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Abstract—Covariance estimation from compressive samples
has become particularly attractive for two main reasons. First,
many applications do not require the signal itself, and second-
order statistics are oftentimes sufficient. The resulting require-
ment on the sampling rate of the original signal can therefore be
reduced. Second, signal recovery from compressive samples leads
to underdetermined systems which require additional constraints,
such as the popular sparsity assumption. In contrast, covariance
estimation can yield overdetermined problems, even from com-
pressive samples, so that the additional constraints on the signal
can be dropped. In this paper, we provide a unified framework
for deriving lower bounds on the sampling rate required for
covariance estimation of stationary signals, by deriving the lower
Beurling density of the difference set associated with the original
sampling set. A general sampling scheme is first considered,
followed by the analysis of multicoset sampling. We prove that,
in both cases, the sampling rate can be arbitrarily low, as was
remarked extensively in the literature.

Keywords—Covariance estimation, sub-Nyquist sampling, non-
uniform sampling

I. INTRODUCTION

Covariance estimation has been widely considered across
different fields of statistical signal processing, such as power
spectrum estimation [1], [2], [3], [4], [5], economics and
financial time series analysis [6], machine learning [7], [8], and
phaseless measurements [3], [9]. In all these examples, second-
order statistics suffice for the task at hand and estimation of
the signal itself is unnecessary.

In light of new compressed sensing (CS) [10] paradigms,
covariance estimation of stationary signals has been recently
revisited. This is owing to the fact that, while signal recovery
from compressive measurements is an underdetermined prob-
lem, compressive covariance recovery has been shown to lead
to overdetermined systems in certain settings [11], [1]. In such
cases, the sparsity constraint required for signal recovery can
be dropped [1]. This is a result of the fact that the covariance
of stationary signals is only a function of the time lags. The
cardinality of the difference set, namely the set that contains
the time lags, is greater than this of its associated original set,
and can even be of the order of the square of the cardinality of
the original sampling set [12]. We refer to the density of this
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difference set as the covariance sampling rate. It then follows
that the average covariance sampling rate can be above the
Nyquist rate, even when the actual sampling rate is below
Nyquist by orders of magnitude. Two questions then arise in
the context of covariance estimation from non-uniform, low
rate samples:

• Let R̃ = {ti}i∈Z be a sampling set. What can be said
about the density of the difference set R = {ti −
tj},∀ti > tj ∈ R̃?

• Given a non-uniform finite set of observations
{x(tn)}Nn=1, how good is the corresponding power
spectrum estimator?

Ŝx(f) =
1

N

N∑
n=1

N−k∑
i=1

x(ti)x(ti+n)e−j2πf(ti+n−ti).

Here, the power spectrum is defined by

Sx(f) =

∫ ∞
−∞

rx(τ)e−j2πfτdτ, (1)

where rx(τ) = E [x(t)x(t− τ)] is the covariance function of
x(t). This work considers the first of these issues. The second
one is left for future work.

Many works have considered covariance, or power spec-
trum, estimation from compressive samples obtained using
specific sampling schemes. Masry [13], [14] investigates Pois-
son sampling for spectral density estimation. The proposed
estimator is shown to be consistent for all positive values of
the average sampling rate. As opposed to random sampling,
a deterministic approach, multicoset, or periodic nonuniform
sampling, has been investigated in [15], [1], [11], [16]. In
[15], an unbiased power spectrum estimator from multicoset
samples is proposed with arbitrarily low average sampling rate.
The authors in [1] discuss reconstruction of the covariance or
the power spectrum from both underdetermined and overdeter-
mined systems. For the first case, they exploit sparsity proper-
ties of the signal and apply CS reconstruction techniques but
do not analyze the sampling rate. In the second overdetermined
case, they show that the so-called minimal sparse and minimal
circular sparse ruler patterns [17] provide optimal solutions for
sub-Nyquist sampling, within the class of multicoset samplers,
without any prior sparsity assumption. In [11], [16], the authors
propose a method to estimate finite resolution approximations
to the true power spectrum exploiting multicoset sampling.
That is, they estimate the average power within subbands rather
than the power spectrum for each frequency. They consider
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both overdetermined and undertermined, or compressive, sys-
tems. In the latter case, CS techniques are used, which exploit
the signal sparsity, whereas the former setting does not assume
any sparsity. In [11], the authors assume that the sampling
pattern is such that the system they obtain has a unique
solution but no specific sampling pattern or rate satisfying this
condition is discussed. In [16], sampling patterns generated
uniformly at random and the Golomb ruler are considered in
simulations but no analysis of the required rate is performed.
Another deterministic sampling scheme, co-prime sampling, is
considered in [18]. The covariance is estimated from samples
for a co-prime pair of sparse samplers. Due to the co-prime
property, a number of consecutive lags can be recovered, yet
not as many lags as the sparse ruler for multicoset sampling.

A common conclusion is that the sampling rate for covari-
ance estimation can be arbitrarily low. However, this result
is derived for specific sampling schemes only. In this paper,
we provide a unified framework for deriving a universal lower
bound on the sampling rate for covariance estimation. We first
consider a general sampling scheme and show that a sampling
set with lower Beurling density zero leads to a difference set
of infinite density, under mild conditions. It follows that the
minimal sampling rate for covariance estimation is indeed zero.
We then turn to multicoset sampling and compute the lower
Beurling density of the resulting difference set. This allows us
to derive a bound for the sampling rate for this scheme, as a
function of the number of sampling channels. We note that we
obtain a bound lower than those derived in the literature.

This paper is organized as follows. Section II describes
the signal model and formulates the covariance estimation
problem. In Section III, we present a lower bound for the
sampling rate for covariance estimation. This result is applied
to multicoset sampling in Section IV.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider the space B of stationary wide-sense ergodic
bandlimited signals x(t) whose Fourier transform, defined by

X(f) = lim
T→∞

1√
T

∫ T/2

−T/2
x(t)e−j2πftdt, (2)

is restricted to an unknown support T which is a subset of
F = [−fNyq/2, fNyq/2]. If T ⊂ F , then x(t) is said to be
sparse. Denote Λ = λ(supp(X(f))), where λ is the Lebesgue
measure. Let R̃ = {ti}i∈Z, be a sampling set of x(t).

Our goal is to estimate the covariance function rx(τ) of
x(t), defined as

rx(τ) = E [x(t)x(t− τ)] , (3)

from samples of x(t) at times ti ∈ R̃. Since rx(τ) is only a
function of the time lags τ , we are interested in the difference
set R = {ti − tj},∀ti > tj ∈ R̃.

Consider the space A of deterministic functions h(t) whose
Fourier transform, defined by

H(f) =

∫ ∞
−∞

h(t)e−j2πftdt, (4)

is restricted to an unknown support T , with Lebesgue measure
Λ, which is a subset of F . Similarly to Landau’s [19] definition

of a sampling set, the authors in [20] define a blind sampling
set, namely a sampling set when the signal support is unknown.
The set R̃ is a stable sampling set for A if there exist constants
α > 0 and β <∞ such that

α||x− y||2 ≤ ||xR̃ − yR̃||
2 ≤ β||x− y||2, ∀x, y ∈ A, (5)

where xR̃[i] = x(ti) is the sequence of samples of x(t). The
following theorem from [20] derives the conditions of the
lower Beurling density of a set R̃ so that it is a sampling
set for a space A.

Theorem 1 ([20], Theorem 1). Let A be a set of bandlimited
signals to F , restricted to an unknown support with Lebesgue
measure Λ. If R̃ is a stable sampling set for A, then it must
have density

D−(R̃) ≥ min {2Λ, fNyq} , (6)

where

D−(R̃) = lim
r→∞

inf
y∈R

|R̃ ∩ [y, y + r]|
r

(7)

is the lower Beurling density of R̃.

Denote dR̃(r) = infy∈R |R̃ ∩ [y, y + r]|. Then, D−(R̃) =

limr→∞
dR̃(r)

r =∞. Here, we are thus interested in computing
the lower Beurling density of the difference set, namely
D−(R), in order to derive a lower bound on the minimal
sampling rate required for covariance estimation. By abuse of
notation, the sampling times of the covariance are τn ∈ R,n ∈
Z, although the covariance is never actually sampled. The
covariance average sampling period is therefore limn→∞ τn/n
[21].

III. UNIVERSAL MINIMAL SAMPLING RATE

In this section, we consider a general sampling method.
We begin by showing that a sampling set with Beurling density
zero yields a difference set with infinite Beurling density, under
mild conditions. We then conclude that the minimal sampling
rate for covariance estimation is zero, as hinted in the literature.

A. Difference set density

Lemma 1. Let R̃ = {ti}i∈Z, be a sampling set with lower
Beurling density D−(R̃) = 0, so that the set of differences
between two sets of size p and q is of the order of p · q. Let
R = {ti − tj},∀ti > tj ∈ R̃ be the associated difference set.
If limr→∞

dR̃(r)√
r

=∞, then, D−(R) =∞.

Proof: Let y ∈ R and let r ∈ R+. Consider R̃∩[y, y+r] =

{tj}[n]j=[1] and R̃∩ [2y+r, 2y+2r] = {ti}[m]
i=[n+1]. It holds that

max
[1]≤j≤[n],[n+1]≤i≤[m]

ti − tj = y + 2r,

and
min

[1]≤j≤[n],[n+1]≤i≤[m]
ti − tj = y.

Thus, R ∩ [y, y + 2r] ⊇ {ti − tj},∀[1] ≤ j ≤ [n] and [n +
1] ≤ i ≤ [m]. That is, every pair {tj , ti}, where tj is in the
first set, namely the interval [y, y + r] and ti is in the second
set, namely the interval [2y + r, 2y + 2r], yields a difference
ti− tj which is in the interval [y, y+ 2r]. Therefore, from the
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assumption, the number of such differences is of the order of
the product of the number of elements in each set. Since the
interval [2y + r, 2y + 2r] may contain more differences than
those described above, it follows that

|R∩ [y, y+2r]| ≥ C|R̃∩ [y, y+r]| · |R̃∩ [2y+r, 2y+2r]|, (8)

for some C > 0. Therefore,

D−(R) = lim
r→∞

inf
y∈R

C
|R ∩ [y, y + 2r]|

2r

≥ lim
r→∞

inf
y∈R

C

2

|R̃ ∩ [y, y + r]|√
r

· |R̃ ∩ [2y + r, 2y + 2r]|√
r

= ∞, (9)

where the last equation follows from the fact that
limr→∞

d(r)√
r

=∞.

We note that the conditions of Lemma 1 do not hold for
uniform sampling, but are respected by multicoset sampling.

B. Sampling rate bound

We now apply this result to the covariance function rx(τ).

Theorem 2. Let x(t) ∈ B and R be as in Lemma 1. Then, the
minimal rate for perfect recovery of rx(τ) is 0.

Proof: From [22], Sx(f) = E |X(f)|2, where Sx(f) is
defined in (1). Thus, obviously, the frequency support of rx(τ)
is identical to that of x(t), and rx(τ) is bandlimited as well.

Let A be as in Theorem 1. Define

hT (τ) =
1

2T

∫ T

−T
x(t)x(t− τ)dt. (10)

It holds that hT (t) ∈ A. Now, let τn ∈ R,n ∈ Z. From
Lemma 1, D−(R) =∞. Thus, from Theorem 1, R is a stable
sampling set for A.

From the wide-sense ergodicity of x(t), it holds that

lim
T→∞

hT (τ) = rx(τ) (11)

where the convergence is in the mean square sense.

Therefore, the covariance of x(t) can by recovered from
samples of x(t) from a sampling set R̃ as defined in Lemma
1, for any fNyq and any Λ. The result of Theorem 2 has
widely been hinted at in the literature, at least since the 70s
and the work of Masry on Poisson sampling, which states
that “it is shown that the estimate [of the spectral density
function] is mean-square consistent for all positive values of
the average sampling rate” [13]. More recently, Tarczynski
[15], using multicoset (or periodic non uniform) sampling
shows that “in the case of PSD [power spectral density]
estimation, the average sampling rate can be arbitrarily low”.
In [11], where multicoset sampling is considered as well, “the
noncompressive estimates can theoretically be computed at
arbitrarily low sampling rates”. In the context of co-prime
sampling [18], the authors show that “the sampling rate can
be made arbitrarily small”. Here, we demonstrate that the
universal sampling rate lower bound for covariance estimation
is zero, regardless of the specific sampling schemes.

In the next section, we turn to study multicoset sampling,
and derive a lower bound on the minimal sampling rate for
covariance estimation.

IV. MINIMAL RATE FOR MULTICOSET SAMPLING

Consider now multicoset sampling [23]. Multicoset sam-
pling can be described as the selection of certain samples from
the uniform grid. More precisely, the uniform grid is divided
into blocks of n consecutive samples, from which only m are
kept. The ith sampling sequence is defined as

xci [l] =

{
x(lT ), l = n(k + ci), k ∈ Z
0, otherwise, (12)

where 0 < c1 < c2 < · · · < cm < 1 and T = 1/fNyq.

A. Difference set density

In the following lemma, we derive the lower Beurling
density of the difference set of a multicoset sampling set.

Lemma 2. Let R̃p = {nT (k + c1), nT (k + c2), . . . , nT (k +
cm)}k∈Z, be a periodic sampling set with period nT , where
0 ≤ ci < 1 for i ∈ 1, 2, . . . ,m and ci 6= cj for i 6= j.
Assume that ci − cj 6= ck − cl,∀i 6= k, j 6= l, namely
the differences between two distinct cosets are unique. Let
R = {ti > tj},∀ti, tj ∈ R̃. The lower Beurling density of
the sampling set R is given by

D−(R) =
m(m− 1) + 1

nT
. (13)

Proof: The sampling set R can be expressed as the union
of m(m− 1) + 1 uniform sampling sets

R = Ru
⋃

1≤i 6=j≤m

Ruij
, (14)

where Ru = {nTk}k∈Z and Ruij
= {nT (k + ci − cj)}k∈Z

are uniform sampling sets and
⋃

denotes union between sets.
Since ci − cj 6= ck − cl,∀i 6= k, j 6= l, then Ru and Ruij , 1 ≤
i 6= j ≤ m are disjoint sets. It follows that

|R ∩ [y, y + r]| = |Ru|+
∑

1≤i 6=j≤m

|Ruij |

=

⌊
y + r

nT

⌋
−
⌈ y

nT

⌉
+ 1

+
∑

1≤i 6=j≤m

(⌊
y − (ci − cj)nT + r

nT

⌋
−
⌈
y − (ci − cj)nT

nT

⌉
+ 1

)
,

where the last equality comes from the derivation of the
Beurling density of a uniform sampling set [24]. Therefore,

(m(m− 1) + 1)
⌊ r

nT

⌋
≤ inf
y∈R
|R ∩ [y, y + r]|

≤ (m(m− 1) + 1)
(⌊ r

nT

⌋
+ 1
)
. (15)

Dividing the equations by r and taking the limit as r → ∞
leads to

D−(R) = lim
r→∞

inf
y∈R

|R ∩ [y, y + r]|
r

=
m(m− 1) + 1

nT
, (16)

from the sandwich theorem.
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B. Sampling rate bound

Theorem 3 presents a lower bound for the sampling rate
using multicoset sampling.

Theorem 3. Let x(t) ∈ B. Let C = {ci}mi=1 be a sampling
pattern in multicoset sampling as in Lemma 2. The minimal
rate for perfect recovery of rx(τ) when using multicoset
sampling with n channels is given by

m

nT
≥ 1

T
min

{
1 +
√

8ΛTn− 3

2n
,

1 +
√

4n− 3

2n

}
. (17)

Proof: Let R̃ = {nT (k + ci)} and R be as in Lemma 2.
From Lemma 2, D−(R) = m(m−1)+1

nT . Now, from [20], if R
is a blind sampling set for rx(τ), then

D−(R) ≥ min {2Λ, fNyq} . (18)

Therefore, here, if R is a blind sampling set for Sx(f), then

m(m− 1) + 1

nT
≥ min

{
2Λ,

1

T

}
, (19)

which leads to

m

n
≥ min

{
1 +
√

8λn− 3

2n
,

1 +
√

4n− 3

2n

}
. (20)

Since Theorem 3 holds for every n, the minimal sampling
rate for perfect reconstruction of rx(τ) using multicoset sam-
pling is 0.

C. Comparison with previous work and discussion

Note that for the case where x(t) is not sparse, namely
Λ = 1/T , (19) reduces to

m(m− 1) + 1

n
≥ 1, (21)

which is exactly the same condition as equation (28) in [17].

In [17], the minimal sparse ruler has been proposed as a
solution to recover all n lags ti−tj . In that case, the difference
set is a uniform sampling set with spacing T and the covariance
can be estimated at all lags τ . However, the minimal sparse
ruler does not achieve the minimal rate (17). Figure 1 shows
the minimal sampling rate derived in (17) and the lower bound
of the minimal sampling rate that can be achieved using the
minimal sparse ruler ([17], equation (34)), namely

m

n
≥
√
τ(n− 1)

n
, τ ≈ 2.4345. (22)

The authors suggest that this result is due to the fact that
when the selection of samples is limited to the Nyquist grid, the
bound (17) cannot be achieved. This bound requires all coset
differences to be unique, which only holds for specific finite
m and n and are referred to as perfect Golomb ruler [25].
Therefore, we propose selecting the samples non-uniformly
and not on a grid. The following toy example illustrates this
statement.

Consider the minimal sparse ruler of length 10. This
ruler requires 6 marks, as shown in Fig. 2. Obviously,

Fig. 1. Minimal compression ratio for multicoset sampling

Fig. 2. Minimal sparse ruler.

all the lags 1 ≤ τ ≤ 10 are identifiable. Now, con-
sider the non-uniform ruler in Fig. 3. This ruler has only
5 marks and yields the following 10 lags or differences
{0.9, 2.1, 3.2, 3.8, 4.1, 5.9, 7, 7.9, 9.1, 10}. The number of lags

Fig. 3. Non-uniform ”ruler”.

that are obtained from both rulers is identical. While the
minimal sparse ruler yields uniform lags, the non-uniform ruler
gives non-uniform differences. In this example, the average
covariance sampling rate is identical in both schemes, and
the covariance can be reconstructed from either set of sam-
ples. Obviously, reconstruction from non-uniform samples is
more complex than reconstruction from uniform samples [26].
However, the minimal sampling rate when we allow for non-
uniform lags is lower than the minimal sampling rate required
to reconstruct all the differences on a grid, as shown here.

V. CONCLUSION

We presented lower bounds for the sampling rate required
for covariance estimation in the context of a general sampling
scheme, and for multicoset sampling in particular. A similar
analysis of other sampling schemes, based on the derivation
of the lower Beurling density of the resulting difference set,
is left to future work.
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