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Abstract—Signal recovery from the magnitude of the Fourier
transform, or equivalently, from the autocorrelation, is a classical
problem known as phase retrieval. Due to the absence of phase
information, some form of additional information is required
in order to be able to uniquely identify the underlying signal.
In this work, we consider the problem of phase retrieval using
masks. Due to our interest in developing robust algorithms
with theoretical guarantees, we explore a convex optimization-
based framework. In this work, we show that two specific masks
(each mask provides 2n Fourier magnitude measurements) or
five specific masks (each mask provides n Fourier magnitude
measurements) are sufficient for a convex relaxation of the phase
retrieval problem to provably recover almost all signals (up to
global phase). We also show that the recovery is stable in the
presence of measurement noise. This is a significant improve-
ment over the existing results, which require O(log2 n) random
masks (each mask provides n Fourier magnitude measurements)
in order to guarantee unique recovery (up to global phase).
Numerical experiments complement our theoretical analysis and
show interesting trends, which we hope to explain in a future
publication.

Index Terms—phase retrieval, masked signals, autocorrelation,
semidefinite programming, convex optimization

I. INTRODUCTION

In many physical measurement systems such as X-ray crys-
tallography [1], optics [2], astronomical imaging [3], speech
recognition [4], etc, the magnitude square of the Fourier
transform is the measurable quantity. Recovering a signal
from its Fourier transform magnitude, or equivalently, its
autocorrelation, is classically known as phase retrieval.

This problem has attracted a lot of attention from re-
searchers over the last few decades and a wide variety of
techniques have been developed (see [6] for a comprehensive
summary of classical approaches, a more recent survey can be
found in [7]). However, the search for robust algorithms with
provable recovery guarantees is still ongoing.

The mapping from signals to their Fourier transform mag-
nitude is not one-to-one. In order to overcome this issue,
researchers have tried various methods which can be broadly
classified into two categories:

(i) Prior information: In some applications, it is possible
to have prior information on the signal. The set of locations
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where the signal can be non-zero, for instance, considerably
improves the performance of classical algorithms ( [5], [6]).
Recently, sparsity as a prior has been explored by various
researchers ( [8]–[12]).

(ii) Additional intensity measurements: In some applica-
tions, it is possible to obtain additional intensity measure-
ments. Common approaches include the use of modulated
light beams and masks right after the sample ( [13], [14]).
In some applications, it is natural to define the Short-Time
Fourier Transform. The idea of achieving uniqueness using
overlapping short-time sections has been explored by various
researchers ( [15]–[17]).

Recently, there has been a lot of interest in convex
optimization-based approaches to solve the phase retrieval
problem ( [18]–[20]). In this work, we consider the convex
formulation of the problem of phase retrieval with masks.
This setup was recently explored in ( [21]–[23]). Candes et
al. [21] showed that O(log4 n) random masks chosen from
a particular distribution are sufficient to provably recover the
signal (throughout this work, whenever we speak of recovery,
we mean up to a global phase). Gross et al. [22] tightened
the analysis and showed that O(log2 n) random masks chosen
from a particular distribution are sufficient to provably recover
the signal. While these results are theoretically very exciting,
random masks (chosen from distributions) are very difficult to
construct in practice. Also, while these results are not very far
off from the optimum number of random masks order-wise,
the numerical constants involved are very high.

In this work, in contrast, we consider specific masks instead
of random masks. We show that two specific simple masks
(each mask provides 2n measurements) or five specific simple
masks (each mask provides n measurements) are sufficient for
the convex formulation to provably and stably recover almost
all signals.

This paper is organized as follows. In Section 2, we mathe-
matically set up the phase retrieval problem using masks and
develop a convex formulation. Section 3 contains the unique
recovery/ stability theorems for the convex formulation with
specific masks. In Section 4, we present the results of various
numerical experiments. Section 5 concludes the paper. The
proofs of various theorems are provided in the Appendix.
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II. CONVEX FORMULATION OF PHASE RETRIEVAL

Let x = (x[0], x[1], ..., x[n − 1])T be a complex-valued
signal of length n. For 1 ≤ l ≤ L, let Dl be a diagonal
matrix (corresponding to lth mask) with diagonal entries
{dl[0], dl[1], ..., dl[n − 1]}, where L is the number of masks
used. If F is the n-DFT matrix and yl is the Fourier transform
of (Dlx), then the phase retrieval problem using masks can
be stated as

find x (1)
subject to |yl| = |FDlx| : 1 ≤ l ≤ L.

Since the magnitude-square of the Fourier transform and cir-
cular autocorrelation are Fourier pairs, (1) can be equivalently
stated as

find x (2)

subject to bl = (Dlx)~ ˜(Dlx) : 1 ≤ l ≤ L,

where ˜(Dlx) is the conjugate-flipped version of (Dlx),
~ is the circular convolution operator and bl =
(bl[0], bl[1], ..., bl[n − 1])T is the circular autocorrelation of
(Dlx).

Researchers have observed that zero padding the signal x
with n zeros and considering the 2n-DFT greatly reduces the
number of solutions (this is possible to do in most instances of
the phase retrieval problem). In this setup, the phase retrieval
problem using masks can be stated as

find x (3)

subject to al = (Dlx) ? ˜(Dlx) : 1 ≤ l ≤ L,

where ˜(Dlx) is the conjugate-flipped version of (Dlx), ? is
the convolution operator and al = (al[0], al[1], ..., al[n− 1])T

is the autocorrelation of (Dlx).

Theorem II.1. Consider any arbitrary signal x ∈ Cn. For
almost all x, the feasible set of (3) is unique (and hence x
can be recovered) up to a global phase if measurements are
taken using two masks defined by Dα and Dβ which satisfy

(i) dα[i] 6= 0 or dβ [i] 6= 0 for each 0 ≤ i ≤ n− 1
(ii) dα[i]dβ [i] 6= 0 for some 0 ≤ i ≤ n− 1.

Proof: The proof of this theorem involves a technique
called dimension counting, and is omitted in this paper. The
first condition is not surprising. If dα[i] = 0 and dβ [i] = 0 for
some 0 ≤ i ≤ n−1, then no information about x[i] is obtained
and hence x[i] cannot be recovered. The second condition, that
both the masks should collect information about x[i] for some
0 ≤ i ≤ n−1, can be used to argue (using dimension counting)
that the set of signals for which (3) does not have a unique
feasible point has a dimension strictly less than the dimension
of the set of all signals. The interested reader is referred to (
[17], [26]) for details.

Hence, in principle, two masks (each providing 2n Fourier
magnitude measurements) are sufficient in order to be able
to uniquely recover almost all signals (up to a global phase).
Next, we shift our attention to recovery algorithms.

Problems (2) and (3) have quadratic constraints. A tech-
nique, popularly known as lifting, has enjoyed success in
solving some quadratically-constrained problems (for exam-
ple, see [24]). The steps can be summarized as follows:
(i) embed the problem in a higher dimensional space using
the transformation X = xx?, a process which converts the
problem of recovering a signal with quadratic constraints
into a problem of recovering a rank-one matrix with affine
constraints (ii) relax the rank-one constraint to obtain a convex
program.

Using this technique, the convex program to solve (2) can
be written as

find X (4)
subject to B(X) = b

X < 0,

where B(X) = b is the set of affine constraints
{bl[i] =

∑n−1
j=0 dl[j]dl[j+i]Xj,j+i : 0 ≤ i ≤ n−1, 1 ≤ l ≤ L}

(the indices are defined modulo n).
Similarly, the convex program to solve (3) can be written

as

find X (5)
subject to A(X) = a

X < 0,

where A(X) = a is the set of affine constraints {al[i] =∑n−1−i
j=0 dl[j]dl[j + i]Xj,j+i : 0 ≤ i ≤ n− 1, 1 ≤ l ≤ L}.

III. MASK DESIGN FOR STABLE RECOVERY

In this section, we first describe the masks which reduce the
feasible set of (4) and (5) to a unique point in the noiseless
setup. We then consider the noisy setup, reformulate (4) and
(5) and show that these masks ensure stable recovery in the
presence of measurement noise.

Let D1 and D2 be diagonal matrices with diagonal entries

d1[i] = 1 0 ≤ i ≤ n− 1 (6)

d2[i] =

{
0 i = 0

1 1 ≤ i ≤ n− 1.
(7)

There is a simple combinatorial recovery algorithm for this
particular choice of masks. The measurements obtained using
the masks defined by D1 and D2 are

a1[i] =
n−1−i∑
j=0

x[j]x?[j + i] & a2[i] =
n−1−i∑
j=1

x[j]x?[j + i].

(8)
for 0 ≤ i ≤ n − 1. Since a1[0] − a2[0] = x[0]x?[0], we can
infer x[0] up to a phase. Using a1[i] − a2[i] = x[0]x?[i] for
1 ≤ i ≤ n − 1, we can infer the entire signal x up to a
global phase. However, this method of recovery is unstable in
the presence of measurement noise as it does not optimally
make use of the available measurements. Hence, we consider
a convex relaxation-based recovery algorithm.
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Theorem III.1. Consider any arbitrary signal x ∈ Cn such
that x[0] 6= 0. Suppose measurements are taken with the masks
defined by D1 and D2, the convex program (5) has a unique
feasible point, namely, xx?, and hence x can be uniquely
recovered (up to a global phase).

Let D3,D4,D5, D6 and D7 be diagonal matrices with
diagonal entries

d3[i] =

{
1 0 ≤ i ≤ n/2− 1

0 n/2 ≤ i ≤ n− 1
(9)

d4[i] =


0 i = 0

1 1 ≤ i ≤ n/2− 1

0 n/2 ≤ i ≤ n− 1

(10)

d5[i] =

{
0 0 ≤ i ≤ n/2
1 n/2 + 1 ≤ i ≤ n− 1

(11)

d6[i] =

{
0 0 ≤ i ≤ n/2− 1

1 n/2 ≤ i ≤ n− 1.
(12)

d7[i] =


0 0 ≤ i ≤ n/4− 1

1 n/4 ≤ i ≤ 3n/4− 1

0 3n/4 ≤ i ≤ n− 1.

(13)

Theorem III.2. Consider any arbitrary signal x ∈ Cn such
that x[0], x[n/2 − 1], x[n/2] 6= 0. Suppose measurements are
taken with the masks defined by D3,D4,D5, D6 and D7, the
convex program (4) has a unique feasible point, namely, xx?,
and hence x can be uniquely recovered (up to a global phase).

In the real world, measurements are contaminated by noise.
Suppose the noise corresponding to each measurement is
bounded by ε. We consider the solution to

minimize trace(X) (14)
subject to ||B(X)− b||∞ ≤ ε

X < 0

and

minimize trace(X) (15)
subject to ||A(X)− a||∞ ≤ ε

X < 0.

Theorem III.3. Consider any arbitrary signal x ∈ Cn such
that ||x||1 ≤ β and |x[0]| ≥ γ > 0 for some β, γ. Suppose
measurements are taken with the masks defined by D1 and
D2, the solution to the convex program (15) X̂ obeys

||X̂− xx?||2 ≤ C0(β, γ)ε. (16)

for some numerical constant C0(β, γ).

The proofs of Theorems III.1, III.2 and III.3 are provided
in the Appendix.
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Fig. 1. Performance of convex program (15) with masks defined by D1 and
D2 for various choices of n and ε

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness of the
proposed masks using numerical simulations. We consider
signal lengths n = 32 and n = 64. The signal values are
chosen from an i.i.d. Gaussian distribution, and γ = 0.1 is
used.

In the first set of simulations, we evaluate the stability of
recovery using (15) with masks defined by D1 and D2 in the
noisy setup. For various values of measurement noise bounds
ε, we plot the values of the reconstruction mean square error,
defined by

MSE =
||X̂− xx?||22
||xx?||22

.

Figure 1 contains the results of this set of simulations, the
stability of recovery in the presence of measurement noise can
be clearly seen.

Let D8 be a diagonal matrix with diagonal entries

d8[i] =

{
0 0 ≤ i ≤ t− 1

1 t ≤ i ≤ n− 1
(17)

In the second set of experiments, we evaluate the per-
formance of (5) with masks defined by D1 and D8 in the
noiseless setup. For various values of t, we plot the probability
of successful recovery of the underlying signal.

Figure 2 contains the results of this set of simulations. We
see that for t greater than ∼ n/2, the program fails to recover
the underlying signal. For t less than ∼ n/2, the program
recovers the underlying signal with very high probability. We
hope to provide a theoretical analysis of this phase transition
in a future publication.

When the first t diagonal entries of D8 are chosen from a
random distribution instead of 0, the program does not recover
the underlying signal with high probability if t > 1. This
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Fig. 2. Performance of convex program (5) with masks defined by D1 and
D8 for various choices of n and t

suggests that only particular sets of two masks have the ability
to recover signals with high probability. A characterization of
this set would be a very interesting topic for future study.

V. CONCLUSION

In this work, we studied the problem of phase retrieval
with masks using a convex optimization-based framework.
We showed that two specific masks (each mask provides
2n Fourier magnitude measurements) or five specific masks
(each mask provides n Fourier magnitude measurements) are
sufficient for the convex formulation to provably and stably
recover the underlying signal in the presence of measurement
noise. Numerical simulations verify the theory and suggest
directions for future work.

VI. APPENDIX

A. Proof of Theorem III.1

The affine set of measurements A(X) = a obtained with
the masks defined by D1 and D2 are

a1[i] =
n−1−i∑
j=0

Xj,j+i & a2[i] =
n−1−i∑
j=1

Xj,j+i. (18)

From a matrix sensing perspective, these set of measure-
ments fix (i) the entries of the first row and column of X (can
be seen by subtracting a2 from a1) (ii) the sum along the ith

off-diagonal of X excluding the first row and column for each
i (can be seen as measurements due to a2). We will show the
following: if xx? satisfies (18), then it is the only positive
semidefinite matrix which satisfies (18).

Let T be the set of symmetric matrices of the form

T = {X = xw? +wx? : w ∈ Cn}

and T⊥ be its orthogonal complement. T can be interpreted
as the tangent space at xx? to the manifold of symmetric

matrices of rank 1. Influenced by [18], we use XT and XT⊥

to denote the projection of a matrix X onto the subspaces T
and T⊥ respectively.

Standard duality arguments in semidefinite programming
show that sufficient conditions for xx? to be the unique
optimizer to (5) is:

(i) Condition 1: X ∈ T & A(X) = 0⇒ X = 0
(ii) Condition 2: There exists a dual certificate W in the

range space of A? obeying:
• Wx = 0
• rank(W) = n− 1
• W < 0

The proof of this is straightforward, and can be found in any
standard reference on semidefinite programming (for example,
see [25]).

First, we will show that the measurement operator A
obtained with the masks defined by D1 and D2 satisfies
Condition 1.

The set of constraints A(X) = 0 fix the entries of the first
row and column of X to 0, i.e.,
X[0, i] = X[i, 0] = 0 : 0 ≤ i ≤ n− 1.
Since X ∈ T , we can write X = xw? + wx? for some

w = (w[0], w[1], ..., w[n− 1])T . We have
x[0]w[0] = 0⇒ w[0] = 0
x[0]w[i] + w[0]x[i] = 0 : 1 ≤ i ≤ n − 1 ⇒ w[i] = 0 : 1 ≤

i ≤ n− 1.
Hence, w = 0, which implies X = 0.
Next, we will show that Condition 2 is satisfied.
The range space of A? obtained with the masks defined by

D1 and D2 is the set of all symmetric matrices whose principal
submatrix obtained by removing the first row and column has
Toeplitz structure (this can be easily seen by writing the dual
of (5)). Suppose z = −(x[1], x[2], ..., x[n − 1])T /x[0] (well
defined if x[0] 6= 0) and In−1 is the identity matrix of size
n− 1. Consider the following matrix:

W =

z?z z?

z In−1

 (19)

W is in the range space of A? as In−1 has Toeplitz struc-
ture. Also, Wx = 0 as zx[0] + (x[1], x[2], ..., x[n− 1])T = 0.
By writing out the characteristic equation, it is straightforward
to see that the eigenvalues of W are {1+ ||z||2, 1, 1, .....1, 0}.
Hence, rank(W) = n − 1 and W < 0. This completes the
proof.

B. Proof of Theorem III.2

Consider the set of measurements obtained with the masks
defined by D3 and D4. Since both these masks are zero
throughout the region n/2 ≤ i ≤ n − 1, the circular
autocorrelation and autocorrelation measurements are identical
for 0 ≤ i ≤ n/2 − 1. These set of measurements correspond
to the setup of Theorem III.1 with n replaced by n/2. Hence,
if x[0] 6= 0, X[i, j] in the region 0 ≤ i, j ≤ n/2 − 1 can be
uniquely recovered.
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Similarly, using the measurements obtained with the masks
defined by D5 and D6, X[i, j] in the region n/2 ≤ i, j ≤ n−1
can be uniquely recovered if x[n/2] 6= 0.

The measurements obtained with the mask defined by D7

recovers the precise value of X[n/2 − 1, n/2]. If X[n/2 −
1, n/2] 6= 0, given all the entries that have been determined
till now, it is straightforward to see that xx? is the only
feasible positive semidefinite completion [27]. Hence, x can
be uniquely identified up to a global phase.

C. Proof of Theorem III.3

Let X̂ = xx?+H be the optimizer of (15). Since both xx?

and X̂ are feasible, we have ||A(H)||∞ = ||A(X̂−X)||∞ ≤
||A(X̂)−a||∞+||A(xx?)−a||∞ ≤ 2ε. Also, note that HT⊥ <
0.

Since the measurement operator A obtained with the masks
defined by D1 and D2 fixes, for each i, the sum along the ith

off-diagonal and the sum along the ith off-diagonal excluding
the first row and column, we have∣∣∣∑j≥1H[j, j]

∣∣∣ ≤ 2ε

|H[0, i]| ≤
∣∣∣∑j≥0H[j, i+ j]

∣∣∣+ ∣∣∣∑j≥1 |H[j, i+ j]
∣∣∣ ≤ 4ε :

0 ≤ i ≤ n− 1.
First, we bound ||HT⊥ ||2 using the dual certificate (19):
〈W,H〉 =

∑
i

∑
jW [i, j]H[i, j] ≤ |zT z||H[0, 0]|

+2
∑
j≥1 |z[j − 1]||H[0, j]|+

∣∣∣∑j≥1H[j, j]
∣∣∣ ≤ c1(β, γ)ε.

for some constant c1(β, γ). This holds because |z?z| and
|z[i−1]| : 1 ≤ i ≤ n are bounded due to the fact that ||x||1 ≤
β and |x[0]| > γ respectively. Also,
〈W,H〉 = 〈W,HT 〉+ 〈W,HT⊥〉 ≥ ||HT⊥ ||2
where we use the following facts: 〈W,HT 〉 = 0 (due to

Wx = 0), HT⊥ < 0, W has a minimum eigenvalue 1 in T⊥.
Hence,
||HT⊥ ||2 ≤ c1(β, γ)ε.
Next, we bound ||HT ||2. Since |H[0, i]| ≤ 4ε : 0 ≤ i ≤

n− 1
|HT [0, i] +HT⊥ [0, i]| ≤ 4ε⇒ |HT [0, i]| ≤ (c1(β, γ) + 4)ε
Since we can write HT = xw? + wx? for some w =

(w[0], w[1], ..., w[n− 1])T , we have
|w[0]| ≤ (c1(β, γ) + 4)ε/(2|x[0]|)
|w[i]| ≤ (c1(β, γ)+ 4)ε/(2|x[0]|)(2+ |x[i]/x[0]|) : 1 ≤ i ≤

n− 1
Explicitly writing out ||HT ||2 in terms of x and w, and

using the above bounds on w, we get ||HT ||2 ≤ c2(β, γ)ε for
some constant c2(β, γ).

Hence, ||H||2 = ||HT ||2 + ||H⊥T ||2 ≤ C0(β, γ)ε for some
constant C0(β, γ). This completes the proof. We wish to point
out that the analysis provided here is not tight, the constants
we observed in numerical simulations are significantly lesser
than the ones derived in this section.

REFERENCES

[1] A. L. Patterson, “Ambiguities in the X-ray analysis of crystal structures”,
Phys. Review 65 (1944) 195-201.

[2] A. Walther, “The question of phase retrieval in optics”, Opt. Acta 10,
4149 (1963).

[3] J . C. Dainty and J. R. Fienup, “Phase Retrieval and Image Reconstruction
for Astronomy”, Chapter 7 in H. Stark, ed., Image Recovery: Theory and
Application pp. 231-275.

[4] L. Rabiner and B . H. Juang, “Fundamentals of Speech Recognition”,
Signal Processing Series, Prentice Hall, 1993.

[5] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the
determination of the phase from image and diffraction plane pictures”,
Optik 35, 237 (1972).

[6] J. R. Fienup, “Phase retrieval algorithms: a comparison”, Appl. Opt. 21,
2758–2769 (1982).

[7] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao and M.
Segev, “Phase Retrieval with Application to Optical Imaging”, to appear
in IEEE Signal Processing Magazine.

[8] Y. M. Lu and M. Vetterli, “Sparse spectral factorization: Unicity and
reconstruction algorithms”, ICASSP 2011.

[9] Y. Shechtman, A. Beck and Y. C. Eldar, “GESPAR: Efficient Phase
Retrieval of Sparse Signals”, arXiv:1301.1018 [cs.IT].

[10] K. Jaganathan, S. Oymak and B. Hassibi, “Recovery of Sparse 1-D
Signals from the Magnitudes of their Fourier Transform”, ISIT 2012.

[11] S. Mukherjee and C. Seelamantula, “An iterative algorithm for phase
retrieval with sparsity constraints: Application to frequency domain optical
coherence tomography, in Acoustics, Speech and Signal Process- ing
(ICASSP), 2012 IEEE International Conference on. IEEE, 2012.

[12] K. Jaganathan, S. Oymak and B. Hassibi, “Sparse Phase Retrieval:
Convex Algorithms and Limitations”, arXiv:1303.4128 [cs.IT].

[13] M. J. Humphry, B. Kraus, A. C. Hurst, A. M. Maiden, J. M. Rodenburg,
“Ptychographic electron microscopy using high-angle dark-field scattering
for sub-nanometre resolution imaging”, Nature Communications 3 (2012)

[14] G. Zheng, R. Horstmeyer and C. Yang, “Wide-field, high-
resolution Fourier ptychographic microscopy,” Nature Photonics,
doi:10.1038/nphoton.2013.187

[15] S. H. Nawab, T. F. Quatieri, and J. S. Lim, “Signal reconstruction from
short-time Fourier transform magnitude,” Acoustics, Speech and Signal
Processing, IEEE Transactions on 31.4 (1983): 986-998.

[16] Y. C. Eldar, P. Sidorenkoy, D. G. Mixon, S. Barel and O. Cohen, “Sparse
Phase Retrieval from Short-Time Fourier Measurements”, to appear in
IEEE letters.

[17] K. Jaganathan, Y. C. Eldar and B. Hassibi, “Recovering Signals from the
Short-Time Fourier Transform Magnitude”, Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Conference.

[18] E. J. Candes, T. Strohmer, and V. Voroninski, “Phase lift: Exact and
stable signal recovery from magnitude measurements via convex program-
ming, arXiv:1109.4499, Sept. 2011.

[19] H. Ohlsson, A. Yang, R. Dong, and S. Sastry, “Compressive phase
retrieval from squared output measurements via semidefinite programming,
arXiv preprint arXiv:1111.6323, 2011.

[20] X. Li, V. Voroninski, “Sparse Signal Recovery from Quadratic Measure-
ments via Convex Programming”, arXiv:1209.4785v1.

[21] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval from coded
diffraction patterns”, arXiv:1310.3240 [cs.IT].

[22] D. Gross, F. Krahmer, and R. Kueng, “Improved recovery guaran-
tees for phase retrieval from coded diffraction patterns”, arXiv preprint
arXiv:1402.6286, 2014.

[23] A. S. Bandeira, Y. Chen, and D. G. Mixon, “Phase retrieval from power
spectra of masked signals”, Information and Inference (2014): iau002.

[24] Goemans, Michel X., and David P. Williamson, “Improved approx-
imation algorithms for maximum cut and satisfiability problems using
semidefinite programming”, Journal of the ACM (JACM) 42.6 (1995).

[25] Vandenberghe, L., and Boyd, S. (1996), “Semidefinite programming”,
SIAM review, 38(1), 49-95.

[26] Fannjiang, A. (2012). Absolute uniqueness of phase retrieval with
random illumination. Inverse Problems, 28(7), 075008.

[27] K.Jaganathan, S. Oymak and B.Hassibi, “On Robust Phase Retrieval for
Sparse Signals”, Allerton 2012.

1659


