
Distributed Approximate Message Passing for
Sparse Signal Recovery

Puxiao Han, Ruixin Niu, Mengqi Ren
Dept. of Electrical and Computer Engineering

Virginia Commonwealth University
Richmond, VA, 23284, U.S.A.

Email: {hanp, rniu, renm}@vcu.edu

Yonina C. Eldar
Dept. of Electrical Engineering

Technion-Israel Institute of Technology
Haifa, 32000, Israel

Email: yonina@ee.technion.ac.il

Abstract—In this paper, an efficient distributed approximate
message passing (AMP) algorithm, named distributed AMP
(DAMP), is developed for compressed sensing (CS) signal re-
covery in sensor networks with the sparsity K unknown. In the
proposed DAMP, distributed sensors do not have to use or know
the entire global sensing matrix, and the burden of computation
and storage for each sensor is reduced. To reduce communications
among the sensors, a new data query algorithm, called global
computation for AMP (GCAMP), is proposed. The proposed
GCAMP based DAMP approach has exactly the same recovery
solution as the centralized AMP algorithm. The performance of
the DAMP approach is evaluated in terms of the communication
cost saved by using the GCAMP. For the purpose of comparison,
thresholding algorithm (TA), a well known distributed Top-K
algorithm, is modified so that it also leads to the same recovery
solution as the centralized AMP. Numerical results demonstrate
that the GCAMP based DAMP outperforms the Modified TA
based DAMP, and reduces the communication cost significantly.

Index Terms—Compressed sensing, distributed AMP, sensor
networks.

I. INTRODUCTION

Compressed sensing (CS) has wide applications in var-
ious areas of signal processing [1]. Due to the curse of
dimensionality, it can be highly demanding to perform CS
on a single processor. Further, distributed processing has the
potential to reduce communications among distributed sensors.
Hence, distributed CS (DCS) in sensor networks has become
an interesting topic. A general DCS system contains two parts:
(1) the local computation performed at each sensor, and (2) the
global computation to obtain the estimate of the original sparse
signal after sensors exchange the results of local computation.

Several distributed approaches based on various CS recov-
ery algorithms were proposed. In [2], a distributed subspace
pursuit (DiSP) algorithm was developed to recover joint sparse
signals. In DiSP, each sensor needs to store the global sensing
matrix, and local computation at each sensor involves opti-
mization and matrix inversion. The computation and memory
burden may become very challenging for the sensors in large-
scale problems. Further, in DiSP the sparsity K is assumed to
be known, which may not be the case in many applications.
In [3], an algorithm named D-ADMM based on basis pursuit
(BP) was proposed, in which the sensors do not have to store
the entire global sensing matrix. However, each sensor still
needs to solve an optimization problem to get a recovery per

iteration, and broadcasts it to its neighbors, which may induce
high communication cost since the recovery in the first few
iterations is not sparse.

Focusing on these problems, a DCS algorithm based on
iterative hard thresholding (IHT) named D-IHT was proposed
in [4], [5]. In the local computation of the D-IHT framework,
each sensor just performs very simple operations such as
matrix transpose, addition and multiplication. In the global
computation, thresholding algorithm (TA) [6] has been ap-
plied, which is a popular method to solve the distributed Top-
K problem in the field of database querying, to reduce the
amount of messages sent between sensors. Nevertheless, in
the D-IHT, the sparsity K was also assumed to be known.

In this paper, we propose a distributed algorithm based
on approximate message passing (AMP) [7], which does not
require the knowledge of the signal’s sparsity level, and has a
linear convergence rate [7], [8]. For the proposed distributed
AMP (DAMP) approach, we do not assume any prior knowl-
edge of the global sensing matrix, and the distributed sensors
do not have to store the entire global sensing matrix. In the
local computation, each sensor only performs simple matrix
operations. In the global computation per iteration, we propose
a new algorithm, Global Computation for AMP (GCAMP), to
reduce the amount of data transmitted in the sensor network.
To the best of our knowledge, the proposed approach is the
first distributed AMP algorithm.

We use v(k) to denote the k-th component of the vector v,
[·]T to denote the transpose a matrix or vector, and ‖ · ‖0 to
denote the number of non-zero components of a vector.

II. DAMP SYSTEM

A. The Centralized AMP

A task of CS is to recover a K-sparse signal s0 ∈ RN
from its measurement y = As0 +n, where A ∈ RM×N is the
sensing matrix and n is additive noise. We consider solving
the problem:

min
x

1

2
||y −Ax||22 + λ||x||1 (1)

where λ > 0 is a regularization parameter. AMP is a good
solution to (1) [7] without knowing K and λ. Starting from

978-1-4799-7088-9/14/$31.00 ©2014 IEEE

GlobalSIP 2014: Information Processing for Big Data

497

x0 = 0 and z0 = y, it recursively obtains a new estimate xt+1

of s0 as follows:

xt+1 = ηt(xt +AT zt; τσt) (2)

zt+1 = y −Axt+1 +
||xt+1||0
M

zt (3)

where σ2
t =

||zt||22
M [9], τ is a tunable parameter, and ηt(x;β)

for a vector x returns another vector u of the same dimen-
sionality such that (s.t.)

u(k) = sgn(x(k)) max(|x(k)| − β, 0), ∀k. (4)

Note that if x is a scalar, then it can be viewed as a one-
dimensional vector and the definition of ηt(x;β) still holds.
The optimal value of τ depends on κ = M

N and ρ = K
M [9].

Since K is unknown, a tuning procedure is needed to find a
value for τ which is very close to the optimum.

B. The Distributed Framework of AMP

Let us consider a sensor network with P distributed sensors.
Each sensor p (p = 1, · · · , P) takes a measurement of s0 as
yp = Aps0 + np and A =

[
(A1)T , · · · , (AP)T

]T
. Then, for

each p, (2) and (3) can be re-written as:

xt+1 = ηt
(
xt + ΣPp=1(Ap)T zpt ; τσt

)
(5)

zpt+1 = yp −Apxt+1 +
||xt+1||0
M

zpt (6)

Let us introduce an intermediate matrix Wt =
[
w1
t , . . . , w

P
t

]
with each column computed by the corresponding sensor as:

wpt =

{
xt + (Ap)T zpt , p = 1

(Ap)T zpt , otherwise (o.w.)
(7)

This matrix is similar to that in [4]. We can then write (5) as

xt+1 = ηt
(
ΣPp=1w

p
t ; τσt

)
(8)

DAMP can be divided into two parts: local computation of
zpt and wpt (p = 1, · · · , P), and global computation of xt+1

and σt+1, in which transmission of data between sensors is
required. For the latter, a natural approach is to send all the
data in wpt (p = 2, · · · , P) to sensor 1, which induces a high
communication cost when N is large. We next show how to
reduce the communication cost, while maintaining the same
recovery solution as the centralized AMP.

C. GCAMP Algorithm

According to (8), xt+1(n) = 0 if |ΣPp=1w
p
t (n)| ≤ β = τσt.

Therefore, we only need to know all the n’s and the corre-
sponding wpt (n)’s s.t. |ΣPp=1w

p
t (n)| > β in the global com-

putation. This is similar to the Top-K problem in distributed
database querying, which is to find the K largest components
of ΣPp=1w

p
t . There are two efficient approaches solving the

Top-K problem: TA [6], which has been modified and applied
in the global computation in D-IHT, and three-phase uniform
threshold (TPUT) algorithm [10]. Our problem is different
from the Top-K problem since we do not know how many
components of ΣPp=1w

p
t have magnitudes larger than β. Hence,

we cannot directly apply TA or TPUT. Nevertheless, they do
provide some insight on how to design the communication
algorithm for DAMP. The key idea of the proposed GCAMP
algorithm, as shown in Table I, is trying to get an upper bound
for |ΣPp=1w

p
t (n)|. This is easier to accomplish by using the

idea of TPUT than TA. Therefore, the GCAMP is more related
to TPUT. To make a comparison, we also modify TA so that it
can be used for global computation in DAMP in Section II-E,
and show that GCAMP saves much more communication cost
than the Modified TA in Section III-C.

TABLE I
GCAMP ALGORITHM

Input w1
t , · · · , wP

t , β = τσt;

Step I Set T = βθ/(P − 1), where θ ∈ (0, 1) is a tuned parameter;
for sensor p = 2:P

denote Rp = {n : |wp
t (n)| > T};

send all (n,wp
t (n)) pairs for n ∈ Rp to sensor 1;

endfor
Step II for sensor 1, define IS(x) := 1 if x ∈ S and IS(x) := 0 o.w.;
for n = 1:N

get Sn := {p = 2, · · · , P : IRp (n) = 1} with cardinality mn;
Compute U(n) = |w1

t (n) + Σp∈Snw
p
t (n)|+ (P − 1−mn)T ;

if U(n) > β and mn < P − 1
broadcast the index n to other sensors;

endif
endfor
Step III denote F = {n : U(n) > β, mn < P − 1};
for sensor p = 2:P

send all (n,wp
t (n)) pairs for n ∈ F\Rp to sensor 1;

endfor
Step IV for sensor 1, initialize xt+1 = 0;
for n ∈ V := {n : U(n) > β}

Update xt+1(n) = ηt
(

ΣP
p=1w

p
t (n);β

)
by (4);

endfor

Output xt+1

It is easy to show that U(n) is an upper bound of∣∣ΣPp=1w
p
t (n)

∣∣ for all n, and xt+1 which the GCAMP algorithm
obtains is exactly the same as that obtained by the original
centralized AMP algorithm. Interested readers are referred to
[11] for the proof.

In Fig. 1, an example is provided to illustrate how GCAMP
works, in which each sensor p already sorts wpt (n) in de-
scending order of magnitudes, and stores the data in the form
of (n, wpt (n)) pairs (p = 1, · · · , 3, n = 1, · · · , 10). Suppose
β = 20 and θ = 0.8, since we have P = 3 sensors, we get
T = βθ/(P − 1) = 8. In step I, sensors 2 to P send all
(n, wpt (n)) pairs with |wpt (n)| > T to sensor 1. In step II,
sensor 1 receives the data, computes upper bounds U(n) for
n = 1, · · · , 10 and obtains F = V = {4, 6, 7}. Then sensor 1
broadcasts indices in n ∈ F . In step III, sensor 2 sends w2

t (4)
and w2

t (7), and sensor 3 sends w3
t (4) and w3

t (6) to sensor 1.
Finally, in step IV, sensor 1 computes xt+1(n) for n ∈ V by
(7), and outputs the non-zero components of xt+1. Overall, in
this example, only 9 data points are sent from other sensors
to sensor 1, and the total number of messages is 12 (9 data
points plus 3 broadcast requests).

GlobalSIP 2014: Information Processing for Big Data

498

Sensor 1

(6, 9)
(4, -8)
(7, -8)
(5, 6)
(2, 3)
(9, -3)
(3, 2)
(1, -1)
(8, 0)
(10, 0)

Sensor 2

(6, 10)
(2, -7)
(4, 7)
(8, -5)
(9, -5)
(1, 4)
(5, 4)
(7, -3)
(10, -3)
(3, 1)

Sensor 3

(1, 10)
(7, -10)
(3, -9)
(5, -9)
(4, 8)
(8, 7)
(10, -5)
(6, 4)
(2, -2)
(9, 0)

Upper bound

(6, 27)
(7, 26)
(4, 24)
(2, 19)
(9, 19)
(1, 17)
(8, 16)
(10, 16)
(3, 15)
(5, 11)

Candidate

(6, 23)
(7, -21)
(4, 7)

Output

(6, 3)
(7, -1)

| � | > E = 20

Compute � �3

1
p
tp

w n
 ¦

Request � �2 4tw & � �2 7tw

Compute

Return | � |

Step I

Step II

Step III

Step IV

| � | > T = 0.8E /(P-1) = 8

| � | > T = 0.8E /(P-1) = 8
Send � �2 4tw

Request � �3 4tw & � �3 6tw

Send � �2 7tw

Send � �3 4tw

Send � �3 6tw

for n = 4, 6 and 7

> E = 20

Fig. 1. An example of GCAMP algorithm

D. Tuning of τ Values

With the GCAMP algorithm, DAMP can be developed.
We adopt the tuning framework in [12] to find the optimal
value for τ . First, a descending list of candidate values of
τ , {τ}L`=1 := [τmax, τmax − ∆τ, · · · , τmax − (L − 1)∆τ] is
generated. Then, for each candidate τ`, we run iterations in (5)
and (6) until xt and σt converge to x∗` and σ∗` , and use them as
the initial estimates for the iterations using the next candidate
τ`+1. We repeat this process until σ∗` is not decreasing, and
get the optimal τ value as well as the final estimate of s0.
For choosing the maximum candidate value, i.e., τmax, we
propose a different approach from [12] which may save more
computational cost. Denote x̃t := xt +AT zt = ΣPp=1w

p
t . Ac-

cording to [13], as N → ∞, asymptotically each component
of x̃t − s0 is independent and identically distributed (i.i.d.)
random variable, following a N (0, σ2

t) distribution. Define γ
s.t. 1√

2π

∫ +∞
γ

exp(− t
2

2)dt = α
2 , where α is a small number.

If |x̃t(n)| > γσt, then we can reject the hypothesis s0(n) = 0
at 1−α level of significance. Therefore, we can let τmax = γ.
For example, we can set α = 0.0027 and τmax = γ = 3.

Note that in every iteration involving (5) and (6), after
GCAMP returns xt+1, sensor 1 broadcasts non-zero compo-
nents of xt+1 as well as their indices. In DAMP, we tune
the optimal τ value in a descending order, which implies a
larger threshold β = τσt in the beginning. Therefore, different
from [3], we have a sparse estimate xt+1 even at the first few
iterations. Hence, the communication cost for broadcasting
xt+1 is negligible compared with that of GCAMP. Once
knowing xt+1, each local sensor can obtain zpt+1 using (6) and
σpt+1 = ||zpt+1||2 (p = 1, · · · , P). Next, each sensor p ≥ 2 just
sends a scalar σpt+1 to sensor 1, which needs P −1 messages.

Then, sensor 1 computes σt+1 =
√

ΣPp=1(σpt+1)2/M , updates
β and T , and broadcasts the scalar T to other sensors. Overall,

GCAMP incurs most of the communication cost in DAMP. We
will verify this in Section III-C.

E. Comparison of GCAMP and Modified TA

TA [6] is another popular algorithm for solving Top-K
problems. As discussed in Section II-C, the original TA can
only be applied when K is known. Therefore, we propose a
modified TA algorithm as in Table II, and let it be a control
algorithm for GCAMP.

TABLE II
MODIFIED TA ALGORITHM

Input w1
t , · · · , wP

t , β = τσt;

Initialization xt+1 = 0, count= 0;
for sensor p = 1:P

sort components of wp
t in descending order of magnitudes;

define the sorted vector as spt and Ipt (n) := ` s.t. wp
t (`) = spt (n);

mark all (Ipt (n), spt (n)) pairs as “unsent”;
endfor
while TRUE

for p = 1:P
find the first (Ipt (n), spt (n)) pair marked “unsent” from top;
set up = spt (n), broadcast (Ipt (n), up) to other sensors;
mark (Ipt (n), spt (n)) as “sent”;
for sensor q 6= p

store up and send (Ipt (n), wq
t (Ipt (n))) to sensor p;

mark (Ipt (n), wq
t (Ipt (n))) as “sent”;

endfor
update xt+1(Ipt (n)) = ηt(ΣP

p=1w
p
t (Ipt (n));β);

count=count+1;
if count≥ P and ΣP

p=1|up| ≤ β, or if count≥ N
set Ns = count, the algorithm terminates;

endif
endfor

endwhile

Output xt+1

It is easy to show that in each iteration, the Modified TA
algorithm also gives exactly the same xt+1 as that of the
original AMP algorithm. The proof is available in [11].
Number of Messages: For a set, denote | · | as its cardinality.
For GCAMP, the total number of messages is ΣPp=2|Rp| +
|F |+ΣPp=2|F\Rp|. For Modified TA, in each for-loop iteration
inside the while-loop, there are 1 broadcasting message from
some sensor to others and P − 1 incoming messages. Clearly,
the number of for-loop iterations inside the while-loop is Ns
in Table II, so the total number of messages is PNs. It is easy
to check that, for the data set in Fig. 1, Modified TA needs
PNs = 3 × 9 = 27 messages, more than twice that required
by the GCAMP.

III. NUMERICAL RESULTS

A. Performance Measures

Since we have proved that the DAMP algorithm has exactly
the same solution as the centralized AMP, and the recovery
accuracy and convergence of AMP has been well studied in
the literature, it is not necessary to evaluate them again in
the paper. Instead, as DAMP is a distributed algorithm, it is
important to evaluate the communication cost saved by using
GCAMP. So we use the number of messages transmitted as the

GlobalSIP 2014: Information Processing for Big Data

499

performance measure, which is widely used in literature [6],
[10]. We compare the number of messages used in GCAMP
to that in Modified TA. Considering the approach of sending
all the data to sensor 1, which has a total number of messages
N(P − 1), we define the normalized message number as

µM =
number of messages in computing xt+1

N(P − 1)
(9)

This leads to µM =
ΣP

p=1|Rp|+|F |+ΣP
p=1|F\Rp|

N(P−1) for GCAMP
and µM = NsP

N(P−1) for Modified TA.

B. Simulation Setup

Our focus is not to investigate large-scale problems, but to
develop distributed algorithms and evaluate their efficiency in
reducing communication costs. Nevertheless, we still use a
considerably large N = 5000, and choose κ from [0.1, 0.5],
ρ from [0.1, 0.3], which leads to M = Nκ in [500, 2500]
and K = Mρ in [50, 750]. The number of sensors P
is within [5, 50]. The sensing matrix A with i.i.d. entries
∼ N (0, 1

M) is partitioned into P parts with each sensor
having a (M/P) × N submatrix. Each component of s0 is
i.i.d. drawn from fX(x) = κρG(x) + (1 − κρ)δ(x) , where
G(x) is the probability density function (pdf) of the standard
Gaussian distribution and δ(x) is the Dirac delta function.
The measurements of s0 are corrupted by an additive noise
n ∼ N (0, σ2IM) and σ is the standard deviation with a
value in [0.01, 0.1]. The parameter θ in GCAMP is set to
0.8. Regarding the tuning procedure for optimal τ values, we
make a candidate list for τ of length 11, starting from 3 with a
step size −0.2; for each candidate, the convergence criterion
is |σt − σt−1| < 0.01σt−1. µ̄M is defined as µM averaged
over iterations based on 100 Monte-Carlo runs.

C. Performance Evaluation

1) Comparison between GCAMP and Modified TA: We
evaluate µ̄M in different settings with various combinations
of σ, P , ρ, and κ, and the numerical results are provided in
Tables III, IV and V. In the tables, the former entry in each
pair inside the parentheses denotes µ̄M for GCAMP, and the
latter denotes that for Modified TA. It is clear that in each case,
GCAMP outperforms Modified TA significantly. Modified TA
always uses more than N(P−1) messages except for the case
P = 5, while the GCAMP can save from 22.7% to 48.2%
of the messages. Fig. 2 gives the cumulative distributions of
µM in each iteration for GCAMP and Modified TA in four
different scenarios. It is clear that in each scenario, Modified
TA uses more than N(P − 1) messages in at least 33.4 %
of the total iterations; while GCAMP never uses more than
0.91N(P−1) messages in any iteration, and among more than
95% of the total iterations, it just uses [40%, 80%]×N(P −1)
messages, that is, it can save 20% ∼ 60% of the messages with
probability at least 95%.

2) Communication cost for computing zpt+1 and σt+1: We
investigate the ratio between the number of messages used
for obtaining zpt+1 and σt+1 after the GCAMP returns xt+1,
and that used for GCAMP computing xt+1 over all parameter

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

µM

C
u
m
u
la
ti
v
e
F
re

q
u
e
n
c
y

(κ , ρ , P , σ) = (0 .2 , 0 .1 , 5 , 0 .02)

GCAMP
Modified TA

0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

µM

C
u
m
u
la
ti
v
e
F
re

q
u
e
n
c
y

(κ , ρ , P , σ) = (0 .2 , 0 .1 , 10 , 0 .02)

GCAMP
Modified TA

0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

µM

C
u
m
u
la
ti
v
e
F
re

q
u
e
n
c
y

(κ , ρ , P , σ) = (0 .2 , 0 .1 , 10 , 0 .01)

GCAMP
Modified TA

0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

µM

C
u
m
u
la
ti
v
e
F
re

q
u
e
n
c
y

(κ , ρ , P , σ) = (0 .3 , 0 .1 , 10 , 0 .02)

GCAMP
Modified TA

Fig. 2. Cumulative distributions of µM for GCAMP and Modified TA.

settings above, and the largest value we observe is 7.25 %,
which means that GCAMP incurs most of the communication
cost in DAMP.

TABLE III
µ̄M FOR GCAMP AND MODIFIED TA (σ = 0.02, P = 10)

κ = 0.1 0.2 0.3 0.4 0.5
ρ=0.10 (0.547,

1.101)
(0.567,
1.103)

(0.573,
1.103)

(0.587,
1.103)

(0.589,
1.103)

0.20 (0.659,
1.108)

(0.667,
1.108)

(0.672,
1.108)

(0.691,
1.109)

(0.684,
1.108)

0.30 (0.632,
1.108)

(0.690,
1.109)

(0.737,
1.109)

(0.751,
1.110)

(0.755,
1.110)

TABLE IV
µ̄M FOR GCAMP AND MODIFIED TA (κ = 0.2, ρ = 0.1, P = 10)
σ = 0.01 0.03 0.05 0.07 0.09
(0.564,
1.103)

(0.574,
1.104)

(0.582,
1.104)

(0.589,
1.104)

(0.592,
1.105)

TABLE V
µ̄M FOR GCAMP AND MODIFIED TA (κ = 0.2, ρ = 0.1, σ = 0.02)
P = 5 10 15 20 25
(0.518,
0.941)

(0.567,
1.103)

(0.623,
1.071)

(0.664,
1.053)

(0.694,
1.042)

P = 30 35 40 45 50
(0.717,
1.034)

(0.735,
1.029)

(0.751,
1.026)

(0.763,
1.023)

(0.773,
1.020)

IV. CONCLUSION

Without assuming the knowledge of the signal’s sparsity
level, the DAMP approach has been developed for performing
distributed compressed sensing in sensor networks, consisting
of a series of local and global computations. We proposed
the GCAMP in the stage of global computation to reduce
the number of messages per iteration, and the DAMP based
on GCAMP has exactly the same solution as the centralized
AMP. For comparison purposes, we modified the TA algorithm
so that it can be used in DAMP, also with exactly the
same solution as that of the centralized AMP. Numerical
results demonstrated that GCAMP based DAMP outperforms
Modified TA based DAMP significantly, and is very efficient
in reducing communication costs.

GlobalSIP 2014: Information Processing for Big Data

500

REFERENCES

[1] M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From
theory to applications,” IEEE Trans. Sig. Proc., vol. 59, pp. 4053–4085,
September 2011.

[2] D. Sundman, S. Chatterjee, and M. Skoglund, “A greedy pursuit
algorithm for distributed compressed sensing,” in Proc. IEEE Int. Conf.
on Acoust., Speech, and Sig. Proc. (ICASSP), 2012, pp. 2729–2732.

[3] J. Mota, J. Xavier, P. Aguiar, and M. Puschel, “Distributed basis pursuit,”
IEEE Trans. Sig. Proc., vol. 60, pp. 1942–1956, April 2012.

[4] S. Patterson, Y. C. Eldar, and I. Keidar, “Distributed sparse signal
recovery for sensor networks,” in Proc. IEEE Int. Conf. on Acoust.,
Speech, and Sig. Proc. (ICASSP), 2013, pp. 4494–4498.

[5] ——, “Distributed compressed sensing for static and time-varying
networks,” IEEE Trans. Sig. Proc., vol. 62, no. 19, pp. 4931–4946, Oct
2014.

[6] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” in Symposium on Principles of Database Systems, 2001,
pp. 614–656.

[7] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing,” in Proc. Natl. Acad. Sci., vol. 106,
Madrid, Spain, September 2009, pp. 18 914–18 919.

[8] A. Maleki and R. G. Baraniuk, “Least favorable compressed sensing
problems for the first order methods,” in Proc. IEEE Int. Symp. Inf.
Theory, 2011, pp. 134–138.

[9] D. L. Donoho, A. Maleki, and A. Montanari, “The Noise-Sensitivity
Phase Transition in Compressed Sensing,” IEEE Trans. Info. Theory,
vol. 57, pp. 6920–6941, October 2011.

[10] P. Cao and Z. Wang, “Efficient top-k query calculation in distributed
networks,” in Intl. Symposium on Principles Of Distributed Computing
(PODC), 2004, pp. 206–215.

[11] P. Han, R. Niu, and M. Ren, “Distributed approximate message passing
for compressed sensing,” arXiv preprint arXiv:1404.3766, 2014.

[12] L. Anitori, A. Maleki, M. Otten, R. G. Baraniuk, and P. Hoogeboom,
“Design and Analysis of Compressed Sensing Radar Detectors,” IEEE
Trans. Signal Proc., vol. 61, pp. 813–827, February 2013.

[13] M. Bayati and A. Montanari, “The Dynamics of Message Passing on
Dense Graphs, with Applications to Compressed Sensing,” IEEE Trans.
Info. Theory, vol. 57, pp. 764–785, February 2011.

GlobalSIP 2014: Information Processing for Big Data

501

