
MODIFIED DISTRIBUTED ITERATIVE HARD THRESHOLDING

Puxiao Han, Ruixin Niu

Virginia Commonwealth University
Dept. of Electrical and Computer Engineering

Richmond, VA, 23284, U.S.A.
Email: {hanp, rniu}@vcu.edu

Yonina C. Eldar

Technion-Israel Institute of Technology
Dept. of Electrical Engineering

Haifa, 32000, Israel
Email: yonina@ee.technion.ac.il

ABSTRACT
In this paper, we suggest a modified distributed compressed
sensing (CS) approach based on the iterative hard threshold-
ing (IHT) algorithm, namely, distributed IHT (DIHT). Our
technique improves upon a recently proposed DIHT algo-
rithm in two ways. First, for sensing matrices with i.i.d.
Gaussian entries, we suggest an efficient and tight method for
computing the step size µ in IHT based on random matrix
theory. Second, we improve upon the global computation
(GC) step of DIHT by adapting this step to allow for complex
data, and reducing the communication cost. The new GC
operation involves solving a Top-K problem and is therefore
referred to as GC.K. The GC.K-based DIHT has exactly the
same recovery results as the centralized IHT given the same
step size µ. Numerical results show that our approach sig-
nificantly outperforms the modified thresholding algorithm
(MTA), another GC algorithm for DIHT proposed in previous
work. Our simulations also verify that the proposed method
of computing µ renders the performance of DIHT close to the
oracle-aided approach with a given “optimal” µ.

Index Terms— Distributed Compressed Sensing, Itera-
tive Hard Thresholding, Communication Cost

1. INTRODUCTION

With the exponential growth of sensor data, it becomes chal-
lenging for compressed sensing (CS) [1,2] on a single proces-
sor. Hence, distributed CS (DCS) has become an interesting
topic. It generally contains two parts: (1) the local computa-
tion (LC) performed at each sensor, and (2) the global com-
putation (GC) which gathers data from all the sensors.

Several DCS algorithms have been recently proposed
[3–11]. In [3], a distributed subspace pursuit (DiSP) algo-
rithm was developed to recover joint sparse signals. In DiSP,
each sensor stores the global sensing matrix, and the LC step
involves optimization and matrix inversion. The computa-
tion and memory burden may become very challenging for
each sensor in large-scale problems. In [4], an algorithm
named distributed alternating direction method of multipliers
(D-ADMM) based on basis pursuit (BP) was proposed, in

which sensors do not have to store the entire global sensing
matrix. However, each sensor still needs to solve an opti-
mization problem per iteration, and to broadcast its solution
to its neighbors. This typically results in high communication
cost since the recovery in the first few iterations is not sparse.

To address these problems, a DCS algorithm based on the
iterative hard thresholding (IHT) [12, 13] algorithm, named
D-IHT was proposed in [5] and [6]. In the LC, each sen-
sor performs very simple operations such as matrix transpose,
addition and multiplication. The GC step uses a modified
thresholding algorithm (TA) [14], which is a popular method
to solve the distributed Top-K problem in the field of database
querying. The modification reduces the amount of messages
sent between sensors. D-IHT requires computing a step size
as part of the IHT algorithm, which ideally should be chosen
as α/||A||2. Here A is the CS sensing matrix, ||A||2 denotes
its largest singular value, and α ∈ (0, 1) is a scaling param-
eter close to 1. Exact computation of ‖A‖2 requires at least
one sensor to have access to the global sensing matrix. To
relax this assumption, an upper bound on the norm is devel-
oped in [6] which depends on the norms of the local sens-
ing matrices. However, this approximation leads to a much
more conservative step size and induces a low convergence
rate. Furthermore, the modified TA (MTA) proposed in [5]
can only be applied to real-valued CS recovery.

In this paper, we develop a new version of Distributed IHT
(DIHT), in which these two issues are addressed. First, we
propose a statistical approach to obtain a tight upper bound
on ‖A‖2, which only depends on the number of rows and
columns of A; second, we propose a new Top-K algorithm,
which is named GC.K, to accomplish the GC in DIHT in
both real-valued and complex-valued cases. As demonstrated
later by numerical results, the proposed modified DIHT sig-
nificantly outperforms the MTA-based DIHT.

We use the following definitions and notations in this pa-
per: A\B denotes the set difference between A and B; the
cardinality of a set S is denoted by |S|. v(k) denotes the k-th
component of the vector v. [·]T and [·]Hdenote the transpose
and conjugate transpose of a matrix or vector respectively.
‖ ·‖0 denotes the number of non-zero components of a vector.

3766978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

2. MODIFIED DIHT ALGORITHM

2.1. The Centralized IHT Algorithm

The goal of IHT is to recover an unknown K-sparse vector
s0 ∈ CN given its measurement y = As0 + e, where e is
noise, and the sensing matrix A ∈ CM×N :

xt+1 = η(xt + µAH(y −Axt);K) (1)

where µ is a step size within (0, 1/‖A‖2), and η(v;K) for
v ∈ Cn is a hard thresholding function, which returns a K-
sparse vector u ∈ Cn computed by

u(k) =

{
v(k) if |v(k)| ≥ TK(v)

0 otherwise
, ∀k = 1, · · · , n , (2)

where TK(·) is the K-th largest absolute component of a vec-
tor. In this paper, we draw all the entries of A from inde-
pendent and identically distributed (i.i.d.) N (0, 1/M) so that
xt in (1) can converge to a value x∗ close to s0 with a linear
convergence rate [12, 13, 15], with high probability.

2.2. The GC.K Algorithm

In a distributed sensor network with P distributed sensors,
each sensor p has M/P rows of A, denoted as Ap, takes a
measurement yp = Aps0 + ep, and computes

wp
t =

{
xt + µ(Ap)H(yp −Apxt), p = 1

µ(Ap)H(yp −Apxt), otherwise
(3)

Then the original IHT algorithm can be rewritten as [5, 6]

xt+1 = η

(
P∑

p=1

wp
t ;K

)
(4)

It can be shown that the communication happens at GC
of xt+1. Let ft =

∑P
p=1 w

p
t , according to (2), xt+1(n) = 0

if |ft(n)| < TK(ft). Therefore, we only need to know all
(n, ft(n)) such that |ft(n)| = |

∑P
p=1 w

p
t (n)| ≥ TK(ft) in

the GC. This is a Top-K problem, in which the n-th row of
Wt :=

[
w1

t , · · · , wP
t

]
can be viewed as an object with index

n and partial scores w1
t (n), · · · , wP

t (n) stored on agents (sen-
sors) 1, · · · , P , respectively, and the total score of object n is
ft(n) =

∑P
p=1 w

p
t (n). The objective is to find the K largest-

in-magnitude total scores ft(n) =
∑P

p=1 w
p
t (n), as well as

the indices n of objects they correspond to at a minimal com-
munication cost.

In previous work [5], the MTA algorithm was proposed
to solve this problem. However, as will be shown later, MTA
becomes inefficient when K and the number of sensors P are
large, or when the signal to noise ratio is low; furthermore,
it cannot be applied to the complex-valued CS. Another pop-
ular Top-K algorithm is the three-phase uniform threshold
(TPUT) approach [16]. Despite the fact that it is not directly
applicable in our case since it requires all the entries in Wt to
be non-negative, a basic idea of TPUT, namely upper bound-
ing the total scores, is the basis for our proposed Top-K algo-
rithm, referred to as GC.K, which is shown in Table 1, where

the parameter θ is to trade off the communication cost in Step
II and Step III. We use the symbol ‘?’ indicating that commu-
nication occurs thereafter in the paper. It is easy to show that
the number of messages in GC.K is

∑P
p=2 |Ωp

⋃
F |+|F |+1.

By applying the triangular inequality, it can be shown that
in each iteration t, U(n) and L(n) in the GC.K are upper and
lower bounds on |ft(n)| respectively. Furthermore, ν3 in step
III is equal to TK(ft) and GC.K gives exactly the same xt+1

as that computed by (1). Fig. 1 gives an example of GC.K
with K = 2 and θ = 0.8, which consumes 14 messages.

Table 1. GC.K algorithm
Input w1

t , · · · , wP
t , K, θ

Step I Define Ω1
p := {n : |wp

t (n)| ≥ TK(wp
t)} for each p;

for sensor p = 2:P
? send all (n,wp

t (n)) pairs for n ∈ Ω1
p to Sensor 1.

endfor
Sensor 1 defines Rn and P (n), ∀n ∈

⋃P
p=1 Ω1

p as follows:
Rn = {p : n ∈ Ω1

p} and P (n) =
∑

p∈Rn
wp

t (n);
Define F 1 as the set of indices of the K largest |P (n)|’s;
? Sensor 1 broadcasts F 1 to other sensors;
for sensor p = 2:P
? send all (n,wp

t (n)) pairs for n ∈ F 1\Ω1
p to Sensor 1;

endfor
Sensor 1 computes ft(n) for each n ∈ F 1;
Let ν1 be the K-th largest element in {|ft(n)| : n ∈ F 1};
Step II ? Sensor 1 broadcasts ν1 to other sensors;
for sensor p = 2:P

Set T = ν1θ/(P − 1);
define Ω2

p := {n : |wp
t (n)| > T}\(Ω1

p

⋃
F1);

? send all (n,wp
t (n)) pairs for n ∈ Ω2

p to Sensor 1.
define Ωp := Ω1

p

⋃
Ω2

p

⋃
F1;

endfor
Sensor 1 defines Sn, L(n) and U(n), ∀n /∈ F 1 as follows:
Sn := {p ≥ 2 : n ∈ Ωp};
L(n) = min{0, |w1

t (n) +
∑

p∈Sn

wp
t (n)| − (P − 1− |Sn|)T};

U(n) = |w1
t (n) +

∑
p∈Sn

wp
t (n)|+ (P − 1− |Sn|)T ;

Let ν2 be the K-th largest L(n), and ν = max{ν1, ν2};
Define F 2 := {n /∈ F 1 : U(n) ≥ ν};
Step III ? Sensor 1 broadcasts F 2 to other sensors;
for sensor p = 2:P
? send all (n,wp

t (n)) pairs for n ∈ F 2\Ωp to sensor 1.
endfor
Sensor 1 computes ft(n) for all n ∈ F 2;
Define F := F 1

⋃
F 2;

Let ν3 be the K-th largest element in {|ft(n)| : n ∈ F};
Define Γ = {n ∈ F : |ft(n)| ≥ ν3};
Assign xt+1(n) = ft(n),∀n ∈ Γ and xt+1(n) = 0,∀n /∈ Γ;

Output xt+1

From the mechanism of GC.K, it is clear that GC.K is
applicable to both real-valued and complex-valued cases. In

3767

contrast, the MTA proposed in [5], which is shown in Table 2
and also returns exactly the same xt+1 as in (1), requires each
sensor to sort the partial scores (not by magnitudes). This
only works if all the data are real valued.

For evaluating the communication cost, considering the
approach sending all the data to Sensor 1, which has a to-
tal number of messages N(P − 1), we use the ratio between
the number of messages of GC.K and N(P − 1), denoted
as µM , to measure the efficiency of GC.K. After Sensor
1 obtains xt+1, it needs K messages to broadcast the non-
zero components in xt+1 to other sensors. So we also define
TM = µM + K/[N(P − 1)] to evaluate the performance of
GC.K-based DIHT.

For MTA, as shown in Table 2, in each for-loop iteration
inside the while-loop, the algorithm consumes P + 1 mes-
sages, and there are totally Ns such iterations. So the number
of messages in MTA is Ns(P + 1). It can be shown that if
we run MTA on the data in Fig. 1, then we will get Ns = 9,
which corresponds to 9× (3+1) = 36 messages. After MTA
terminates, each sensor has obtained the same xt+1, hence
there is no additional broadcasts for the non-zero components
of xt+1. Since the communication cost is proportional to
Ns ≤ N , we define µM for the MTA as µM = Ns/N , and
TM = Ns(P + 1)/[N(P − 1)]. Note that the definitions of
µM in GC.K and MTA are slightly different.

2.3. The step size µ in DIHT

In centralized IHT, we set µ close to 1/‖A‖2 in pursuit of a
considerable convergence rate. However, the exact computa-
tion of ‖A‖2 needs access to the global sensing matrix, which
contradicts the basic assumption of the DCS framework.

An alternative proposed in [6] is to obtain an upper bound
on ‖A‖2. Each sensor p ≥ 2 computes and sends ‖Ap‖2
to Sensor 1. Sensor 1 then computes LU =

∑P
p=1 ‖Ap‖22,

which is an upper bound on ‖A‖22, sets µ = 1/
√
LU , and

broadcasts µ to the other sensors. However, LU is generally a
loose upper bound on ‖A‖22, leading to a much smaller µ than
the centralized IHT.

Here, we propose a new approach DIHT.S, which pro-
vides a better approximation of µ, by applying random ma-
trix theory (RMT). Let G = AAT and L1 = ‖G‖2. Then
‖A‖2 =

√
L1. By [17], if A := [aij]M×N with aij ∼

i.i.d. N (0, 1/M), then in the large system limit (N → ∞
and M/N → κ > 0),

L1
D−→ µMN + σMNT1 with T1 ∼ F1 (5)

where
µMN = (1 +

√
(N − 1)/M)2 , (6)

σMN =

√
M +

√
N − 1

M

(
1√
M

+
1√
N − 1

)1/3

, (7)

and F1 in (5) is the cumulative distribution function of the
Tracy-Widom law of order 1 [18], with standard deviation
1.27. By (7), in the large system limit, the standard devia-
tion of L1 approaches 1.27σMN → 0, implying that L1 will

Table 2. MTA Algorithm
Input w1

t , · · · , wP
t , K

Initialize xt+1 = 0 ∈ RN , count= 0, τT = +∞, τB = +∞,
up = +∞, `p = −∞, ∀p = 1, · · · , P ;

Mark all the pairs (n,wp
t (n)) as “unsent”, ∀n, p;

while TRUE
for sensor p = 1:P

obtain R = {n : (n,wp
t (n)) is marked as “unsent”};

if τT ≥ τB
set ns = arg maxn∈R w

p
t (n);

update up = wp
t (ns) and τT = max{0,

∑P
q=1 uq};

else
set ns = arg minn∈R w

p
t (n);

update `p = wp
t (ns) and τB = −min{0,

∑P
q=1 `q};

endif
? broadcast (ns, w

p
t (ns)) and mark it as “sent”;

for sensor q 6= p
? send (ns, wq

t (ns)) to sensor p and mark it as “sent”;
store wp

t (ns) as the new up or `p;
endfor
? compute ft(ns) and broadcast it to other sensors;
count=count+1;
let β be K-th largest element in {|ft(n)| : n /∈ R\{ns}};
if max{τT , τB} < β or count≥ N

update xt+1(n) = ft(n) if |ft(n)| > β, ∀n /∈ R\{ns};
set Ns = count, the algorithm terminates;

endif
endfor

endwhile

Output xt+1

become more and more “deterministic”. Hence we can obtain
a statistical upper bound L(α) = µMN +σMNF

−1
1 (1−α) (α

is a smaller number, and in the simulations we set α = 0.01),
which is the approximate (1 − α)-th quantile for L1. Due
to the fact that σMN → 0, this bound will be very tight. We
then set µ = 1/

√
L(α). Note that each sensor can calculate µ

which only depends on M and N , without data transmission.

3. NUMERICAL RESULTS

We fix N = 5000, set M = Nκ and K = Mρ, where
κ ∈ {0.2, 0.3, 0.4, 0.5} and ρ ∈ {0.1, 0.15, 0.2, 0.25}, and
choose P ∈ {10, 15, · · · , 50}. s0 is generated with random
support and non-zero components drawn from N (0, 1). The
noise e ∼ N (0, σ2IM) with σ ∈ {0.01, 0.02, · · · , 0.09}.
IHT terminates if ‖xt+1− xt‖2 ≤ 0.001‖xt‖2 or if it runs up
to 100 iterations. θ in GC.K is set to 0.8. We have the follow-
ing setup: i) fix (P, σ) = (10, 0.02), and change (κ, ρ); ii) fix
(κ, ρ, P) = (0.2, 0.1, 10), and change σ; iii) fix (κ, ρ, σ) =
(0.2, 0.1, 0.02), and change P . Under each parameter setting,

3768

Sensor 1

n,wt

1 n()()
Sensor 2

n,wt

2 n()()
Sensor 3

n,wt

3 n()()
Step I

n, P n()()

Step I

n, ft n()()

Step II

Ω p
2 ,Ω p

p ≥ 2

Step II

n, L n()()

Step II

n,U n()()

Step III

n, ft n()()

Step III

n,xt+1 n()()

(6, 9)
(4, -8)
(7, -8)
(5, 6)
(2, 3)
(9, -3)
(3, 2)
(1, -1)
(8, 0)
(10, 0)

Ω1

1 = 6,4{ }

(6, 10)
(2, -7)
(4, 7)
(8, -5)
(9, -5)
(1, 4)
(5, 4)
(7, -3)
(10, -3)
(3, 1)

Ω2

1 = 6,2{ }

(1, 10)
(7, -10)
(3, -9)
(5, -9)
(4, 8)
(8, 7)
(10, -5)
(6, 4)
(2, -2)
(9, 0)

Ω3

1 = 1,7{ }

(6, 19)
(7, -18)
(1, 9)
(4, -8)
(2, 4)

Ω p
1

p=1

3

∪ ={6,

7,1,4,2}
F1 = 6,7{ }

(6, 23)
(7, -21)

ν1 = 21,

T =
θν1

P −1
= 8.4

Ω2
2 =∅

Ω2 ={6,2,
7}
Ω3

2 ={3,5}
Ω3 ={1,7,
3,5,6}

(1, 0)
(2, 0)
(3, 0)
(4, 0)
(5, 0)
(8, 0)
(9, 0)
(10, 0)

ν2 = 0

ν = max ν1,ν2{ }
= 21

(4, 24.8)
(9, 19.8)
(8, 16.8)
(10,
16.8)
(1, 16.4)
(3, 15.4)
(5, 11.4)
(2, 9.4)

 F
2 ={4}

(4, 7)
(6, 23)
(7, -21)

F = 4,6,7{ },

ν3 = 21

(1, 0)
(2, 0)
(3, 0)
(4, 0)
(5, 0)
(6, 23)
(7, -21)
(8, 0)
(9, 0)
(10, 0)

	

	
 Fig. 1. An example of GC.K algorithm with P = 3, K = 2 and θ = 0.8.

0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ρ

T̄
M

(P , σ) = (10 , 0 .02)

GC.K g=0.2
MTA g=0.2
GC.K g=0.3
MTA g=0.3

0.1 0.15 0.2 0.25
0.2

0.4

0.6

0.8

1

1.2

ρ

T̄
M

(P , σ) = (10 , 0 .02)

GC.K g=0.4
MTA g=0.4
GC.K g=0.5
MTA g=0.5

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

σ

T̄
M

(κ , ρ , P) = (0 .2 , 0 .1 , 10)

GC.K
MTA

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

P

T̄
M

(κ , ρ , σ) = (0 .2 , 0 .1 , 0 .02)

GC.K
MTA

Fig. 2. Communication cost of GC.K and MTA.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

µM

C
u
m
u
la
ti
v
e
F
re

q
u
e
n
c
y (κ , ρ , P, σ) = (0.2, 0.1, 50, 0.02)

GC.K
MTA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

µM

C
u
m
u
la
ti
v
e
F
re

q
u
e
n
c
y (κ , ρ , P, σ) = (0.5, 0.25, 10, 0.02)

GC.K
MTA

Fig. 3. Cumulative distributions of µM for GC.K and MTA.
we take nsim = 100 Monte-Carlo runs.

We first compare the GC.K-based DIHT.S and MTA-
based DIHT.S. Since they have the same recovery results, we
only compare their communication cost, i.e., µM and TM
defined at the end of Section 2.2..

Fig. 2 shows T̄M , the sample mean of TM ’s, obtained by
the two algorithms. As σ, P andK increase, the values of T̄M
in MTA become close to 1, which means that MTA hardly
saves any communication cost, while GC.K can still work
efficiently. In all the cases, GC.K outperforms MTA. Fig.
3 depicts the cumulative distributions of µM for GC.K and
MTA under two extreme settings (large P and largeK). In all
iterations under these two settings, the number of messages in
MTA are greater than 0.8N(P − 1), while GC.K can save at
least 0.35N(P − 1) messages in 80% of the total iterations.

Next, we compare GC.K-based DIHT.S with the oracle-

0.2 0.3 0.4 0.5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

µ̄M of DIHT.C

µ̄
M

o
f
D
IH

T
.S

DIHT.C
DIHT.S

0.2 0.3 0.4 0.5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T̄M of DIHT.C

T̄
M

o
f
D
IH

T
.S

DIHT.C
DIHT.S

40 50 60 70 80 90

40

50

60

70

80

90

n ite r of DIHT.C

n
it
e
r
o
f
D
IH

T
.S

DIHT.C
DIHT.S

0.05 0.1 0.15 0.2 0.25

0.05

0.1

0.15

0.2

0.25

RRMSE of DIHT.C

R
R
M
S
E

o
f
D
IH

T
.S

DIHT.C
DIHT.S

Fig. 4. Comparison of DIHT.S and DIHT.C.
aided approach GC.K-based DIHT.C, where ‖A‖2 is known
and µ = 0.99/‖A‖2. The recovery accuracy is measured in
terms of relative root mean squared error (RRMSE), which is

defined as
√∑nsim

i=1 ||(x∗
i−s0)||22/nsim

||s0||2 , where x∗i is the recovery of
the i-th Monte-Carlo run. The convergence rate is evaluated
in terms of n̄iter :=

∑nsim
i=1 n

i
iter/nsim, where niiter is the number

of iterations in the i-th Monte-Carlo run. Fig. 4 shows these
quantities as well as the communication cost of DIHT.S and
DIHT.C respectively, under all parameter settings, where µ̄M

denotes the sample mean of µM ’s. As we can see, DIHT.S
performs similarly to DIHT.C.

We also observe the ratios µ̄M/T̄M for GC.K under all
parameter settings, and find that they are within the interval
[0.9771, 0.9989], which shows that GC.K takes most of the
communication cost in the corresponding DIHT algorithms.

4. CONCLUSION

In this paper, we propose a new distributed IHT approach.
For the computation of the step size, we propose a statistical
approach DIHT.S which provides a very tight statistical upper
bound on ‖A‖2 that only depends on the dimensionality of
A. In the global computation stage, we propose a new Top-
K algorithm GC.K, which outperforms MTA proposed in an
earlier work, and renders the corresponding DIHT algorithm
applicable to complex-valued compressed sensing.

3769

5. REFERENCES

[1] J. A. Tropp and S. J. Wright, “Computational methods
for sparse solution of linear inverse problems,” Proceed-
ings of the IEEE, vol. 98, no. 6, pp. 948–958, 2010.

[2] M. F. Duarte and Y. C. Eldar, “Structured compressed
sensing: From theory to applications,” Signal Process-
ing, IEEE Transactions on, vol. 59, no. 9, pp. 4053–
4085, 2011.

[3] D. Sundman, S. Chatterjee, and M. Skoglund, “A
greedy pursuit algorithm for distributed compressed
sensing,” in Proc. IEEE Int. Conf. on Acoust., Speech,
and Sig. Proc. (ICASSP), 2012, pp. 2729–2732.

[4] J. Mota, J. Xavier, P. Aguiar, and M. Puschel, “Dis-
tributed basis pursuit,” IEEE Trans. Sig. Proc., vol. 60,
pp. 1942–1956, April 2012.

[5] S. Patterson, Y. C. Eldar, and I. Keidar, “Distributed
sparse signal recovery for sensor networks,” in Proc.
IEEE Int. Conf. on Acoust., Speech, and Sig. Proc.
(ICASSP), 2013, pp. 4494–4498.

[6] S. Patterson, Y. C. Eldar, and I. Keidar, “Distributed
compressed sensing for static and time-varying net-
works,” IEEE Trans. Sig. Proc., vol. 62, no. 19, pp.
4931–4946, Oct 2014.

[7] P. Han, R. Niu, M. Ren, and Y. C. Eldar, “Distributed ap-
proximate message passing for sparse signal recovery,”
in Signal and Information Processing (GlobalSIP), 2014
IEEE Global Conference on. IEEE, 2014, pp. 497–501.

[8] S. Chouvardas, K. Slavakis, Y. Kopsinis, and
S. Theodoridis, “A sparsity promoting adaptive algo-
rithm for distributed learning,” Signal Processing, IEEE
Transactions on, vol. 60, no. 10, pp. 5412–5425, 2012.

[9] S. Chouvardas, G. Mileounis, N. Kalouptsidis, and
S. Theodoridis, “A greedy sparsity-promoting lms
for distributed adaptive learning in diffusion networks,”
in Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on. IEEE, 2013,
pp. 5415–5419.

[10] P. Di Lorenzo and A. H. Sayed, “Sparse distributed
learning based on diffusion adaptation,” Signal Process-
ing, IEEE Transactions on, vol. 61, no. 6, pp. 1419–
1433, 2013.

[11] J. Chen, Z. J. Towfic, and A. H. Sayed, “Online dic-
tionary learning over distributed models,” in Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE In-
ternational Conference on. IEEE, 2014, pp. 3874–3878.

[12] T. Blumensath and M. E. Davies, “Iterative thresholding
for sparse approximations,” Journal of Fourier Analysis
and Applications, vol. 14, no. 5-6, pp. 629–654, 2008.

[13] T. Blumensath and M. E. Davies, “Iterative hard thresh-
olding for compressed sensing,” Appl. Comput. Har-
mon. Anal., vol. 27, pp. 265–274, November 2008.

[14] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation
algorithms for middleware,” in Symposium on Princi-
ples of Database Systems, 2001, pp. 614–656.

[15] E. J. Candes, “Compressive sampling,” in Int. Congress
of Mathematicians, Madrid, Spain, 2006, vol. 3, pp.
1433–1452.

[16] P. Cao and Z. Wang, “Efficient top-k query calculation
in distributed networks,” in Intl. Symposium on Princi-
ples Of Distributed Computing (PODC), 2004, pp. 206–
215.

[17] I. M. Johnstone, “On the distribution of the largest
eigenvalue in principal components analysis,” The An-
nals of Statistics, vol. 29, no. 2, pp. 295–327, 04 2001.

[18] C. A Tracy and H. Widom, “Level-spacing distributions
and the airy kernel,” Communications in Mathematical
Physics, vol. 159, no. 1, pp. 151–174, 1994.

3770

