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Abstract— A bound on the amount of distortion in the
reconstruction of a stationary Gaussian process from its rate-
limited samples is derived. The bound is based on a combined
sampling and source coding problem in which a Gaussian
stationary process is described from a compressed version of its
values on an infinite discrete set. We show that the distortion in
reconstruction cannot be lower than the distortion-rate function
based on optimal uniform filter-bank sampling using a sufficient
number of sampling branches. This can be seen as an extension
of Landau’s theorem on a necessary condition for optimal
recovery of a signal from its samples, in the sense that it
describes both the error as a result of sub-sampling and the
error incurred due to lossy compression of the samples.

I. INTRODUCTION
The process of digitally storing information associated

with the representation of a continuous time stochastic
process involves the operations of sampling and quantiza-
tion. The number of bits per second needed to describe
an information source to some given average distortion is
one of the basic problems in information theory, while the
sampling and reconstruction of a stationary stochastic signal
is a classic problem in signal processing. In this work we are
interested in a combined problem where the source needs to
be reconstructed from a rate-limited version of its samples.

The quantities of merit in this problem are the sampling
set Λ⊂R, the information rate R and the average distortion
D. If the set Λ is dense enough such that the signal can
be fully reconstructed from the samples, then the trade-off is
described by the classic distortion-rate function (DRF) of the
source. The other extreme is where the information rate R
is infinite, in which case we are left with the reconstruction
problem of an undersampled signal.

An expression for the indirect distortion rate function
(iDRF) of a Gaussian stationary process given its rate-limited
uniform samples was derived in [1] and [2]. In particular, a
lower bound Dl( fs,R) which depends only on the average
sampling frequency fs and the power spectral density (PSD)
of the source was obtained there. This bound is obtained
by waterfilling over the part of the PSD of the source with
the highest energy. It equals zero if and only if the average
sampling frequency of the samples is higher than the support
of the PSD of the source, which is in accordance with
Landau’s condition for perfect recovery of signals from their
samples [3]. But the bound from [1] does more: it bounds
from below the error that can be achieved under non-optimal
sampling or when the samples are distorted by quantization
or any form of lossy compression.
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In this paper we consider an arbitrary discrete sampling set
Λ = {tk, k ∈ Z} ⊂ R and the iDRF of a Gaussian stationary
source given its samples on this set. We show that the bound
in [1] still holds under this non-uniform sampling setting,
where we replace the average sampling frequency with the
Beurling density d(Λ) of the sampling set. This establishes
Dl(d(Λ),R) as a fundamental quantity in information theory
and signal processing. In particular, this quantity bounds
from below the distortion incurred due to source encoding
based on the information in any uniform sampling scheme
of a Gaussian stationary source.

Background and Related Work

The reconstruction of a stationary process from its samples
under a mean square error (MSE) criterion was tied in [4]
to the problem of describing the auto-correlation function of
the process from the values of the auto-correlation function
on the sampling set. This establishes the sufficient condition
given by the Shannon-Nyquist-Whitaker sampling theorem,
that is uniform sampling above the Nyquist rate, as a suffi-
cient condition for perfect reconstruction of a random process
from its samples under expected MSE criterion. In the case
of non-uniform sampling, the general notion of sampling
frequency is replaced by the upper (lower) Beurling density
d(Λ) of the sampling set Λ, defined by the largest (smallest)
number of points in Λ contained within a single interval
divided by the length of the interval, as that length tends to
infinity. It follows from the landmark work of Landau [3] that
a necessary and sufficient condition for perfect reconstruction
of a random stationary signal from its non-uniform samples
is that the spectral occupancy of the PSD of the signal, now
termed the Landau rate, does not exceed the Beurling density
of the sampling set.

Recently, the iDRF in reconstructing a Gaussian process
given its uniform samples was solved in [1], [2]. This was
obtained by reducing the combined sampling and source cod-
ing problem into a classical indirect source coding problem
[5], first considered by [6]. More details on the results in
[1] will be given in Section III. The combined sampling
and source coding problem of this work can be seen as the
dual to the channel coding problem with sampling at the
receiver, considered in [7]. This last work was extended to
non-uniform sampling in [8].

Contribution

The main result of this paper is a lower bound Dl(d(Λ),R)
on the iDRF of a Gaussian stationary process X(·) given its
samples {X(tk), tk ∈ Λ}. This bound depends only on the
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Fig. 1. Combined nonuniform sampling and source coding model.

PSD of the source and the Beurling density d(Λ) of the
sampling set. As the information rate R goes to infinity, the
iDRF approaches the optimal MSE in the reconstruction of
the process from the samples. This leads to a lower bound on
the MSE in estimating a Gaussian stationary process from its
uniform samples. The bound Dl(d(Λ),R) extends Landau’s
characterization of sampling sets for a signal in three aspects:

1) It describes the minimal error if the sampling set is not
dense enough.

2) It describes the minimal amount of excess distortion
in the reconstruction due to lossy compression of the
samples.

3) It considers the case where the process undergoes a
general linear time-varying processing before nonuni-
form sampling.

The rest of this paper is organized as follows: in Section II
we present the combined non-uniform sampling and source
coding problem. In Section III we review recent results on
the iDRF of processes from sub-Nyquist uniform sampling
and a pre-sampling filter. In Section IV we prove our main
results. An example for the case of a Gauss-Markov process
is given in Section V. Concluding remarks are provided in
Section VI.

II. PRELIMINARIES

A. System Model

We consider a combined sampling and source coding prob-
lem as depicted in Fig. 1. The source X (·) = {X (t) , t ∈ R}
is a real Gaussian stationary process with PSD

SX ( f ),
∫

∞

−∞

E [X(t + τ)X(t)]e−2πiτ f dτ,

and variance σ2
X ,

∫
∞

−∞
SX ( f )d f < ∞. The sampler receives

the process X(·) as an input and produces a discrete-time
process Y [n] = X(tn), tn ∈ Λ. Throughout this paper, we use
round brackets and square brackets to distinguish between
continuous-time and discrete-time processes.

The fidelity criterion is defined by the MSE between the
original source and its reconstruction X̂(·) =

{
X̂(t), t ∈ R

}
,

namely

Ed
(
X̂ (·) ,X (·)

)
, E‖X̂(·)−X(·)‖2 (1)

where ‖X(·)‖ is the time-averaged L2 norm1 of the process
X(·), defined by

‖X(·)‖2 , limsup
T→∞

1
2T

∫ T

−T
E
(
X2 (t)

)
dt.

We denote by mmse(Λ) the optimal MSE estimation error
of X(·) from the process Y [·],

mmse(Λ) = ‖X(t)−E [X(t)|YΛ[·]]‖2 .

The Landau rate of the process X(·) is defined to be the
Lebesgue measure of the support of SX ( f ), and will be
denoted by fL(X).

Non-uniform sampling

For a discrete set ∆ ⊂ R, denote by nr(Λ) the maximal
number of elements of Λ that belong to a single interval of
length r, namely

nr(Λ) = sup
u∈R
|{t ∈ Λ, t ∈ u+[0,r)}| .

Similarly, define

nr(Λ) = inf
u∈R
|{t ∈ Λ, t ∈ u+[0,r)}| .

The lower and upper Beurling densities of Λ are respectively
defined by

d(Λ) = lim
r→∞

nr(Λ)

r
,

and

d(Λ) = lim
r→∞

nr(Λ)

r
.

If d(Λ) = d(Λ), we say that the set Λ has Beurling density
d(Λ) = d(Λ). Throughout the rest of this paper, only
sampling sets Λ with existing Beurling density will be
considered.

Given a nonuniform sampling set Λ, whether X(·) is
recoverable from the nonuniform samples sequence YΛ[·] is
determined by the completeness of the exponential func-
tions EΛ ,

{
e2πitn f , tn ∈ Λ

}
in L2(R). In particular, when

Λ = Z/ fs = {n/ fs, n ∈ Z}, the set EΛ forms a basis of
L2 (− fs/2, fs/2) by the Shannon-Nyquist sampling theorem.
The fundamental sampling rate necessary for perfect recon-
struction of X(·) from YΛ[·] has been given by Landau [3].
It follows from [3] that perfect reconstruction of X(·) from
YΛ[·] is possible if and only if the Beurling density of Λ is
higher than the Landau frequency of X(·), i.e.,

mmse(Λ) = 0⇔ d(Λ)≥ fL(X). (2)

As in [3], this work is concerned only with the existence of
estimators that achieve minimal or zero distortion and we
will not be concerned with obtaining a technique for such
estimation.



X(·)

tn
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Fig. 2. Informational rate-distortion representation

Problem Statement

Given a sampling set Λ, we consider the minimum pos-
sible distortion that can be attained between X (·) and X̂ (·).
Classical results in rate-distortion theory [5], [9] imply that
this problem has the informational rate-distortion character-
ization depicted in Fig. 2, in which PŶΛ|YΛ

denotes a ‘test
channel’ between YΛ[·] and ŶΛ[·] =

{
ŶΛ[n], n ∈ Z

}
, and the

reconstruction process X̂(·) is obtained from the process ŶΛ[·]
which represents a compressed or a quantized version of
YΛ[·]. For T > 0 define ΛT , Λ∩ [−T,T ], and denote by
A (ΛT ,R) the set of all random mappings YΛ[·]→ ŶΛ [·]→
X̂ (·) measurable with respect to the σ -algebra generated by
YΛT [·], such that the mutual information rate between YΛ[·]
and ŶΛ [·], defined by

I
(
ŶΛ [·] ;YΛ[·]

)
, lim

T→∞

1
2T

I
(
ŶΛT ;YΛT

)
,

is limited to R bits per time unit. The iDRF of X(·) given
YΛ[·] is defined by

DΛ(R) = lim
T→∞

DΛT (R), (3)

where
DΛT (R) = inf

A (ΛT ,R)
Ed
(
X̂ (·) ,X (·)

)
. (4)

The facts below follows from the definition of DΛ(R):
Proposition 2.1: The following holds for all discrete sets

Λ⊂ R with Beurling density d(Λ) and R≥ 0:
(i) DΛ(R)≤ ‖X(·)‖2 = σ2

X .
(ii) DΛ(R) ≥ mmse(Λ), where mmse(Λ) is the minimal

MSE error in estimating X(·) from the samples YΛ[·],
namely

mmse(Λ) = ‖X(·)− X̃(·)‖2,

where
X̃(t) = E [X(t)|YΛ[·]]

is the minimal MSE estimator.
(iii) As R→ ∞, DΛ(R)→ mmse(Λ).
(iv) If d(Λ) is bigger than the total measure of the support

of SX ( f ), then DΛ(R) = DX (R), where DX (R) is the
DRF of the Gaussian stationary process X(·).

1In our notation, we allow ‖X̂(·)‖ to take infinite value if X̂(·) is not in
L2.
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Fig. 3. Combined source coding and uniform multi-branch uniform
sampling model.

Proof: (i) follows by taking the reconstruction process
to be X̂(t) = 0 for all t ∈ R. (ii) and (iii) are due to lossy
compression of the samples when R is finite. (iv) follows
from the celebrated result of Landau [3] on the condition
for perfect reconstruction of a signal from its non-uniform
samples (2).

III. DISTORTION-RATE FUNCTION UNDER UNIFORM
SAMPLING AND PRE-SAMPLING FILTERING

A special case of the set Λ is when there exists T ∈ R
such that

Λ = Λ+T , {t +T, t ∈ Λ} , (5)

i.e., the set Λ is invariant under shifts by integer multiples
of T . Denote by TΛ the smallest T that satisfies (5) and by
N the number of elements of Λ in an interval of length TΛ.
It is easy to verify that the Beurling density of Λ exists and
is given by d(Λ) = N

TΛ
. A more restricted special case is

when the sampling set Λ is uniform: Λ =ZT = {nT, n ∈ Z}.
This corresponds to a single branch of uniform sampling at
frequency d(Λ) = 1/T .

The iDRF under the multi-branch sampling and pre-
sample filtering scheme given in Fig. 3 was considered in
[1]. The main result there is an expression for the iDRF
of X(·) given the samples Y[·] = (Y1[·], . . . ,YP[·]) obtained
using P uniform sampling branches as in Fig. 3. The pth

branch is composed of a pre-sampling linear time-invariant
(LTI) filter with frequency response Hp( f ) and a uniform
sampler at frequency fs/P. Note that this setting includes
in particular the case where the sampling points constitute
a uniform grid or a finite union of uniform grids with the
same fundamental gap, which can be achieved by taking each
of the pre-sampling filters to be time delay systems, e.g.
Hp( f ) = e2πi f tp . This fact will play a crucial role in proving
our main theorem. Optimization carried in [1] of D(P, fs,R)
over the pre-sampling filters leads to an optimal choice of the
filters H?

1 ( f ), . . . ,H?
P( f ). The resulting distortion D?(P, fs,R)

depends only on the number of sampling branches P, the
effective sampling frequency fs and the PSD of the source
SX ( f ). As the number of sampling branches P goes to infin-
ity, D?(P, fs,R) converges (not necessarily monotonically) to
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a lower value, Dl( fs,R), given by

Dl( fs,R) = σ
2
X −

∫
F?

[SX ( f )−θ ]+ d f , (6)

where θ is determined by

R =
1
2

∫
F?

log+ [SX ( f )/θ ]d f ,

and F? is the set that maximizes
∫

F SX ( f )d f over all mea-
surable subsets F ⊂R with Lebesgue measure not exceeding
fs. The function D?(P, fs,R) is illustrated in Fig.4 for various
values of P and R as a function of the sampling frequency.

As we take R→ ∞, (6) gives the following bound on the
optimal MSE in estimating X(·) from Y[·]:

mmsel( fs) = σ
2
X −

∫
F?

SX ( f )d f =
∫
R\F?

SX ( f )d f . (7)

Note that (7) coincides with the expression for the optimal
MSE in estimating X(·) from its filtered version with maxi-
mal spectral occupancy of measure fs.

Example 3.1 (DΛ(R) in uniform sampling): Under the
setting of Fig. 1 and Λ of the form Λ = {Tsn, n ∈ N} for
some Ts > 0, the main result in [2] leads to the following
expression for DΛ(R):

Rθ =
1
2

∫
∞

−∞

log+ [J( f )/θ ]d f , (8a)

Dθ (R) = σ
2
X −

∫
∞

−∞

[J( f )−θ ]+ d f , (8b)

where

J( f ),
S2

X ( f )
∑k∈Z SX ( f − k fs)

,

and fs = 1/Ts. The expression (8) has the waterfilling in-
terpretation described in Fig. 5. If the support of SX ( f )

mmse( fs) =
∫
(SX ( f )− J( f ))d f

R = 1
2
∫

log+ [J( f )/θ ]d f∫
min{J( f ),θ}d f

θ

f

S X
(

f )
J(

f )

Fig. 5. Water-filling interpretation of (8). The overall distortion is the sum
of the red and the blue areas.

is contained within the interval (− fs/2, fs/2), then J( f ) =
SX ( f ) and (8) reduces to Shannon-Kolmogorv-Pinsker re-
verse water-filling [10].

The function Dl( fs,R) provides a lower bound on the
iDRF of a Gaussian process given its samples using filter
bank uniform sampling. This includes in particular a bound
on DΛ(R) where Λ is of the form

Λ =
P⋃

p=1

(Z/ fs + tp) , (9)

where t1, . . . . , tP ∈R and fs > 0. This bound depends only on
the PSD SX ( f ) and the sampling frequency fs. This bound
is achievable using multi-branch sampling with LTI pre-
sampling filters in each branch as given in Fig. 3, if we
allow enough sampling branches P in our system. In the
next section we will show that this bound still holds under
the nonuniform sampling setting of Fig. 1, if we replace
the sampling frequency with the Beurling density of the
sampling set.

IV. MAIN RESULT: DΛ(R)≥ Dl(d(Λ),R)

We first show that the setting in [1, Thm. 14] which leads
to D(P, fs,R), includes a periodic nonuniform sampling set
as a special case.

Theorem 4.1 (periodic sampling): Let Λ ⊂ R be a peri-
odic sampling set with period T , namely Λ = Λ+TZ. The
indirect distortion-rate function of X(·) given the samples
YΛ[·] = {X(tn), tn ∈ Λ} satisfies

DΛ(R)≥ Dl(d(Λ),R), (10)

where d(Λ) is the Beurling density of Λ, and Dl( fs,R) is
the lower bound (7) on the indirect distortion-rate function
of X(·) given its sub-Nyquist uniform samples at rate fs.

Proof: Since any process with finite variance can be
described by its uniform samples at high enough frequency
with arbitrarily small error (even if the process is not band-
limited), we conclude that Dl( fs,R)→ DX (R) as fs goes to
infinity. This implies that if d(Λ) is infinite, then Dl (d(Λ),R)
equals the distortion-rate function DX (R) of the process X(·),
which implies DΛ(R)≥ D? (d(Λ),R) = DX (R). If d(Λ) = 0,



then Dl (0,R) = σ2
X = DΛ(R). We will further assume that

d(Λ) is finite and positive, which in particular implies that
each interval of finite length contains at most a finite number
of points of Λ. In fact, such a set has the general form (9).

Since Λ is periodic, the number of points of Λ in each
interval of length T is constant and is equal to the Beurling
density d(Λ) of the set Λ times the length of that interval.
Let M be the number of points in Λ in an interval of length
T , namely M = T d(Λ). Denote by t1, . . . , tM the members
of Λ inside the interval [0,T ). Since Λ+T = Λ, sampling
with Λ is equivalent to sampling with M sampling branches
each of sampling frequency 1/T and a pre-sampling
filter Hm( f ) = e2πi f tm , m = 1, . . . ,M. We conclude that
DΛ(R) = D(M,d(Λ),R) where D(M,d(Λ),R) is the indirect
distortion rate function of X(·) given its multi-branch
sampling which is given by [1, Thm. 14]. Since for any
set of filters we have Dl(d(Λ),R) ≤ D(M,d(Λ),R), (10)
follows. �

The general case follows from Theorem 4.1 by an approx-
imation argument:

Theorem 4.2 (main result): Let Λ be a discrete subset of
R with finite Beurling denisty d(Λ). The indirect distortion-
rate function of the Gaussian stationary process X(·) given
the samples YΛ[·] = {X(tn), tn ∈ Λ} satisfies

DΛ(R)≥ Dl(d(Λ),R). (11)
Proof: Fix r > 0 and denote Ir = [−r/2,r/2]. Define Λr ,

Λ∩Ir. In addition, define the set Λr to consist of the points in
Λ∩ Ir and all their shifts by integers multiples of r, namely

Λr = Λr + rZ.

It can be verified that Λr is a periodic sampling set with pe-
riod r and Beurling density d(Λr) =

|Λr |
r . From Theorem 4.1

we have that D
Λr
(R)≥ Dl(d(Λr),R), and since Λr ⊂ Λr we

conclude that

DΛr(R)≥ D
Λr
(R)≥ Dl(d(Λr),R). (12)

Since
nr(Λ)

r
≥ |Λr|

r
≥

nr(Λ)

r
,

and both sides converge to d(Λ) as r→∞, so does |Λr |
r . Since

Dl is continuous in its first argument, in order to complete
the proof it is left to show that DΛr(R) converges to DΛ(R).
This follows from the definition of DΛ(R) since

DΛ(R) = lim
r→∞

inf
A (Λr ,R)

Ed
(
X̂ (·) ,X (·)

)
= lim

r→∞
DΛr(R).

�

Extended Model with Pre-processing
We now wish to extend our system model to consider a

pre-sampling filter as described in Fig. 6, where q(t,τ) is the
system response at time τ to an impulse at time t, namely,
the process YΛ[·] is given by

YΛ,q[n] = Z(tn),
∫

∞

−∞

X(τ)q(tn, tn− τ)dτ, tn ∈ Λ, n ∈ Z,
(13)

X(·) q(t,τ)

tn ∈ Λ

X̂(·) Dec Enc
R

Z(·)

Fig. 6. Extended system model

where we assume that for all tn ∈ Λ, the integral in (13) is
finite for almost all realizations of X(·). A (ΛT ,R) and the
iDRF of X(·) given YΛ,q[·] are now defined in the same way
as in Section II using YΛ,q[·].

In [8, Prop. 1] it was shown that any multi-branch uniform
sampling scheme with possibly different time-varying pre-
sampling filters at every branch is equivalent to the single
branch sampling system of Fig. 6. In particular, this means
that the system in Fig. 6 includes the system of Fig. 3 as a
special case.

We have the following extension of Theorem 4.2:
Theorem 4.3: Let Λ be a discrete subset of R with finite

Beurling density d(Λ). The indirect distortion-rate function
of the Gaussian stationary process X(·) given the samples
YΛ,q[·] = {Z(tn), tn ∈ Λ} satisfies

DΛ,q(R)≥ Dl (d(Λ),R) .
Proof: The proof goes along a similar line as the proof

of Theorem 4.2. We first consider the case of a periodic
sampling set Λ = Λ+T which has Beurling density d(Λ) =
MT , where M is the number of points in Λ in an interval
of length T . We also add the assumption (that will later
be removed) that q(t + T k,T k + τ) = q(t,τ) for all k ∈ Z,
i.e. q(t,τ) is periodic in t and τ with period T . Denote by
t0, . . . , tM−1 the members of Λ inside the interval [0,T ). By
the periodicity of Λ, tm+Mk = tm+T k for all m= 0, . . . ,M−1
and k ∈ Z. For n = m+ kM we have,

YΛ,q[n] = Z(tm+Mk) =
∫

∞

−∞

q(tm +T k, tm +T k− τ)X(τ)dτ

=
∫

∞

−∞

q(tm, tm− τ)X(τ)dτ.

This shows that sampling with the set Λ and the pre-
processing system q(t,τ) is equivalent to M uniform sam-
pling branches each of sampling frequency 1/T and pre-
sampling filter

Hm( f ), e2πi f tmQtm( f ),

where for t ∈ R, Qt( f ) is the Fourier transform of q(t,τ)
with respect to τ . The iDRF of X(·) given Y [·] is given in
[1] and denoted D(M,d(Λ),R). It also follows from [1] that

D(M,d(Λ),R)≥ Dl(d(Λ),R),

which completes the proof for periodic sampling with a peri-
odic pre-processing system q(t,τ). The general case follows
along the same line as in the proof of Theorem 4.2: We first



consider the sampling set Λr = Λ∩ Ir where Ir = [−r/2,r/2],
and its periodic extension Λr = Λr + rZ for a given r > 0.
We also extend q(t,τ) periodically as

qr (t, t− τ), q(t|r, t|r− τ),

where we used the notation t|r to denote t modulo the grid
1
2 +rZ. We denote by Y

Λr ,qr
[·] the sampling process obtained

by sampling with the set Λr and the pre-processing system
qr(t, t− τ), i.e.,

Y
Λr ,qr

[n] =
∫

∞

−∞

qr(tn, tn− τ)X(τ)dτ

=

{∫
∞

−∞
q(tn, tn− τ)X(τ)dτ, tn ∈ Λr,∫

∞

−∞
q(tn|r, tn|r− τ)X(τ)dτ, tn ∈ Λr +Zr \ Ir,

(14)

for all n ∈ Z. Note that the samples Y
Λr ,qr

[·] were obtained
using a periodic sampling set with a periodic pre-processing
system with period r. By the first part of the proof we have

D
Λr ,qr

(R)≥ Dl
(
d(Λr),R

)
= Dl

(
|Λr|

r
,R
)
. (15)

From (14) we conclude that YΛr ,q[·]⊂Y
Λr ,qr

[·], which implies

DΛr ,q(R)≥ D
Λr ,qr

(R)≥ Dl

(
|Λr|

r
,R
)
.

The proof is completed by noting that as r goes to infinity,
DΛr ,q(R) converges to DΛ,q(R) by definition, |Λr |

r converges
to d(Λ) and Dl is continuous in its first argument. �

Discussion

Theorem 4.2 establishes Dl( fd ,R) as a fundamental bound
on the iDRF of a Gaussian stationary process given its
samples. It extends the celebrated result of Landau [3] in
two aspects. First, it bounds the MSE in the reconstruction of
a process when the conditions for perfect reconstruction are
not met. Second, it describes the distortion as a result of rate-
limited descriptions of the samples. In addition, Dl( fd ,R) is
monotone decreasing in its first argument fd . Monotonicity
in the sampling density is a desired property since increasing
the sampling density is intuitively associated with increasing
the information available about the process. This is in con-
trast to the case of uniform sampling where the functions
D?(P, fs,R) and D?(P, fs,R) derived in [1] are not necessarily
monotone in the sampling frequency fs. A sampling scheme
that achieves the bound but uses filter-bank sampling was
considered in [1]. Theorem 4.3 shows that the bound Dl
still holds even if we allow linear pre-processing before
sampling. This implies that Landau’s condition for perfect
reconstruction of a signal from its nonuniform samples (2)
cannot be improved by linear pre-processing, and linear time-
varying pre-processing cannot improve distortion over multi-
branch sampling with optimal LTI pre-sampling filters.

−2 −1 0 1 2

2σ2

f

SX ( f )

−0.4 0.4

Fig. 7. PSD of a Gauss-Markov process and the set F? for d(Λ) = 0.8.

X(·)
fs = 1

fs = α

Fig. 8. Sampling system that implements the sampling set Λ(α)=Z∪Z/α .

V. EXAMPLE: MARKOV-GAUSS SOURCE

In this example we compare the optimal MSE in estimat-
ing a Gauss-Markov process from its non-uniform samples
to the bound

mmsel(d(Λ)), lim
R→∞

Dl(d(Λ),R).

Consider the Gaussian stationary process with PSD

SX ( f ) =
2σ2

(2π f )2 +1
. (16)

This PSD corresponds to the auto-correlation function

KX (τ) = σ
2e−|τ|.

Note that the support of (16) is the entire real line, and
therefore the Landau rate of X(·) is infinite. This means that
mmse(Λ)> 0 and mmsel (d(Λ))> 0 for any sampling set Λ.

Since SX ( f ) is unimodal, we have that F? =
[−d(Λ)/2,d(Λ)/2] for any sampling set Λ ⊂ R (see
Fig. 7).

The optimal MSE bound (7) is found to be

mmsel(d(Λ)) = σ
2
(

1− 2
π

tan−1 (2πd(Λ))
)
, (17)

which is given by the white area in Fig. 7.
We consider now the non-uniform sampling set

Λ(α) = Z∪Z/α,

where α is a real positive number. This sampling set can be
implemented by two sampling branches as shown in Fig. 8.
For irrational α , the Beurling density of Λ equals 1 + α

and it is less then 1+α for rational α . Since a Gaussian
process with the PSD (16) is Markovian, for each time
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Fig. 9. The minimal estimation error of the Gauss-Markov process X(·)
from the sampling set Λ(α) = Z∪Z/α . This is compared to the bound
mmsel(1+α) given by (17). Note that for α rational the true Beurling
density of Λ(α) is smaller than 1+α . For example d(Λ(α)) = 1 at α = 1
and the MSE in this case is the error in reconstruction of X(·) from its
samples on the integers.

instant t ∈ R an estimator of X(t) from the samples YΛ(α)[·]
only depends on the two closest points in Λ(α) below and
above t, respectively, namely n−t = maxΛ(α)∩ (∞, t] and
n+t = minΛ(α)∩ [t,∞). Since X(·) is Gaussian, the optimal
MSE estimator of X(t) from YΛ(α)[·] is given by the linear
projection of X(t) onto the sub-space spanned by X(n+t )
and X(n−t ). This leads to the following expression for the
instantaneous minimal estimation error

mmse(t,Λ(α)) = σ
2−
(
KX (t− t+) KX (t− t−)

)
×
(

σ2 KX (t+− t−)
KX (t−− t+) σ2

)−1(KX (t+− t)
KX (t−− t)

)
,

which can be evaluated numerically. The true average error
mmse(Λ(α)) can be computed by averaging mmse(t,Λ(α))
over a large time interval. The plot in Fig. 9 compares
mmse(Λ(α)) to the bound (17) evaluated at 1+α for various
values of α .

Note that the bound mmsel(1+α) can be achieved using
a single branch uniform sampler at frequency fs = 1+α and
an anti-aliasing filter. It is not clear, however, what can be
achieved using the sampling set Λ(α) and a pre-sampling
filter, since pre-processing may change the Markov property
of the process and make it hard to evaluate the MSE.

VI. CONCLUSIONS

We derived a lower bound Dl(d(Λ),R) on the indirect
distortion-rate function of a Gaussian stationary source X(·)
given its samples over an arbitrary set {X(tk), tk ∈ Λ}. This
bound is given only in terms of the power spectral density
of the source and the upper Beurling density of the sampling
set Λ, and therefore describes a fundamental quantity in
information theory and signal processing associated with any
Gaussian stationary source. It was shown that this bound
still holds even if we allow linear pre-processing before

nonuniform sampling. As an example, we computed the
bound on the MSE for the case of a Gauss-Markov process.
This bound was compared to the true MSE of this process
in its reconstruction from its samples on a non-uniform
sampling grid.

In previous work [1] we have shown that the proposed
bound can be achieved using filter-bank uniform sampling.
We leave open the question on how to choose the sapling
set Λ for a prescribed Beurling density, to achieve minimal
distortion.
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