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Abstract—In the context of Cognitive Radio (CR), opportunis-
tic transmissions can exploit temporarily vacant spectral bands.
Efficient and reliable spectrum sensing is a key in the CR process.
CR receivers traditionally deal with wideband signals with high
Nyquist rates and low Signal to Noise Ratios (SNRs). Thus, in
this paper, we propose sub-Nyquist sampling and cyclostationary
detection, which is robust to noise. We first reconstruct the cyclic
spectrum or Spectral Correlation Function (SCF) of the signal,
which is a characteristic function of cyclostationary signals such
as communication signals, from sub-Nyquist samples and then
perform detection. We consider both sparse and non sparse
signals as well as blind and non blind detection in the sparse case.
For each one of those scenarii, we derive the minimal sampling
rate allowing for perfect reconstruction of the signal’s SCF in a
noise-free environment and provide SCF recovery techniques. In
the simulations, we show SCF recovery at the minimal rate in
noise-free settings as well as the performance of our detector in
the presence of noise.

I. INTRODUCTION

Spectral resources are traditionally allocated to licensed
or primary users (PUs) by governmental organizations. To-
day, most of the spectrum is already owned and new users
can hardly find free frequency bands. In light of the ever-
increasing demand for wireless connectivity, this issue has
become critical over the past few years. On the other hand,
various studies [1], [2] have shown that the spectrum is usually
significantly underutilized and can be described as the union of
a few narrowband transmissions spread across a wide spectrum
range. This is the motivation behind cognitive radio (CR),
which would allow secondary users to opportunistically use
the licensed spectrum when the corresponding PU is not active
[3]. Even though the concept of CR is said to have been
introduced by Mitola [3], the idea of learning machines for
spectrum sensing can be traced back to Shannon [4], [5].

One of the most crucial tasks in the CR cycle is spec-
trum sensing. At the receiver, the CR performs detection to
assert which band is unoccupied and can be exploited for
opportunistic transmissions. Traditional detection techniques
include matched filtering, energy detection and cyclostationary
detection [6]–[9]. While the first approach requires a priori
knowledge of the signal waveform and yields a high complex-
ity architecture, the second is not robust to noise uncertainty
and fails to differentiate signal and noise in low SNR regimes.
In this paper, in order to detect the active bands efficiently

even in the presence of large noise [10], we choose to exploit
the cyclostationary property of communication signals and use
cyclostationary feature detection. Processes, whose statistical
characteristics vary periodically with time, are called cyclosta-
tionary [11]. A characteristic function of such processes, re-
ferred to as the cyclic spectrum or spectral correlation function
(SCF), exhibits spectral peaks at certain frequency locations
called cyclic frequencies. When determining the presence
or the absence of a signal, cyclostationary detectors exploit
one fundamental property of the SCF: stationary noise and
interference exhibit no spectral correlation [11]. This renders
such detectors highly robust to noise. Today, cyclostationary
detection is performed on either the reconstructed SCF as a
function of the angular frequency and computed at a specific
cycle frequency [12], [13], or on the entire 2D reconstructed
SCF from the wideband signal Nyquist samples [14].

In order to minimize the interference that could be caused
to PUs, the spectrum sensing task performed by a CR should
be reliable and fast [15]–[17]. Moreover, in order to increase
the chance of finding an unoccupied spectral band, the CR has
to sense a wide band of spectrum. Nyquist rates of wideband
signals are high and can even exceed today’s best analog-
to-digital converters (ADCs) front-end bandwidths. Such high
sampling rates generate a large number of samples to process,
affecting speed and power consumption. Recently, several new
sampling methods have been proposed [18]–[20] that reduce
the sampling rate in multiband settings below the Nyquist rate.
The authors derive the minimal sampling rate allowing for
perfect signal reconstruction in noise-free settings and provide
sampling and recovery techniques. However, when the final
goal is spectrum sensing and detection, reconstructing the
original signal is unnecessary. In [21], the authors propose
a method to estimate finite resolution approximations to the
true spectrum exploiting multicoset sampling. Spectrum re-
construction is also considered in [22] both in the time and
frequency domains. However, no analysis on the minimal sam-
pling rate ensuring perfect spectrum recovery was performed.
Both approaches rely on energy detection. Unfortunately, the
sensitiveness of energy detection is amplified when performed
on sub-Nyquist samples due to aliasing of the noise [23]. In
[24]–[26], the authors propose cyclostationary detection from
sub-Nyquist samples. However, no analysis on the minimal
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sampling rate ensuring perfect SCF reconstruction was per-
formed. Besides, the two first papers do not deal with the
sampling scheme itself.

In this paper, we consider the class of purely wide-sense cy-
clostationary multiband signals, whose frequency support lies
within several continuous intervals (bands). We will consider
three different scenarii: (1) the signal is not assumed to be
sparse, (2) the signal is assumed to be sparse and the carrier
frequencies of the narrowband transmissions are assumed to
be known, (3) the signal is assumed to be sparse but we do not
assume carrier knowledge. We consider the sampling methods
proposed in [18]–[20] and use a similar recovery technique
to those derived in [21], [22] but we extend it in order to
reconstruct the signal SCF from the sub-Nyquist samples.
Our contribution is twofold. First, we derive the minimal
sampling rate, allowing for perfect SCF reconstruction in a
noise-free environment, for each one of the above three cases.
The performance of our detector in noisy settings will be
considered in the simulations. We show that the rate required
for spectrum reconstruction is a bit higher than half the rate
that allows for perfect signal reconstruction, for each one of
the scenarii, namely the Nyquist rate, the Landau rate [27] and
twice the Landau rate [19], respectively. Second, we provide
SCF recovery techniques that achieve these lower bounds.

This paper is organized as follows. In Section II, we present
the cyclostationary multiband model and define cyclostation-
arity and the SCF. Section III describes the sub-Nyquist
sampling stage and SCF reconstruction. In Section IV, we
derive the minimal sampling rate for each one of the three
scenarii described above. Numerical experiments are presented
in Section V.

II. SYSTEM MODEL AND GOAL

A. System Model

Let x(t) be a real-valued continuous-time signal, supported
on F = [−1/2TNyq,+1/2TNyq]. Formally, the Fourier trans-
form of x(t) defined by

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (1)

is zero for every f /∈ F . We denote by fNyq = 1/TNyq the
Nyquist rate of x(t). We assume that x(t) is composed of
up to Nsig uncorrelated transmissions with disjoint frequency
supports. The bandwidth of each signal does not exceed 2B
(where we consider both positive and negative frequency
bands). Each transmission is assumed to be wide-sense purely
cyclostationary with period Ti, 1 ≤ i ≤ Nsig, as defined in
Section II-C. We consider three different scenarii.

1) No sparsity assumption: In the first scenario, we assume
no a priori knowledge on the signal and we do not suppose
that x(t) is sparse, namely 2NsigB can be of the order of fNyq.

2) Sparsity assumption and non blind detection: Here, we
assume that x(t) is sparse, namely 2NsigB � fNyq. Moreover,
the support of the potentially active transmissions, which
corresponds to the frequency support of licensed users defined
by the communication standard, is assumed to be known.

However, since the PUs’ activity can vary over time, we wish
to develop a detection algorithm that is independent of a
specific known signal support.

3) Sparsity assumption and blind detection: In the last
scenario, we assume that x(t) is sparse but we do not assume
any a priori knowledge on the carrier frequencies. Only
the maximal number of transmissions Nsig and the maximal
bandwidth 2B are assumed to be known.

B. Problem Formulation
In each one of the scenarii defined in Section II-A, our

goal is to assess which of the Nsig transmissions are active
from sub-Nyquist samples of x(t). For each signal, we define
the hypothesis Hi,0 and Hi,1, namely the ith transmission is
absent and active, respectively.

In order to determine which of the Nsig transmissions are
active, we first reconstruct the SCF of x(t) defined in Section
II-C. In the first and third scenarii, we fully reconstruct the
SCF. In the second one, we exploit our prior knowledge
and reconstruct it only at the potentially occupied locations.
We will then perform detection on the fully or partially
reconstructed SCF. For each one of the scenarii, we derive the
minimal sampling rate enabling perfect SCF reconstruction in
a noise-free environment.

C. Background: Cyclostationarity
In order to detect narrowband signals in the presence of

large noise, we propose to exploit the cyclostationary proper-
ties of communication signals. A process x(t) is said to be
purely cyclostationary with period T0 in the wide sense if its
mean E[x(t)] = µx(t) and autocorrelation E[x(t)x(t+ τ)] =
Rx(t, τ) are both periodic with period T0 [11]:

µx(t+ T0) = µx(t), Rx(t+ T0, τ) = Rx(t, τ). (2)

Given a wide-sense cyclostationary random process, its
autocorrelation Rx(t, τ) can be expanded in a Fourier series

Rx(t, τ) =
∑
α

Rαx (τ)e
j2παt, (3)

where α = m/T0,m ∈ Z and the Fourier coefficients, referred
to as cyclic autocorrelation functions, are given by

Rαx (τ) =
1

T

∫ ∞
−∞

Rx(t, τ)e
−j2παtdt. (4)

The SCF is obtained by taking the Fourier transform of (4)
with respect to τ , namely

Sαx (f) =

∫ ∞
−∞

Rαx (τ)e
−j2πfτdτ, (5)

where α is referred to as the cyclic frequency and f is the
angular frequency [11]. Since the SCF of purely cyclosta-
tionary signals exhibits spectral peaks only at specific angular
frequencies, α = m/T0,m ∈ Z, it is sparse in the α domain.
It can be shown [11] that white noise w(t) exhibits no cyclic
correlation, that is

Sαw(f) = 0 α 6= 0. (6)

We will exploit this property in our detection scheme.
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III. SUB-NYQUIST SAMPLING AND SCF
RECONSTRUCTION

We consider two different sampling schemes: multicoset
sampling [19] and the modulated wideband converter (MWC)
[18] which were previously proposed for sparse multiband
signals in conjunction with energy detection. We show that
the reconstruction stage is identical for both schemes. In this
section, we reconstruct the entire SCF. In Section IV-B, we
show how we can reconstruct the SCF only at potentially
occupied locations when we have a priori knowledge on the
carrier frequencies and symbol rates.

A. Multicoset sampling

Multicoset sampling can be described as the selection of
certain samples from the uniform grid. More precisely, the
uniform grid is divided into blocks of N consecutives samples,
from which only M are kept. The ith sampling sequence is
defined as

xci [n] =

{
x(nTNyq), n = mN + ci,m ∈ Z

0, otherwise, (7)

where 0 < c1 < c2 < · · · < cM < N − 1. Following the
derivations from multicoset sampling [19], we obtain

z(f) = Ax(f), f ∈
[
0,

1

NTNyq

]
, (8)

where zi(f) = Xci(e
j2πfTNyq ), 0 ≤ i ≤ M − 1 is the DTFT

of the multicoset samples and

xk(f) = X

(
f +

k

NTNyq

)
,−N

2
≤ k ≤ N

2
− 1. (9)

We assume that NTNyq is an odd multiple of the periods of
cyclostationarity Ti, 1 ≤ i ≤ Nsig and that N is even.

B. MWC sampling

The MWC [18] is composed of M parallel channels. In each
channel, an analog mixing front-end, where x(t) is multiplied
by a mixing function pi(t), aliases the spectrum, such that
each band appears in baseband. The mixing functions pi(t)
are required to be periodic with period Tp such that fp =
1/Tp ≥ B. The function pi(t) has a Fourier expansion

pi(t) =
∞∑

l=−∞

cile
j 2π
Tp
lt
. (10)

In each channel, the signal goes through a lowpass filter with
cut-off frequency fs/2 and is sampled at the rate fs ≥ fp. For
the sake of simplicity, we choose fs = fp. We assume that it
is an odd multiple of the periods of cyclostationarity Ti, 1 ≤
i ≤ Nsig and that N = fNyq/fs > M is even. Repeating the
calculations in [18], we derive the relation between the known
DTFTs of the samples yi[n] and the unknown X(f)

z(f) = Ax(f), f ∈ [0, fs], (11)

where z(f) is a vector of length N with ith element zi(f) =
Yi(e

j2πfTs). The unknown vector x(f) is given by (9). The
M ×N matrix A contains the coefficients cil:

Ail = ci,−l = c∗il. (12)

For both sampling schemes, the overall sampling rate is

ftot =Mfs =
M

N
fNyq. (13)

C. SCF reconstruction

We note that the system models (8) and (11) are identical for
both sampling schemes. The only difference is the sampling
matrix A. We assume that A is full spark in both cases [18],
[19]. We thus can derive a method for SCF reconstruction for
both sampling schemes together.

We define the autocorrelation matrices Rz = E[z(f)zH(f)]
and Rx = E[x(f)xH(f)]. Then from (8), we have

Rz = ARxAH. (14)

Due to lack of space, the proofs of the following propositions
are omitted here and will be detailed in a future paper.

Proposition 1. Let x(t) be a bandpass wide-sense cyclosta-
tionary process with period T0. Then

E[X(ω)X∗(ν)] = 2π
1∑

m=−1
Sm/T0
x (ω)δ

(
ω − ν + m

T0

)
,

(15)
where Sm/T0

x (ω) is defined in (5).

From Proposition 1, the only non zero elements of Rx are
its diagonal elements Rx(i, i) = S0

x(f+(i−N/2−1)fs) [21]
and Rx(i,N − i+1) = S

(N−2i+1)fs
x (f), −fs/2 ≤ f ≤ fs/2,

for 1 ≤ i ≤ N . We can then write

rz = (A∗ ⊗A)vec(Rx) = (A∗ ⊗A)Brx , Φrx, (16)

where Φ = (A∗ ⊗ A)B. Here rz = vec(Rz), and B is a
N2 × 2N selection matrix that has a 1 in the jth column
and [(j − 1)N + j]th row, and the [j + N ]th column and
[j(N − 1) + 1]th row, 1 ≤ j ≤ N and zeros elsewhere. It
follows that Φ is a M2 × 2N matrix. Our goal is to recover
rx, that contains the potentially non zero elements of the SCF.

IV. MINIMAL SAMPLING RATE

A. No sparsity Assumption

The system defined in (16) is overdetermined for M2 ≥ N ,
if Φ is full column rank. The following proposition provides
conditions for the system defined in (16) to have a unique
solution.

Proposition 2. Let A be a full row rank M ×N matrix with
N even (M ≤ N ) and B be a N2× 2N selection matrix that
has a 1 in the jth column and [(j − 1)N + j]th row, and the
[j +N ]th column and [j(N − 1) + 1]th row, 1 ≤ j ≤ N and
zeros elsewhere. The matrix C = (A∗ ⊗A)B is full column
rank if M2 ≥ 2N and 2M > N + 1.
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Since A is assumed to be full spark, it is full row rank.
Therefore, from Proposition 2, (16) has a unique solution if
M2 ≥ N and 2M > N+1. This can happen even for M < N
which is our basic assumption. If M ≥ 4, we have M2/2 ≥
2M − 1. Thus, in this case, the values of M for which we
obtain a unique solution are (N + 1)/2 < M < N .

This means that even without any sparsity constraints on
the signal, we can retrieve its SCF from sub-Nyquist samples
by exploiting its cyclostationary property, whereas the mea-
surement vector z exhibits no stationary nor cyclostationary
properties in general. This was already observed in [25] for a
different model, but no proof was provided.

In this case, the minimal sampling rate is

f(1) =Mfs >
N + 1

2
B =

fNyq +B

2
, (17)

where B � fNyq.

B. Sparsity Assumption and Non-Blind Detection

We now consider the second scheme, where we have a
priori knowledge on the frequency support of x(t) and we
assume that it is sparse. Instead of reconstructing the entire
SCF, we exploit the knowledge of the signal’s potential cyclic
and angular frequencies in order to reconstruct only the
potentially occupied bands. This will allow us to further reduce
the sampling rate.

In this scenario, the only non zero elements of Rx are
Kf = 2Nsig diagonal elements and the corresponding Kf off
diagonal elements, where Kf � N . The reduced dimension-
ality SCF is defined as

r̂x = Mfrx. (18)

Here Mf ∈ R2Kf×2N is a matrix with elements equal to 1
at the indices of potential non-zero entries and r̂x ∈ C2Kf×1.
Furthermore, we define G to be the 2N × 2Kf matrix that
selects the corresponding 2Kf columns of Φ and Φ̂ = ΦG.
The reduced problem can then be expressed as

rz = Φ̂r̂x. (19)

The following proposition provides conditions for the sys-
tem defined in (19) to have a unique solution.

Proposition 3. Let A be a full spark M ×N matrix with N
even (M ≤ N ) and B be defined as in Proposition 2. Let C =
(A∗ ⊗A)B and G be the 2N ×2Kf that selects 2Kf < 2N
columns of C as defined above. The matrix D = CG is full
column rank if M2 ≥ 2Kf and 2M > Kf + 1.

Therefore, from Proposition 2, for M ≥ 4, if M > (Kf +
1)/2, where Kf � N , we obtain a unique solution for (19).
In this case, the minimal sampling rate is

f(2) =Mfs >
2Nsig + 1

2
B = (Nsig + 0.5)B. (20)

Landau [27] developed a minimal rate requirement for
perfect signal reconstruction in the non-blind setting, which
corresponds to the actual band occupancy. Here, we find that
the minimal sampling rate for perfect SCF recovery is equal

to half the Landau rate plus half the maximal bandwidth of
the narrowband transmissions.

C. Sparsity Assumption and Blind Detection

We now consider the scheme where x(t) is sparse, without
any a priori knowledge on the support. In the previous section,
we showed that Φ̂ is full column rank, for any choice of Kf

columns of Φ, provided M2 ≥ 2Kf and 2M > Kf+1. Thus,
for M ≥ 4, we have spark(Φ) = 2M − 1. Therefore, if rx,
is (M − 1)-sparse, it is the unique sparsest solution of (16),
namely we can recover the SCF of any (M−1)-sparse signal.
In this case, the minimal sampling rate is

f(3) =Mfs > (2Nsig + 1)B, (21)

which is twice the rate obtained in the previous case. As in
signal recovery, the minimal rate for blind reconstruction is
twice the minimal rate for non-blind reconstruction [19].

V. SIMULATION RESULTS

The first simulation demonstrates SCF reconstruction at the
minimal sampling rate derived in Section IV-A. In the second
simulation, we show the performance of the proposed detector
in the presence of noise. In both cases, we use the MWC
analog front-end [18] for the sampling stage.

In order to estimate the autocorrelation matrix Rz, we first
compute the estimates of z(i), 1 ≤ i ≤M , ẑ(i), using FFT on
the samples zi[n] over a finite time window. We then estimate
the elements of Rz using P realizations of ẑ(·, ·) as follows

R̂z(i, j, f) =
P∑
p=1

ẑp(i, f)ẑ
∗
p(j, f), f ∈ [− fs/2, fs/2],

(22)
where P is the number of frames for the averaging of the SCF.

We then perform cyclostationary detection on the recon-
structed SCF. We use a single-cycle detector which computes
the energy over 10 frequencies around f = 0, at a single cyclic
frequency α. In the simulations, we consider AM modulated
signals with cyclic features at α = 2fc, where fc is the carrier
frequency of the signal to be detected.

1) Simulation 1: Let x(t) be composed of 40 uncorrelated
transmissions. Each transmission is an AM modulated signal
with single-sided bandwidth B = 20MHz. The Nyquist rate
of x(t) is fNyq = 2GHz. Thus, the occupancy is 80%.
We consider N = 80 spectral bands and M = 42 analog
channels, each sampling at fs = 25MHz, following the
minimal sampling rate requirement derived in Section IV-A.
Figure 1 shows the original and the reconstructed spectrum
and Fig. 2 shows the reconstructed SCF (the averages were
performed over P = 500 frames).

2) Simulation 2: We now consider a non-blind scenario
where the carrier frequencies of the signals occupying the
wideband channel are known. We consider Nsig = 3 poten-
tially active transmissions, with AM modulation and single-
sided bandwidth B = 30MHz. The Nyquist rate of x(t)
is fNyq = 2GHz. We consider N = 64 spectral bands and
M = 4 analog channels, each sampling at fs = 31.25MHz.
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Fig. 1. Original and reconstructed PSD of a non sparse signal with Nyquist
rate 2GHz, sampled at 1.05GHz.

Fig. 2. Reconstructed SCF of a non sparse signal with Nyquist rate 2GHz,
sampled at 1.05GHz.

The overall sampling rate is Mfs = 125MHz which is
69% of the Landau rate. The receiver operating characteristic
(ROC) curve is shown in Fig. 3 for different SNR regimes (the
averages were performed over P = 15 frames).
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