
hp(t) =
Q∑

q=0

cpq · �(t− tq) (2)

where tq = q=fNYQ. Since (2) is defined by no more than Q+1
degrees of freedom (DoF), we expect that (1) can be identified
by a minimum of P · (Q+ 1) samples. Hence, our goal is to
reduce the sampling rate as much as possible, independent of
the model’s Nyquist rate. A solution for identifying an impulse
response obeying the FRI model was presented in [11]. This
approach works for arbitrary input signals but relies on an
approximation of the discrete-time Fourier transform (DTFT)
of the impulse response by the discrete Fourier transform (DFT),
which is only met under certain conditions. Furthermore, the
described method is unstable when the taps of the impulse
response are clustered around the origin, which is usually the
case for a PA model.

In the following two subsections, we first outline a solution
for the case of periodic input signals and then generalize to
arbitrary signals.

A. Periodic Input Signals
We start by applying the DTFT to (1):

Y (ej! ) =
P∑

p=1

Q∑
q=0

cpq · Zp(ej! ) · e−j!q (3)

where the DTFT is defined as

X(ej! ) =
∞∑

n=−∞
x[n] · e−j!n : (4)

The problem with (3) is that each value for Y (ej! ) requires
an integration of the analog signal y(t) from −∞ to ∞.
However, if we assume a periodic input x[n] of length N ,
the output signal is also periodic. In this case, the spectra
Y (ej! ) and Zp(ej! ) can be sampled at ! = 2�

N k to obtain

Y [k] =
P∑

p=1

Q∑
q=0

cpq · Zp[k] · e−j 2π
N kq (5)

where Y [k] and Zp[k] denote the DFT of y[n] and zp[n],
respectively, with the DFT defined as:

X[k] =
N −1∑
n=0

x[n] · e−j 2π
N kn : (6)

Note that the DFT corresponds to the Fourier coefficients of
the analog signal y(t) using N samples at t = nTNYQ. More
precisely, the PA performs an aperiodic convolution while the
DFT assumes cyclic convolution. Let us now assume that the
input signal is split into N -length blocks, and denote the l-
th block as xl [n]; 0 ≤ n ≤ N − 1. The discrepancy is then
captured by two factors (illustrated in Fig. 2(b)):

1) Parts of the convolution for xl−1[n] leak into xl [n].
2) The convolution of the end of xl [n] leaks into xl+1[n].

But this part must wrap around to the beginning of xl [n].

t

(a)

t

(b)

t

(c)

Fig. 2. Correction of the DFT (a) 3-block input signal (b) aperiodic
convolution. Signal leaking from previous block (light gray). Signal leaking
into next block (dark gray) (c) corrected block by removing light contribution
and wrapping dark contribution as done by (15).

Apart from periodic signals, the equivalence between cyclic
and aperiodic convolution is maintained for finite-length signals
or for signals with a cyclic prefix (CP), as for instance in orthog-
onal frequency division multiplexed (OFDM) communication.
The only requirements are that the impulse response is shorter
than the CP and that the block length N matches the useful
symbol duration of the OFDM signal. The coefficients are
then found from (5) by obtaining at least P (Q + 1) Fourier
coefficients.

A similar result was recently published in [12]. However, this
solution relies on probing the system with P ·(Q+1) sinusoidal
input signals and only makes use of the p-th harmonic in the
output signal.

B. Arbitrary Input Signals

Based on the approach described in [13], we incorporate
appropriate boundary conditions to ensure the equivalence
between Y [k] of an arbitrary block and the right side of (5).
To simplify notation, we define a windowed DTFT as follows:

Xa;b(ej! ) =
b∑

n=a

x[n]e−j!n : (7)

The DTFT used in (3) sums y[n] from −∞ to ∞. However,
the objective is to find an expression for Y 0;N −1(ej! ) as this
would correspond to the definition of the DFT over a block
from n = 0; : : : ; N − 1. In the first step, we let n = 0; : : : ;∞.
For the result to be valid, the sum over zp[n] must be adjusted
to incorporate values down to n = −Q. This results in

Y 0;∞(ej! ) =
P∑

p=1

Q∑
q=0

cpq · e−j!q · Z−q;∞
p (ej! ): (8)

The term for Zp can be split as follows:

Z−q;∞
p (ej! ) = Z−q;−1

p (ej! ) + Z0;∞
p (ej! ) (9)

= Z0;∞
p (ej! ) +

q∑
n=1

zp[−n]ej!n : (10)
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In the second step, we let n = N; : : : ;∞. Again, for the
result to be valid, the summation for zp[n] must start q samples
earlier:

Y N;∞ (ej! ) =
P∑

p=1

Q∑
q=0

cpq · e−j!q · ZN −q;∞
p (ej! ); (11)

with

ZN −q;∞
p (ej! ) = ZN −q;N −1

p (ej! ) + ZN;∞
p (ej! ): (12)

The term ZN −q;N −1
p can be simplified as follows:

ZN −q;N −1
p (ej! ) =

−1∑
n=−q

zp[n+N ]e−j! (n+N ) (13)

= e−j!N
q∑

n=1

zp[N − n]ej!n : (14)

In the final step, (14) is subtracted from (8), which yields:

Y 0;N −1(ej! ) =
P∑

p=1

Q∑
q=0

cpq · e−j!q

(
Z0;N −1

p (ej! )+

+

q∑
n=1

(zp[−n]− zp[N − n]) ej! (n−q )

)
:

This result equals the DFT for ! = 2�
N k and resembles (5)

very closely. The extra sum corresponds to the boundary con-
ditions for the leakage discussed previously. This is illustrated
in Fig. 2. This term equals zero for finite signals with a finite
length, periodic signals or signals with an appropriate CP.

To summarize, the result obtained by using the DFT of the
non-periodic output signal y[n] can be corrected by adding the
following correction term to Zp[k] in (5):

q∑
n=1

(zp;−1 [N − n]− zp;0 [N − n]) ej 2π
N k(n−q ): (15)

The method can be generalized to the full Volterra model
[2], which results in:

Y [k] =
P∑

p=1

Q1∑
q1=0

· · ·
Qp∑

qp=0

cp;q1;··· ;qpDFT

{
p∏

r =1

x[n− qr ]

}
:

(16)
Unfortunately, due to the cross terms, the result cannot be
written in terms of Zp[k] because the result is a p-fold
convolution of X[k]e−j 2�kq r=N . However, this approach allows
us to extend the MP with cross terms. Although a DFT is
required for each additional cross term, it is reasonable when
the number of these coefficients is small.

III. OBTAINING THE FOURIER COEFFICIENTS

While (5) can be solved using a low pass approximation,
it was proposed to sample the spectrum at random locations
[14], which greatly improves the reconstruction stability. For
this reason, we select a set of M ≥ P · (Q + 1) randomly
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Fig. 3. Sequential demodulation with L branches.

BLK1 BLK2 BLK2

Fig. 4. Demodulation of one Fourier coefficients per block. The correct result
is obtained when the mixing sequences are guaranteed to run over a whole
block.

chosen frequency bins. The effect of the frequency selection
on the reconstruction stability is currently being investigated.
Based on practical considerations, we decided to use sequential
demodulation: In each block of length Tblk = 1=fblk, the input
signal is demodulated, integrated for Tblk and sampled at
rate fblk (see Fig. 3). The demodulation approach works if the
mixing sequence is guaranteed to run over a whole block. Since
we need to allow for settling of the modulation sequences, it
takes two blocks to demodulate one coefficient (see Fig. 4).
Furthermore, following the developments presented in [10], it is
possible to extend the architecture to multiple branches so as to
recover additional coefficients. Per 2L demodulation branches,
L coefficients per block can be obtained. Tblk is chosen given
the tradeoff between the undersampling ratio, identification
time, and number of branches. During identification, the
system is assumed to be time-invariant, which is a reasonable
assumption for PAs [15]. The values of Zp[k] in (5) are
calculated in the time domain from xp[n]. Since only LP
bins per block are required, they can be calculated efficiently
using the Goertzel algorithm.

IV. NUMERICAL RESULTS

To verify the functionality of the method, we use the PA
model from example 2 of [8], which was extracted from a
real class-AB PA. A 20MHz LTE signal is generated, up-
sampled to 307:2MHz and fed through the model. Using a
block size of N = 4096, the 15 coefficients are recovered up
to machine precision (MSE = 3:8 · 10−13) after 15 blocks
(critical sampling).

In our second experiment, we use data from a GaN class-
AB PA carrying a 5MHz Wideband Code Division Multiple
Access (WCDMA) signal. The data consists of two sets of input
and output signals of the PA, each N = 32768 samples long
and sampled at 107:52MHz. The first set is used to identify
the model (i.e., the MP), whereas the second set is used to
assess the quality of the model. An MP with nonlinearity
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