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Abstract—We present an algorithm for resampling data from
a non-uniform grid onto a uniform grid. Our algorithm termed
generalized sparse uniform resampling (GSURS) uses methods
from modern sampling theory. Selection of an intermediate
subspace generated by integer translations of a compactly sup-
ported generating kernel produces a sparse system of equations
representing the relation between the nonuniformly spaced sam-
ples and a series of generalized samples. This sparse system
of equations can be solved efficiently using a sparse equation
solver. A correction filter is subsequently applied to the result in
order to attain the uniformly spaced samples of the signal. We
demonstrate the application of the new method for reconstructing
MRI data from nonuniformly spaced k-space samples. In this
scenario, the algorithm is first used to calculate uniformly spaced
k-space samples, and subsequently an inverse FFT is applied
to these samples in order to obtain the reconstructed image.
Simulations using a numerical phantom are used to compare the
performance of GSURS with other reconstruction methods, in
particular convolutional gridding and the nonuniform FFT.

I. INTRODUCTION

Medical imaging systems such as magnetic resonance imag-
ing (MRI) and computerized tomography (CT) sample signals
in k-space, namely the spatial frequency domain. A non-
Cartesian sampling grid in k-space is often used to improve
acquisition time and efficiency. A popular approach to recover
the original image is to resample the signal on a Cartesian grid
and then use the inverse fast Fourier transform (IFFT) in order
to transform back into the image domain. It has been shown
[1] that this is advantageous in terms of the computational
complexity involved.

In MRI, the most widely used resampling algorithm is
convolutional gridding (CG) [2], which consists of four steps:
1) precompensation for varying sampling density; 2) convo-
Iution with a Kaiser-Bessel window onto a Cartesian grid; 3)
IFFT; and 4) postcompensation by dividing the image by the
transform of the window.

Two other notable classes of resampling methods em-
ployed in medical imaging are the least-squares (LS) and
the nonuniform-FFT (NUFFT) algorithms. LS methods, in
particular URS/BURS [3], [4], exploit the relationship between
the acquired nonuniformly spaced k-space samples and their
uniformly spaced counterparts, as given by the standard sinc-
function interpolation of the sampling theorem. These methods
invert this relationship using the regularized pseudo-inverse.
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The NUFFT [5], [6] is a computationally efficient family of
algorithms for approximating the inverse Fourier transform di-
rectly from the nonuniformly spaced samples. These methods
first define a “forward problem” which performs the Fourier
transform from the image domain to the nonuniformly spaced
samples in k-space by approximating efficiently a nonuniform
Fourier matrix [7]. Next, the adjoint of the forward problem
is calculated. Finally, using a variant of the conjugate gradient
method, these two operations are executed iteratively until
convergence of the result is achieved.

In recent years the concepts of sampling and reconstruction
were generalized within the mathematical framework of func-
tion spaces [8]. Methods were developed for reconstructing a
desired signal, or an approximation of this signal, beyond the
restrictions of the Shannon-Nyquist sampling theorem.

In this paper we apply these concepts to the problem
of reconstruction of MRI or CT images from nonuniformly
spaced measurements in k-space. The proposed method is
compared with other prevalent reconstruction methods in terms
of its accuracy, its computational burden and its behaviour
in the presence of noise, and is shown to produce excellent
results.

II. PROBLEM FORMULATION

An MRI image is represented by a gray level function F' (),
where z denotes the spatial coordinate (in 2 or 3 spatial
dimensions). The Fourier transform of the image function
is denoted f (k), where k is the spatial frequency domain
coordinate, termed k-space:
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The MRI tomograph collects a finite number of k-space
raw data samples f (k,,),m = 1,---, M where the sam-
pling points {k.,,} may be nonuniformly distributed in k-
space. These samples are arranged in a vector b, where
b[m] = f (Km ). In MRI, the field of view (FOV) in the image
domain is limited, which implies that f (k) is represented by
a bandlimited function in k-space. We denote by A the shift
invariant (SI) subspace of bandlimited functions in k-space,
f € A, spanned by

a, (k) =sinc ((k — An) /A), (D)
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with spacing A in the k-space corresponding to FOV 21 /A
in the image space and n € Z. For computational purposes
we use a finite subspace, n = 1,--- | N, which approximates
the space of bandlimited functions.

We seek an efficient solution to the reconstruction problem:
Given b, a set of nonuniformly spaced samples of an unknown
feA{f(km)},m=1,--- M, find a good approximation
f (k,) on a given set of uniformly spaced sampling points
{kn},n=1,---, N, from which we can subsequently recon-
struct the image F'(x) by using the efficient IFFT.

In the next sections concepts from the function-space ap-
proach to sampling theory are presented, followed by their
application to MRI imaging as manifested by the new GSURS
algorithm.

III. GENERALIZED-SAMPLING APPROACH CONCEPTS

In the classic approach to signal sampling the signal f is
represented by measurements which are its values at given
sampling points. In recent years [8]-[10] this idea was ex-
panded and generalized within a function-space framework.
The processes of sampling and reconstruction can be viewed
as an expansion of a signal onto a set of vectors that span
a signal space. Suppose that a signal f lies in an arbitrary
subspace A of a Hilbert space H. It can be represented by

N
f=>_dnla, = Ad,
n=1

where d € CV, and A : CNY — H is a set transform
corresponding to vectors {a, } ,n =1,--- , N which span the
subspace 4 and constitute a Riesz basis or a frame [11]. Thus,
applying A is equivalent to taking linear combinations of the
set of vectors {a,}.

Measurements are expressed as inner products of the func-
tion to be sampled f with a set of vectors {s,,},m =
1,---, M that span the sampling subspace Sy C H. Using
this notation, the vector of samples b is given by b = S{f
where b[m] = (s;,, f) and Sy is the adjoint of Sy.

As shown in [12], a consistent approximation of f can be
recovered in A from its samples using an oblique projection:

f=Eus:f=ASRA) S, 2)

where | denotes the pseudoinverse. The geometrical interpre-
tation of this reconstruction scheme is illustrated in Fig. 1(a).
When certain conditions are fulfilled, S3A is invertible and
perfect reconstruction is attained, f = f.

IV. GENERALIZED SPARSE UNIFORM RESAMPLING
ALGORITHM

In MRI we are given a set of M nonuniformly spaced
samples in 2D or 3D k-space of a signal f € A, where A
is a subspace of bandlimited functions spanned by a,, defined
in (1). The samples are given by b[m| = (s,,, f), where
Sm(k) = 6 (k — kp,) spans the sampling subspace Sy. The
solution given in (2) can be shown to be equivalent to the
URS scheme [3], where the pseudoinverse of the full matrix

(b)

Fig. 1. Geometrical interpretation of: (a) An oblique projection in a perfect
reconstruction scenario; (b) The GSURS scheme.

SEA is calculated and used to recover the values of f (k)
on the uniform grid. For a 2D or 3D MRI image, storing
SNA on the computer, not to mention calculating (SI’\'}A)T, is
intractable due to the sheer size the matrices involved. Even if
we were given (SIGA)T and were able to store it, calculating
d = (SI’\'}A)Tb requires O (N x M) complex operations,
which is by and large computationally prohibitive.

The method described herein for reconstruction from
nonuniformly spaced samples employs a generalized sampling
scheme. By cleverly selecting an intermediate reconstruction
subspace Q, we show that a sparse system of equations
is produced that can be solved efficiently using solvers for
sparse linear equations. The resulting reconstruction process
is performed with only a minor increase in the approximation
error.

We begin by introducing an intermediate subspace Q € H
which is spanned by a set of vectors {g,}, which are integer
translations of a compactly supported function ¢ (k), i.e.,
gn (k) = q((k — An) /A) where n = 1,--- , N. It is straight-
forward to extended this 1D notation into higher dimension
using separable functions. We define a resampling subspace Sy
spanned by u, (k) = 6 (k — ky), where {k,},n=1,--- N
are the uniformly spaced sampling points. Our reconstruction
process comprises a sequence of two oblique projections, as
described by the following equation:

f=A(S5A)85Q(S5Q)"S% 1. 3)
E

1 EosL
Asd os

The geometrical interpretation of (3) is depicted in Fig. 1(b).
We name the resulting reconstruction process the Generalized
Sparse Uniform ReSampling (GSURS) algorithm.

Let us split the sequence of operators in (3) into two parts.
Define

c=(5%Q)'b, “

where c, is a vector of N generalized samples of f on a
uniformly spaced grid, and

d = (S54)'(S5Q)e. 5)

In order to calculate c let us first reformulate relation (4) as
b = S{Qc, which for s,,(k) = 6 (k — k) can be described
by the following set of equations:

N
b[m} = Z C[”]Q(Hm - kn) (6)

n=1
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Due to the compact support of g, only a small number of
coefficients ¢[n] in (6) contribute to the calculation of each
value b [m]. Therefore, (6) represents a sparse relation between
the coefficient vectors b and ¢, which can be expressed by a
M x N sparse matrix ®, with elements:

{(I)}m,n = {SITIQ}m,n =4 (Km - kn) .

This equation, b = ®c, is solved using the weighted regular-
ized least squares:

)

A useful sparsity conserving formulation for the normal equa-
tion which solves (7) employs the “sparse tableau” approach
re

[13]:
b _ I r
0 —\ ®ITT —p°1 c )’

where p is a regularization scalar, r is the residual from (7)
which is minimized, and T = I‘%, where I' is a diagonal
weighting matrix with weights v; > 0. The sparse system
matrix in (8) is denoted W.

This system of equations is solved using a sparse direct
solver which calculates the LU decomposition of W. In partic-
ular, the matrix W is factored as: P (R™'¥) Q = LU, where
P and Q are permutation matrices, R is a diagonal weighting
matrix, and L and U are lower and upper triangular matrices
respectively. For further details refer to [14]. We emphasize
that the factorization process is performed offline only once for
a given sampling trajectory and does not need to be repeated
for each new sampling data set. Given samples b, the solution
of the sparse system of equations is performed online by
forward substitution and backward elimination. This operation
typically achieves linear memory usage and computational
complexity of O (Nxz), where Nyz is the number of non-
zero elements in the matrix W.

Once the vector of uniformly spaced generalized samples
c is calculated according to (4), we proceed to calculate the
uniformly spaced k-space samples d from (5). Since both c
and d are located on a uniformly spaced grid and in addition,
Q and A are SI subspaces, (5) can performed efficiently using
a linear shift-invariant (LSI) filter. As shown in [8], the filter

is described by:
Hcor (ij) = Rsya(el®) ’RSUA (eJ;w) 7& 0 .
0, Rsya (¢7) =0

Given the reconstructed uniformly spaced k-space samples
d = f(k,), the reconstruction process is completed by
transforming back into the image domain e = IFFT {d}.
The estimate of the uniformly sampled image is then given
by E () = |e[n]|. The entire reconstruction process, includ-
ing the series of projections followed by the IFFT, can be
implemented by the system depicted in Fig. 2.

We note that rather than performing the filtering operation
(9) in k-space, it can be implemented efficiently as an element-
wise product in the image domain — following the IFFT.

¢ = argmin T (®c’ — b)H2 +plle’||*.

®)

Rsyo (ejw)

©))

b[n] [n] - d [n] e [n)—F (2,
f ()»fs (- Py (S5:Q) [ iii‘;‘;iEZ;w? IFFT*B*
k= Km

[——
sparse system

Fig. 2. GSURS system block diagram.

The approximation error in the reconstruction process can
be reduced by resampling onto a denser uniform grid in k-
space. This is done by scaling A in Eq. (1) by a factor [ > 1,
ie, A=A /1, thereby increasing N by a factor of I4™, where
dim is the dimension of our problem. Increasing I reduces
the approximation error with a penalty of increasing the
computational load. The selection of ¢ (k), both the function
itself and its support, affects the quality of the reconstructed
image. For example, when using a B-spline kernel, increasing
the degree of the spline improves the image quality at the
expense of increased computational burden.

When implementing the algorithm, the process is divided
into two phases. The first phase is performed offline only
once for a given sampling trajectory, while the second is an
online phase which is repeated for each new set of samples. In
the offline phase, all the data structures are prepared and the
“sparse tableau” system matrix ¥ is factorized. In the online
phase the sparse system is solved using forward substitution
and backward elimination for a given set of samples b. The
result is filtered using Hcog, and IFFT followed by an absolute
value is performed to obtain the final image.

It can be shown that the online computational load is similar
to that of CG and of a single iteration of the NUFFT.

V. GSURS ALGORITHM SUMMARY

In this section we summarize the GSURS algorithm. The
algorithm is divided into two stages. The first is the offline
stage which is performed only once for a given sampling
trajectory, and the second is an online stage which is repeated
for each new set of samples.

Algorithm inputs: Sampled values b and corresponding
nonuniform k-space locations {;}, and k-space uniform
locations {k;}.

Phase 1 - Offline preparation and factorization: all
the data structures are prepared according to given
nonuniform sampling and uniform reconstruction grids
and a given compactly supported kernel ¢ (-). Given a
chosen regularization scalar p and a diagonal weighting
matrix I', the “sparse tableau” system matrix ¥ is
prepared and factorized. See Algorithm 1.

Phase 2 - Online solution: using the outputs of the previous
phase, the sparse system of equations is solved for a
given set of k-space samples b. The result is subsequently
filtered using the precomputed digital correction filter
Hcor (ej‘*’) producing the uniformly spaced samples d.
These, in turn, are transformed into image space using
the IFFT. See Algorithm 2.

Algorithm outputs: Uniformly spaced k-space samples d
and reconstructed image F () = |e[n]|.
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Input:
e {kj,7 =1,..., M'}: nonuniform sampling grid in k-space.
e {ki,i =1,..., N}: uniform reconstruction grid in k-space.
e ¢(+): a compactly supported kernel (e.g. 3-spline).
o I': a N x N diagonal weighting matrix, T' = rs.
e p: a regularization scalar.
Algorithm:
1: Construct the sparse system matrix ®, where {®}, =
q (’im - kn)'
2: Calculate the LSI filter to be used for correction:
joy _ Bsq (¢)
Hcor (€7) = Raa(09)

3: Construct the “sparse tableau” system matrix:

I re
v~ (e L)
4: Factorize ¥ so that P (R*1\II) Q=LU.
Output: Hcor (ej‘”) and L, U, P,Q, R.

Algorithm 1: GSURS - “Offline preparation and factorization”

Input:
«L U P Q R.
e b: a M x 1 vector of nonuniformly spaced “raw data”
k-space sample values of f, where b; = f (k;).
e Hcor (6%)
Algorithm:

1: Scale b by R and permute the result using P.
Store it in the full length vector y = P (Rflb).

2: Solve Lz = y and Uw = z by forward and backward
substitutions.

3: Permute w by Q and store the results in ¢ (c = Qw).
4: Filter ¢ using Heor (/%) and store the results in d.

5. Compute e = IFFT {d}.
Output: d and the image F (x,) = |e[n]].

Algorithm 2: GSURS - “Online solution”

The computational complexity of the “Online solution”
phase of the algorithm, the phase performed for each new
acquired set of samples, can be shown to be:

0 (M(qsupl)2 + N2 (14 I2log (NI))) ,

where M and N are the number of nonuniform and uniform
grid points, respectively, I is the over sampling factor and ggyp
is the support of the compactly supported kernel ¢ (). It can
be shown that this computational load is similar to that of CG
and of a single iteration of the NUFFT.

VI. NUMERICAL SIMULATION

Computer simulations are used to compare the performance
of the GSURS algorithm with that of CG [2] and the NUFFT

algorithm [5] employing the “NFFT” package [15]. A standard
numerical Shepp-Logan Phantom [16] of dimensions 256 x 256
is used. This phantom has been used extensively for numerical
simulations both in CT and in MRI [17]. The phantom is
sampled using a radial trajectory [18] with Ngyokes = 60, where
Nypokes 18 the number of spokes and Npgins = 512, where
Npoints 18 the number of sample points along each spoke so
that M = Ngpokes * Npoints- White Gaussian noise (WGN) is
added to the samples.

CG reconstruction is performed using a Kaiser-Bessel win-
dow with 8 chosen according to [2]. The NUFFT uses a
Kaiser-Bessel window with m = 6, corresponding to a
window width of 13 samples. The NUFFT and CG methods
use density compensation weights. GSURS uses a B-spline of
degree p = 3 which corresponds to a support of 4 samples.
All the reconstruction methods use an over-sampling factor of
1 =2

For each experiment the root-mean-square error (RMSE)
of the reconstructed image is calculated with respect to the
original phantom. The RMSE between a vector y and its
estimate ¥ is defined by:

oA lly =7l
RMSE(y,y):iHy” :
2

In the first experiment various levels of complex WGN are
added to the samples, and the RMS error is calculated for each
reconstruction. The results are depicted in Fig. 3.

It can be seen that GSURS exhibits the best performance,
with CG showing the poorest performance. A single iteration
of NUFFT yields similar results to CG; increasing the number
of iterations improves the results. In our experiments we
observed that when using a large number of iterations (> 10),
NUFFT showed similar performance to GSURS.

0 % e & "

T
—— Gridding

—4A— NUFFT with 1 iteration
—— NUFFT with 3 iterations
—6— GSURS

RMSE [dB]

N
o
T

-15 L L L L L I I

=20 -10 0 10 20 30 40 50 60
Input SNR [dB]
Fig. 3. Reconstruction RMSE as a function of input SNR. Shepp-Logan

phantom using a radial trajectory, M=30720, N=65536

Fig. 4 compares the reconstruction methods for input SNR
of 60dB (corresponding to the rightmost points in Fig. 3).
The resulting image is depicted alongside two profiles within
the image: a horizontal profile along row 128 and a vertical
profile along column 160. The quality of reconstruction of the
different methods is clearly exhibited in the profile plots.
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W NI PV i

Fig. 4. Reconstructed images and profiles for iSNR = 60 dB and M=30720.
First row - CG. Second row - NUFFT 1 iteration. Third row - NUFFT 3
iterations. Forth row - GSURS.

Wit b

In the final experiment the performance of the reconstruc-
tion process is tested while decreasing the total number of
samples (M). It is expected that the quality of reconstruction
will deteriorate as M is reduced. As expected, Fig. 5 shows
this decline in performance, however GSURS maintains its
performance advantage over the entire range and exhibits a
slower rate of performance degradation.

T
—— Gridding

—4— NUFFT with 1 iteration
—— NUFFT with 3 iterations
—6©— GSURS

RMSE [dB]
&

1 2 3 4 5 6 7 8 9 10
Number of sampling points - M 4

Fig. 5. Shepp-Logan phantom with radial trajectory, input SNR = 30dB,
N=65536; RMS error as a function of M.

VII. CONCLUSION

A new method for reconstruction of images from nonuni-
formly spaced k-space samples is presented which derives
from modern sampling theory. A sequence of projections
is performed, with the introduction of an interim subspace
comprising of integer shifts of a compactly supported kernel.

This allows us to construct a sparse set of linear equations,
enabling us to exploit efficient sparse equation solvers result-
ing in a considerable reduction in the computational cost. After
performing the offline data preparation step, the computational
burden of the online stage is comparable with that of CG or
of a single iteration of NUFFT.

In terms of the quality of the reconstructed images, it
is demonstrated that the performance of the new algorithm
exceeds that of both CG and NUFFT with 1-3 iterations. In our
experiments we observed that multiple iterations of NUFFT
gradually converge to similar results, however, with the penalty
of an increased computational load.
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