing its noisy observations to minimize the digtort
fact, Landau showed that the minimum sampling rate requirbdtween the source, which is not available at the encoddr, an
to perfectly reconstruct a signal is the Lebesgue measuretlé reconstruction. The remote source coding problem was
its spectral support when this support is known, which first studied in a joint source-channel setting in [8] and [9]
below the Nyquist rate in multiband signals [1]. Recentlfpr finite alphabet sources and for Gaussian time-contiauou
sub-Nyquist sampling has received a lot of attention in th@ocesses under linear time invariant transforms. Thesédtse
literature. Many works have shown the possibility of perfe@re extended to discrete transformations with memory if. [10
recovery of certain class of signals with sub-Nyquist sangpl These works show that under quadratic distortion error, the
by exploiting the structure of the signal, [2], [3], or finitate distortion criterion can be decomposed into two terms using
of innovation [4]. the minimum mean squared error (MMSE) estimator.

In sensor networks, measurements are sent to a fusiomfhe main results of this paper are the following. First,
center through a rate-limited channel. Before transngftinwe extend the results in [10] and characterize the remote
lossy compression is applied to the sensor samples to addigtortion-rate function for stationary Gaussian proessior
the information to the available rate. In such a scenar&ogiven A/D structure and sampling rate constraint. In doing
perfect recovery of the analog process at the destinationsis, and show that MMSE estimation followed by standard
not possible no matter how high the sampling rate is sinoptimal source compression on the estimated input signal is
the compression process introduces distortion. Henaeyaet optimal. Then, we derive the optimal analog filters for multi



branch uniform sampling, a generalization of single-bhanc ~ n{f)| Treusmitter Dostination

. . . . . _&_ Analog |(z) Sampler | ¥P| Encoder R Decoder
uniform sampling. Finally, we show that if the sampling rates®) -6 Procesing |— A 1 f g [EO®
is sufficiently high (yet, still below the Nyquist rate), the LAY; D

multibranch sampling with a different sampling rate at eadkg. 1. Source Coding problem of analog process with CoingttaSampling

branCh IS optlmal, that is, it achieves the minimum distort Z(t) with a mappingg. We are interested in characterizing the
achievable in the absence of an A/D converter.

minimum squared error distortion of the reconstruction: Fo
Il. PROBLEM STATEMENT time-continuous processes, the distortion is commonliydou
A. Sampling and time-preserving transforms as a limiting process of reconstructing the time-truncated

We consider sampling schemes that include both unifor§rSions of the original signakyr(t) 2 {a@t) : t| < T}
and non-uniform sampling. The notion of sampling rate is-gef0]- Using||z(t)||3 £ El35 [~ #*(t)dt], we have
eralized for non-uniform sampling schemes using the Begrli A L . R
density, that quantifies the concentration of samples taleen D" 2 P Dr = Mus lzr(8) = 20 (@)l (3)
time unit. For a sampling set £ {t,|n € Z}, such that if
y(t) is sampled withA, the k-th sample is given by(¢x), we
define the upper and lower Beurling density as

This system model includes most of the practical acquisitio
schemes: multibranch sampling, non-uniform samplingi-per
odic sampling and random sampling, among others. In fact,

BT(A) = lim supr~'CardA m[z7 z47)), (1) any time-preserving multibranch system, with any number of
T00 2eR branches and non-uniform sampling, is equivalent to a singl

B~ (A) = lim inf r~'CardA m[% z+7)). (2) branch system with some possibly non-uniform sampling
r—oo z€R

sequence that preserves information (see [7, Fact 1]).

Here Card-) is the cardinality of the set in the argument. If We investigate three fundamental problems: first, the char-

B*(A) = B~ (A), we say that the sampling set has Beurlingcterization of the minimum distortion achievable for aegiv

density B(A) £ B~ (A). Note that for a uniform sampling A/D converterP with sampling Beurling density,. Second,

scheme of sampling peridtl, the Beurling density coincidesthe optimalP minimizing the distortion over the class of A/D

with the usual definition of sampling rate, i.8(A) = T,-!. convertersP with Beurling densityf, and, third, determin-

In this paper, we define sampling rate as Beurling density. ing similar to the Nyquist theorem, conditions sufficient to
In order to provide proper sampling rate definition weeconstruct the analog signal from its samples as if theognal

use the time-preserving transforms notion from [7]. Theg®ocess would be directly accessible without discretirati

transforms correspond to the class of functions that do not

modify the scale of the input. This class includes most of the I1l. REMOTE GAUSSIAN SOURCES

blocks in communication systems such as linear time ingéria A lower bound on the minimum distortion achievable for

(LT1) systems, filter-banks as well as modulation operation any A/D convertef® of sampling ratef, is given by assuming

thaty(t) is directly available at the encoder, and hence, that no

B. System model o . . . .

A/D sampling is applied. The remote distortion-rate fuowti

The system model, whereby a Gaussian proegsscor- of a Gaussian process with noise in the absence of A/D

rupted by noise is acquired through an A/D converter cogonversion is considered in [10]. The minimum achievable

sisting of a time-preserving analog processor followed Rystortion D, for a given rate source encodéris given in
generalized pointwise sampling at a given sampling rate, tife next theorem.

illustrated in Fig. IV. ) ) )

We assumez(t) to be a zero-mean stationary Gaussiahheorem 1_([10], p._129) The remote d_|stort|on—rate functlon_
process with integrable spectral densisy(f) for which wheny(t) is acpesable without sampling has the parametric
o2 2 [S,(f)df. The process is corrupted by an analofgPresentation in terms of < ¢ < sup 5, (f) as
additive noise signal ag(t) = x(t) + n(t), wheren(t) is oo
modeled as a zero-mean Gaussian noise with spectral densityPu (1) = / Sa(f) = Suy(f) + min{6, Sy, (f) }df, (4)
Sn(f), which we allow to be colored or white. 1 oo

Befor_e sampling, the noisy proceg§) unQergoes a time- st.R= 5/ 1og+(Sz‘y(f)9*1)df,
preserving transform, that we model by a time-varying Imea -
filter 7{-} characterized by its impulse responge, t) which where S, (f) 2 S2(f)
outputsv(t) = T{y(t)} = [ y(s)q(s,t)ds. Then, v(t) zly
is sampled with a pointwise samplér of fixed Beurling
density B(A) = fs. We defineP as the A/D converter The optimal source coding scheme estimatgs) from
(A, q(s,t)) and we denote the samples acquired Byas y(t) with an MMSE estimator, and applies reverse water-
v? £ {v(ty) : t, € Z}, wherev(t;) is the k-th sample. filling over the spectrum of the reconstructios,,(f), i.e.,
Samplesv” are available at the input of an encodgrthat for @ satisfying the constraint, each frequency component
transmits them over an error-free channel at a fateits per satisfyings,,(f) > 0 is transmitted while the other frequency
second (bps). The receiver reconstructs the original ggas components are discarded.

—00

= s s the spectral density of the

Elz(t)|y(t)] MMSE estimator ofe(t) giveny(t).



IV. RATE DISTORTION FUNCTION WITH SAMPLING decoder paif f’, g) minimizing Dr2. The minimum distortion

In this section we return to the system model of Fig. tyhen the encoder inputf(t) is a continuous process in a
characterize the minimum achievable distortion for a giverilbert space is found in [11]. Expanding;(t) with the KL
A/D scheme?P with a sampling ratef, in terms of the €xpansion the minimun®/. is found in terms ob satisfying

remote distortion-rate function, i.e., we fintlg minimizing 1 &
DP for given P. Results in [8] and [9] cannot be applied DY = Dpy + 57 > min{6, AL}, 7)
to solve this problem since” is not a time-finite input nor i=1

is it jointly stationary withz(t). We show that for stationary 1 &1 AP a1

Gaussian processes, there is no loss in optimality in sépara Ran(Dr) = oT Z 9 log™ (Auif77). (®)
the acquisition and transmission into three steps: santmge t =1

noisy source, reconstruct the original process with an MMSBubstituting (6) in (7), we have the following lemma.
estimator, and apply standard optimal source coding.

For a fixed T, distortion D7 in (3) can be decomposed
into two terms using the MMSE estimator of-(¢) given the
encoder inpuv”, ul(t) = E[z7(t)|v"]. Following [9] and
using the orthogonality principle of the MMSE estimatostth
is E[(z7(t) — ul () (ul(t) — 27(t))] = 0, we have,

Lemma 1. For a givenP of sampling ratef;, the distortion-
rate function with sampling is achieved by MMSE estimation
of zr(t) given the encoder input”, uZ(t) & E[zr(t)|v7],
concatenated optimal source coding fof.(¢) at rate R; and

is given byD” (R, f,) = limr_,o D} (R, fs), such that

R 1 o0 1 o0
DF = |z (t) — uf |7 + [[uZ () = 2 (@O)[[7. (5) DE(Rr,f) = 52 D dai = 55 2 AL =01, (9)
The first term, which we denote 91, corresponds to the - i=1 i=1
distortion in reconstructingz(t) from the samples” using St Ry — 1 }1 +(\P g1
MMSE estimation, and depends only &h while the second ST o ; 9% (A7),

term in (5) denoted by)7» corresponds to the error between ‘ _ R
uP(t) andér(t), and hence, depends @hand onf andg. Wherel,;, A7, i=1,2, ..., are the eigenvalues @k (¢, s) =
Processer(t) can be represented by the Karhunen-Loavé[zr(t)zr(s)] and ¢l (t,s) = E[ul.(t)uf (s)] respectively.

(KL) expansion aser(t) = 3.2, capi(t), li] < T, where  \wpen P (4 s stationary with spectral density” (¢), the
pi(t) are the orthonormal eigenfunctions of the integrahqgified Szergo's theorem in [10, Theorem 4.5.4] can be used
equation [~ ¢x (s, t)(s)ds = Ae(t), [t| < T, and where 1 show that wherl” — o, the distortion-rate function with
b.(s,t) = E[z(s)z(t)] is the covariance function aof(t). The sampling converges to

expansion coefficients are given by £ f_TT x(t)p;i(t)dt, and 00 00

the«; are uncorrelated with each otherzift) is Gaussian, the DP(R, f,) = / Se(f)df — / [SP(f) — 0]"df, (10)
expansion coefficients;, i = 1, 2, ..., are independent random o e oo

variables given byy; ~ N(0, A;) where); is the eigenvalue st.R= / llong(SP(f)O_l).

associated tap;(t). Similarly, u7(¢) can be represented in s 2 “

terms of the KL expansion over the eigenfunctiasigt) of V. ACHIEVABILITY

its covariance functions” (s, t), asul(t) = Yoo, uip(t), In this section, we use the remote distortion-rate function
[t| < T, with independent zero mean Gaussian coefficierdsrived in Section IV to characterize the minimum achiegabl
u; ~ N(0,\7), where\”. is thei-th eigenvalue of the KL distortion for two given multibranch sampling schemes.

» g

expansion. Then, the first term in (5) can be expressed as o - \yitibranch LTI filtering and uniform sampling: MUS

Dy (@ lzr ()12 — |[ub @) ® 1 Z ()\M, _ )\Z) (6) Commonly, y(t) is filtered with a LTI filter to reduce
2T im1 aliasing and noise, uniformly sampled at the Nyquist rat an
where(a) is due to the orthogonality principl€b) is obtained the samples are compressed and transmitted to the demtinati
by the orthonormality of; (t) and¢/(¢) in the KL expansion We consider a generalization of this scheme in which)
of z7(t) anduX (t) respectively. is processed by a filter bank dff branches and uniformly
Sincexr(t) andn(t) are Gaussian processes ar(d) is a sampled at each branch. This multi-branch uniform sampling
linear transform ofy(t), v(t) is a Gaussian process and eactMUS) is illustrated in Fig.2.
samplev(tx) is a Gaussian random variable. Then, it can be Before sampling, the noisy signal is processed with a
shown thatu2(¢) is a sufficient statistics forr(t) given the bank of M LTI filters given by q(t) £ [qi(t), ..., qar(t)].
samples at the encoder inpuf’, i.e., thatp(xr(t)|v”) is Denote byw(t), k = 1,..., M, the output of the filter at
a function only ofuX(t). As a consequence, encodgrcan each branch. Let us define the vector of signal outputs as
be decomposed without loss of optimality into two blocks: &(t) = [v1(t),...,vam(t)]. Then, each filter output is uni-
block that computes the MMSE estimatioRi () concatenated formly sampled everyl’™ = MT, at each branch, i.e. at
with a second encodef’, that only hasuZ(t) as the input. a sampling ratef™ = 4 (such thaty>" fM = f,). Let
Now, for givenA andq(s,t), Dr; is fixed and independentv, = {vy(nTM)},cz for k =1, ..., M be the output samples
of f/ andg. Hence,DY. is minimized by finding the encoderat each branch. The set of samples available at the encoder,



components ofS,,(f), recoversS,(f) for this set, and
obtains S, (f) with MMSE estimation, and finally applies
") e D e — reverse water-filling over it.
a(t) MMSE g Dogital -5(1) Let us define the set of frequenci§sf,) as the frequency
D set containing the larger components&f, (f) of measure
N(’S(fs)) = fsu given by
Transmitter Destination A
s) = : T df = T d .
Fig. 2. Multibranch uniform sampling+compressor scheme. S(f:) {f /fes(f) 5 ‘y(f) f B:HS(IB}I)):JL‘S fEBS \y(f) f}

v £ {vy,..,vy} are used to estimates(t) with an  For a given spectruns,,(f), the encoder calculates the
MMSE estimatoru™"(¢) = E[xz(t)[v™"], which is obtained yeyerse-water filling threshold(f,) 2 inf S(f,). Then, set
similarly to [6], and has a spectral dens#y™ (f) given by  s(#,) can be expressed as a union of non-overlapping fre-
SIU(f) = S (NQT(HK - (HQU)S(f),  (11) auency bandsS(f,) = U; Sicx such thats; = {f : |f] €
[a;, b;]} is each of the non-overlapping frequency sets for
whereQ(f) = F{q(t)} is the Fourier transform of the filters, which S,,(f) > ~(f;) and X is a countable set indexing
andK(f) = X272 S.(f — Ifs) is the aliased expansions;. Note that the number of interval depends ony(f,).
matrix of the spectrum of the samples given by Let z;(t) be a Gaussian process with spectrSm(f) =
_ H Sy(f) if f e S;andS,.;(f) = 0 otherwise. By the Nyquist
Sv(£) = (Se(£) + Sa(FDQIHQT(S). (12) theorem, each;(t) can be perfectly reconstructed frogmit)
Then,w™"(t) is compressed using the optimal source codby extracting the frequency componenss with an ideal
Sinceu™"(t) is stationary the distortion-rate for multibranchhandlimited filter and then uniformly sampling the output at
sampling for any given bank of filterg(t), which we denote rate f,; = 2(b; — a;) at each branch. The number of branches
by D, (R, q(t)), is obtained by substituting*(f) in (10). is given by the cardinality oft and a countable number of
Since D, (R, q(t)) characterizes the minimum distortionbranches might be required & is not finite. From the defini-
for fixed P, filters q(t) can be optimized to jointly minimize tion of y(f,), we havey_ , fs; = fs. Then, MMSE estimation
the distortion in both the MMSE step and in the compressios applied asu/'"(t) = E[z(t)|z(t),i € X]. The spectral
step. In general, the solution to the filters depends on tHensity of the reconstruction is given 18" (f) = S, ,(f)
water leveld in (10). Fortunately, the set of optimal filtersif f € S(f,) andS™"(f) =0 if f ¢ S(fs). Thenu"(¢) is
are independent of the value #fand a general solution cantransmitted using the optimal source code. The distontaia-
be given, as shown in the next lemma. function for MNUS is given next.

Lemma 2. The minimum distortion achievable with MUS witil_emma 3. The distortion-rate function for MNUS is given by
M branches and sampling ratg™ = £ is given by o
o g = [ spar= [ s ot

_fs M
DR, f) =0 — [ S N(Sap, () — 6 df.(13)
1R 1) / >_Su(7) ) stn=b [ (S0
S(fs)

_fs M
2 1 _
st.R= / . §Zlog+ (Ni(Sapy(f))071) df, (14) VI. NUMERICAL RESULTS
- ":.1 o In this section we compare the performance of the pro-
where we define the infinite diagonal matr&,,(f)l.i = posed MUS and MNUS schemes with the lower bound on

Saly(f —1fM), 1 € Z; and S,, (f) is the spectral density in the distortion. We consider the acquisition and transmoissi
Theorem 1. The distortion-rate function is minimized by thﬂ a Stationary Gaussian process with Spectr‘ﬂmf) with
filters g (t) = F~{Qx(f)}, k = 1,..., M, satisfying o2 = 1, bandlimited to f| < 20MHz and corrupted by colored
. My Gaussian noise with spectrufa,(f), as shown in Fig. 3. The
Qu(f —1fM) = {1’ it Sz‘y(_f — )= )‘k(sz‘y(f)215) spectrum ofy(¢), Sy (f) = Sz(f) + Sn(f) is also shown.
0 otherwise In Fig. 3 we show the minimum achievable distortion
This is equivalent to performing reverse water-filling oveds a function of the available sampling rafte for a fixed
the M largest components of the aliased spectrfim,(f). compression rate of = 30bps. The minimum distortion for
Interestingly, these optimal filters coincide with the fite Single branch uniform sampling is given by Lemma 2 with
minimizing the distortion between(t) andu™(t) [6]. M = 1. MNUS for single-branch sampling and the lower
) o ) ) boundD;;,(R) from Theorem 1 are also shown in this figure.
B. Multibranch LTI filtering and nonuniform sampling: MNUS}; can be observed that for small sampling ratgs both
We now propose a multibranch nonuniform samplingchemes exhibit distortion far from the lower bound and they
(MNUS) scheme that uses uniform sampling at differemerform closer to it asf, increases. Moreover, we see that
sampling rates at each branch, determines the spectrurarsupgingle branch uniform sampling is outperformed by MNUS
with Lebesgue measurg; containing the largest spectralalthough their performance gets very close for sofnelt is
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Fig. 3. Upper and lower bounds on the distortion versus sampatef; and ~ Fig- 4. Upper and lower bounds on the distortion for MU with= 1,2, 3,4
rate R = 30bps. The upper right corner shows the spectrum of the transnf@r a givenfs and rateR = 30. The upper right shows the minimum distortion
signal and the noise. for MU for each M.

shown in Lemma 2 that for each frequency, the optimal filter VIl. CONCLUSIONS

selects the best spectral component possible over theedlias We have considered the acquisition and transmission of
MMSE reconstruction. While intuitively a larger samplirege a stationary Gaussian time-continuous process corrupted b
should imply less distortion, interestingly, due to theasilng, noise with a general A/D structure consisting of analog
the distortion is not monotonically decreasingjinsince the processing and a pointwise sampler of constrained sampling
aliasedsS,, (f) might have worse spectral components. rate. We characterized the minimum distortion achievalle b
In Fig.4 the minimum distortion for the MUS scheme isiny A/D by means of the remote distortion-rate function.
shown for M = 1,2,3,4 branches. While in general usingWWe have shown that MMSE estimation followed by standard
an increasing number of branches achieves lower distorti@ptimal source compression on the input signal is optimal fo
it is observed that in some regimes, using less branclsigtionary Gaussian processes. Then, we have charadterize
and sampling at a higher rate at each branch achieves low minimum achievable distortion by multibranch uniform
distortions due to the aliasing suffered by sampling at eelowsampling and found the optimal filters minimizing distortio
rate at each branch. We also observe that when the sampkgglly, we showed that for sufficiently large sampling sate
rate f, is larger that a certain threshold, the lower bound (4) (below the Nyquist rate) multioranch sampling with diffete
achieved by MNUS, achieving the lowest distortion achiéwabsampling rates at each branch is optimal since it achieves
by any general A/D scheme, as given in the next lemma. the minimum distortion achievable in the absence of A/D

Lemma 4. Let ¢* be the parameted satisfying equation CONversion.

4), ) £ inf{S(f,)} and f* be the frequency satisfyin
(4) *,7(55)9* Ifn {>(f6*)}MNU£S hi hq | y b f)é 9 [1] H.Landau, “Necessary density conditions for sampling aterpolation
’V(fs) =0"If fs > fs ’ achieves the lower bound on of certain entire functions,Acta Mathematicavol. 117, 1967.

the distortion-rate function, i.eD™" (R, fs) = Di(R). [2] M. Mishali and Y. Eldar, “From theory to practice: Subeujist sampling

L . of sparse wideband analog signallfEE Jour. Sel. Topics Sig. Prqc.
Wheny(t) is directly available at the encoder, only the setof ;"4 "5 2 pp. 375 —391, Apr. 2010.

spectral components satisfyirfty, (f) > 6* are transmitted. [3] —, “Sub-nyquist sampling,JEEE Sig. Proc. Mag.vol. 28, no. 6, pp.
Hence, to achieve the minimum distortion it is sufficient to 98 ~124, Nov. 2011, o

h bands & Si *is th [4] M. Vetterli, P. Marziliano, and T. Blu, “Sampling sigreaWith finite rate
reconstruct these ban S iIy(f) ince, f7 is the measure of innovation,” Signal Processing, IEEE Transactions, aol. 50, no. 6,
of these bands by definition, whefi, > f¥, MNUS is pp. 1417 —1428, Jun. 2002.
able to perfectly reconstruct the required frequency set dpl R. Zamir and M. Feder, "Rate-distortion performance bring ban-
g f measuref* and achieve the lower bound. However dlimited sources by sampling and dithered quantizatioBEE Trans.

y(f)o . _ - BVET,  |nf. Theory, vol. 41, no. 1, pp. 141 —154, Jan. 1995.
when fs < f¥, only a set of measurg, is recovered with [6] Y. Chen, Y. C. Eldar, and A. J. Goldsmith, “Shannon meegguist:
MNUS. The acquisition problem becomes that of recovering Capacity of gaussian sampled channelSoRR vol. abs/1109.5415,
o . ; 011.
an unknown .SpeCtral support 6@(f) to minimize distortion. [7] Y. Chen, A. J. Goldsmith, and Y. C. Eldar, “Channel capaainder
In away, fy is a general Nyquist condition in the sense that,  general nonuniform samplingCoRR vol. abs/1202.0871, 2012.
whenf, > fz, the digital samples are sufficient to characterizd®] R. Dobrushin and B. Tsybakov, “Information transmissiwith addi-
h fi t the lowest possible distortioifi a tional noise,"Trans. Inf. Theoryvol. 8, no. 5, pp. 293 —-304, Sep. 1962.
the continuous process a West possi '_S I S[9] J. Wolf and J. Ziv, “Transmission of noisy informationamoisy receiver
the A/D scheme were not present. In generdl,is much with minimum distortion,”IEEE Trans. Inf. Theory,vol. 16, no. 4, pp.
lower the Nyquist ratéfx,, required to reconstruct the process 406 — 411, Jul. 1970. _
fectly (in th b ; . f — 14MH [10] T. Berger,Rate Distortion Theory Prentice Hall, 1971.

perfectly (in the a sence o noise), for examﬁfe— Z cﬁll] A. Kolmogorov, “On the shannon theory of informatiommsmission in
and fy, = 40MHz in Fig. 3, and the sampling rate require the case of continuous signaldRE Trans. Inf. Theoryvol. 2, no. 4,

for optimal reconstruction is significantly reduced. pp. 102 -108, Dec, 1956.
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