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Abstract—Cognitive Radio (CR) challenges spectrum sensing into
dealing with wideband signals in an efficient and reliable way. CR
receivers traditionally deal with signals with high Nyquist rates and low
Signal to Noise Ratios (SNRs). On the one hand, sub-Nyquist sampling of
such signals alleviates the burden both on the analog and the digital side.
On the other hand, cyclostationary detection ensures better robustness
to noise. Cyclostationary detection from sub-Nyquist samples has been
considered via two main signal models that seem inherently different. In
this paper, we show that those two models can lead to similar relations
between the cyclic spectrum we wish to recover and the correlation
between the sub-Nyquist samples. We show that we can then derive the
minimal sampling rate allowing for perfect reconstruction of the signal’s
cyclic spectrum in a noise-free environment for both models in a unified
way. We consider both sparse and non sparse signals as well as blind
and non blind detection in the sparse case. Simulations show that our
detector outperforms energy detection at low SNRs.

I. INTRODUCTION

The traditional task of spectrum sensing is now facing new chal-
lenges due, to a large extent, to Cognitive Radio (CR) applications.
Today, CRs are perceived as a potential solution to spectrum over-
crowdedness, bridging between its scarcity and its sparsity. Even
though most of the spectrum is already owned and new users can
hardly find free frequency bands, various studies [1] have shown that
the spectrum is usually significantly underutilized. This motivates CR,
which allows secondary users to opportunistically use the licensed
spectrum when the corresponding primary user (PU) is not active [2].
One of the most crucial tasks in the CR cycle is spectrum sensing.
CR requirements dictate new challenges for this task: sensing has
to be performed in real-time, efficiently, with minimal software and
hardware resources, and it has to be reliable and robust to noise.

In order to efficiently sample wideband signals, several new
sampling methods have been proposed [3], [4] that reduce sampling
rate in multiband settings below the Nyquist rate. These papers derive
the minimal sampling rate allowing for perfect signal reconstruction
in noise-free settings and provide sampling and recovery techniques.
However, when the final goal is spectrum sensing and detection,
reconstructing the original signal is unnecessary. In [5], the authors
propose a method to estimate finite resolution approximations of the
power spectrum. Power spectrum reconstruction is also considered in
[6] both in the time and frequency domains based on energy detection.
Unfortunately, the sensitivity of energy detection is amplified when
performed on sub-Nyquist samples due to noise aliasing [7].

Another traditional detection technique is cyclostationary detection
[8]. Processes, whose statistical characteristics vary periodically with
time, are called cyclostationary [8]. A characteristic function of such
processes, referred to as the cyclic spectrum or spectral correlation
function (SCF), exhibits spectral peaks at certain frequency locations
called cyclic frequencies. When determining the presence or the
absence of a signal, cyclostationary detectors exploit one fundamental
property of the SCF: stationary noise and interference exhibit no
spectral correlation [8]. This renders such detectors highly robust to

noise. In this paper, we propose to reconstruct the signal’s SCF from
sub-Nyquist samples and perform cyclostationarity detection, thereby
obtaining an efficient, fast and frugal detector that is also reliable and
robust to noise.

Several papers have considered cyclostationary detection from sub-
Nyquist samples using two main signal models. In [9], [10], the
authors consider a relation between the Nyquist and the sub-Nyquist
SCF to retrieve the latter from the former. However, no analysis on the
conditions for perfect SCF reconstruction is provided. Furthermore,
this approach does not deal with the actual sampling scheme. In [11],
[12], the sampling methods of [3], [4] are considered and the SCF of
the analog signal is recovered from sub-Nyquist samples or from their
correlation, respectively. In this paper, we aim at bridging between
these two models and show that the same analysis of the minimal
sampling rate for perfect SCF reconstruction in noise-free settings
can be carried out for both.

We consider the class of purely wide-sense cyclostationary multi-
band signals, whose frequency support lies within several continuous
intervals (bands) and study three different scenarii: (1) the signal is
not assumed to be sparse, (2) the signal is assumed to be sparse and
the carrier frequencies of the narrowband transmissions are assumed
to be known, (3) the signal is sparse but we do not assume carrier
knowledge. Our contribution is twofold. First, we derive the minimal
sampling rate, allowing for perfect SCF reconstruction in a noise-
free environment, for each one of the above three cases and for
both signal models. We show that the rate required for spectrum
reconstruction is a bit higher than half the rate that allows for perfect
signal reconstruction, for each one of the scenarii, namely the Nyquist
rate, the Landau rate [13] and twice the Landau rate [3], respectively.
Second, we provide SCF recovery techniques that achieve these
lower bounds. The performance of our detector in noisy settings is
considered via simulations and shown to outperform energy detection.

This paper is organized as follows. In Section II, we present
the cyclostationary multiband and multi-tone models. Section III
describes the sub-Nyquist sampling stage and SCF reconstruction.
In Section IV, we derive the minimal sampling rate for both models
and for each one of the three scenarii described above. Numerical
experiments are presented in Section V.

II. SYSTEM MODELS AND GOAL

A. Analog Model: Multiband Model

Let x(t) be a real-valued continuous-time signal, supported on
F = [−1/2TNyq,+1/2TNyq] and composed of up to Nsig uncorrelated
purely cyclostationary transmissions, such that

x(t) =

Nsig∑
i=1

ρisi(t). (1)

Here ρi ∈ {0, 1} and si(t) is a zero-mean purely cyclostationary
with period Ti, 1 ≤ i ≤ Nsig, as defined below. The value of ρi
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determines whether or not the ith transmission is active. The single-
sided bandwidth of each transmission is assumed to not exceed B.
Formally, the Fourier transform of x(t) defined by

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (2)

is zero for every f /∈ F . We denote by fNyq = 1/TNyq the Nyquist
rate of x(t). Let Γx denote the support of X(f).

A process x(t) is said to be purely cyclostationary with period T0

in the wide sense if its mean E[x(t)] = µx(t) and autocorrelation
E[x(t)x(t+ τ)] = Rx(t, τ) are both periodic with period T0 [8]:

µx(t+ T0) = µx(t), Rx(t+ T0, τ) = Rx(t, τ). (3)

Given a wide-sense cyclostationary random process, its autocorrela-
tion Rx(t, τ) can be expanded in a Fourier series

Rx(t, τ) =
∑
α

Rαx (τ)ej2παt, (4)

where α = m/T0,m ∈ Z and the Fourier coefficients, referred to as
cyclic autocorrelation functions, are given by

Rαx (τ) =
1

T

∫ ∞
−∞

Rx(t, τ)e−j2παtdt. (5)

The SCF is obtained by taking the Fourier transform of (5) with
respect to τ , namely

Sαx (f) =

∫ ∞
−∞

Rαx (τ)e−j2πfτdτ, (6)

where α is referred to as the cyclic frequency and f is the angular
frequency [8]. The following proposition relates the Fourier transform
and the SCF of cyclostationary signals. 1

Proposition 1. Let x(t) be a bandpass wide-sense cyclostationary
process with period T0. Then

E[X(ω)X∗(ν)] = 2π

1∑
m=−1

Sm/T0
x (ω)δ

(
ω − ν +

m

T0

)
, (7)

where Sm/T0
x (ω) is defined in (6).

From Proposition 1, the support of the SCF is dictated by that
of the Fourier transform. Thus, we can recover Γx by performing
detection on the SCF.

B. Digital Model: Multi-tone Model

Let x(t) be a real-valued continuous-time signal defined over the
interval [0, T ) and composed of up to Nsig transmissions, such that

x(t) =

Nsig∑
i=1

ρisi(t), t ∈ [0, T ). (8)

Again, ρi ∈ {0, 1} and si(t) is a wide-sense cyclostationary signal.
Since x(t) is defined over [0, T ), it has a Fourier series representation

x(t) =

Q/2∑
k=−Q/2

c[k]ej
2πk
T
t, t ∈ [0, T ), (9)

where Q/(2T ) is the maximal possible frequency in x(t). Each
transmission si(t) has a finite number of Fourier coefficients, up
to 2Kmax ≤ Q+ 1, so that

si(t) =
∑
k∈Ωi

c[k]ej
2πk
T
t, t ∈ [0, T ), (10)

1Due to lack of space, the proofs of the propositions are omitted here and
will be detailed in a future paper.

where Ωi is a set of integers with |Ωi| ≤ 2Kmax and
maxk∈{Ωi} |k| ≤ Q/2. Thus, here the support Γx of x(t) is
Γx =

⋃Nsig
i=1 Ωi. We assume that each Fourier coefficient c[k] of x(t)

is correlated with at most one other coefficient, namely c[−k] since
x(t) is a real-valued signal.

For mathematical convenience, for this model we consider the
Nyquist samples of x(t), namely

x[n] = x(nTNyq), 0 ≤ n < T/TNyq. (11)

where TNyq = T/(Q+ 1). Since x(t) is wide-sense cyclostationary,
x = {x[n]}Qn=0 is wide-sense cyclostationary as well. Define
N = T/TNyq = Q + 1. From (9), the autocorrelation of x,
namely rx[n, ν] = E [x[n]x∗[n− ν]], has the following Fourier
series expansion [8]

rx[n, ν] =

Q∑
α=−Q

rαx [ν]ej2πα(n−ν/2)/N , 0 ≤ ν ≤ N − 1, (12)

where

rαx [ν] =

N−1∑
n=0

rx[n, ν]e−j2πα(n−ν/2)/N (13)

=
∑

k,l, s.t. k−l=α

E [c[k]c∗[l]] ej
π(k+l)
N

ν , −Q
2
≤ k, l ≤ Q

2
.

The Fourier series coefficients of rx[n, ν], namely rαx [ν], has the
Fourier representation

sαx [f ] =

N−1∑
ν=0

rαx [ν]e−j
2πf
N

ν (14)

=

{ ∑
k, s.t. 2k=α E [c[k]c∗[−k]] , f = 0

0, otherwise
(15)

Since each coefficient c[k] is correlated with at most one other, sαx [f ]
has at most 4NsigKmax non zero coefficients.

C. Problem Formulation

We consider three different scenarii for each of the models.
1) No sparsity assumption: In the first scenario, we assume no a

priori knowledge on the signal and we do not suppose that x(t) is
sparse, namely 2NsigB can be of the order of fNyq for the analog
model, or NsigKmax can be on the order of Q+ 1 for the digital one.

2) Sparsity assumption and non blind detection: Here, we assume
that x(t) is sparse, namely 2NsigB � fNyq for the analog model,
or NsigKmax � Q + 1 for the digital one. We denote Kf = 2Nsig

and Kf = 2NsigKmax for the first and second model, respectively.
Moreover, the support of the potentially active transmissions, which
corresponds to the frequency support of licensed users defined by the
communication standard, is assumed to be known. However, since
the PUs’ activity can vary over time, we wish to develop a detection
algorithm that is independent of a specific known signal’s support.

3) Sparsity assumption and blind detection: In the last scenario,
we assume that x(t) is sparse but we do not assume any a priori
knowledge on the signal’s support.

In each one of the scenarii defined above, our goal is to assess
which of the Nsig transmissions are active from sub-Nyquist samples
of x(t). In order to determine which of the Nsig transmissions are
active, we first reconstruct the SCF of x(t) for the analog model and
of its Nyquist samples for the digital one. We then perform detection
on the reconstructed SCF. For each one of the scenarii, we derive
the minimal sampling rate enabling perfect SCF reconstruction in a
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noise-free environment. It can be shown [8] that white noise w(t)
exhibits no cyclic correlation, that is

Sαw(f) = 0, α 6= 0. (16)

This property is the key for cyclostationary detection.

III. SUB-NYQUIST SAMPLING AND SCF RECONSTRUCTION
A. Analog Model

We begin with the analog model. For this model, we consider two
different sampling schemes: multicoset sampling [3] and the MWC
[4] which were previously proposed for sparse multiband signals.
Since, both schemes lead to identical expressions of the signal’s
spectrum in terms of the samples, we obtain identical expressions
for the signal’s SCF as well.

1) Sub-Nyquist Sampling: Due to lack of space, we refer the reader
to [3] and [4] for the multicoset and MWC derivations, respectively.
We consider both sampling schemes to have M channels, each
sampling at the rate fs ≥ B. We report the relation between the
known discrete-time Fourier transforms of the samples zi[n] and the
unknown X(f)

z(f) = Ax(f), f ∈ Fs. (17)

Here, Fs = [−fs/2, fs/2], z(f) is a vector of length M with ith
element zi(f) = Zi(e

j2πfTs) and

xk(f) = X (f +Kkfs) , 1 ≤ k ≤ N, (18)

where N is assumed to be even with NTNyq being a multiple of
the periods Ti, 1 ≤ i ≤ TNyq, and Kk = k − N+2

2
, 1 ≤ k ≤ N .

The deterministic matrix A is known and depends on the sampling
parameters. We assume that those are chosen so that A is full spark
in both cases [3], [4].

2) SCF reconstruction: We now derive a method for reconstruct-
ing the analog SCF for both sampling schemes. We will reconstruct
Sαx (f) from the correlation between z(f).

We define the autocorrelation matrix Rx(f) = E
[
x(f)xH(f)

]
where (.)H denotes the Hermitian operation. From Proposition 1, the
only non zero elements of Rx are its diagonal elements Rx(i, i) =

S0
x(f+(i−N/2−1)fs) [5] and Rx(i,N−i+1) = S

(N−2i+1)fs
x (f),

f ∈ Fs, for 1 ≤ i ≤ N . Clearly, our goal can be stated as recovery
of Rx(f), since once Rx(f) is known, Sαx (f) follows for all f .

We now relate Rx(f) to the correlation of the sub-Nyquist
samples. From (17), we have

Rz(f) = ARx(f)AH , f ∈ Fs, (19)

where Rz(f) = E[z(f)zH(f)]. It follows that

rz(f) = (Ā⊗A)vec(Rx(f)) = (Ā⊗A)Brx(f) , Φrx(f),
(20)

where Φ = (Ā⊗A)B, and Ā denotes the conjugate matrix of A.
Here ⊗ is the Kronecker product, rz(f) = vec(Rz(f)), rx(f) =
vec(Rx(f)), and B is a N2 × 2N selection matrix that has a 1 in
the jth column and [(j− 1)N + j]th row, and the [j+N ]th column
and [j(N − 1) + 1]th row, 1 ≤ j ≤ N and zeros elsewhere. Thus,
by recovering rx(f), ∀f ∈ Fs, we recover the entire SCF of x(t).

B. Digital Model

In this model, we wish to recover sαx [f ] defined in (15). From (9),

c = Fx. (21)

Here, x is given by (11), the entries of c are the Fourier coefficients
of x (see (9)) and F is the N×N DFT matrix. Since F is invertible,

x = F−1c. (22)

Define the autocorrelation matrix Rc = E
[
ccH

]
. From (15), the non

zero elements of Rc are those on the main and the second diagonals.
Clearly, our goal can be stated as recovery of Rc, since once Rc is
known, sαx follows.

We now relate Rc to the correlation of sub-Nyquist samples. A
variety of different sub-Nyquist schemes can be used to sample x(t)
[3], [4], [14]. Let z ∈ RM denote the vector of sub-Nyquist samples
of x(t), 0 ≤ t < T , sampled at rate fs with fs < N/T . For
simplicity, we assume that M = fsT < N is an integer. We express
the sub-Nyquist samples z in terms of the Nyquist samples x as

z = Ax = AF−1c , Gc, (23)

where A ∈ RM×N and G = AF−1. Since F is a DFT matrix, it is
full spark. It follows that G is full spark as well, namely spark(G) =
M + 1. Let Rz = E

[
zzH

]
be the covariance matrix of the sub-

Nyquist samples. We now relate Rz to Rc. From (23), we have

Rz = GRcG
H. (24)

Vectorizing both sides of (24),

rz = (Ḡ⊗G)vec(Rc) = (Ḡ⊗G)Brc , Φrc. (25)

Here, B is as defined in the previous section, Φ = (Ḡ ⊗G)B is
of size M2 × 2N and rc is a vector of size 2N that contains the
potentially non-zero elements of Rc.

We observe that we obtain a similar relation (20) and (25) in both
models. Therefore, the next section refers to both.

IV. MINIMAL SAMPLING RATE

A. No sparsity Assumption

The following proposition provides conditions for the systems
defined in (20) and (25) to have a unique solution.

Proposition 2. Let A be a full spark M × N matrix with N even
(M ≤ N ) and B be a N2 × 2N selection matrix that has a 1 in
the jth column and [(j− 1)N + j]th row, and the [j +N ]th column
and [j(N − 1) + 1]th row, 1 ≤ j ≤ N and zeros elsewhere. The
matrix C = (A∗ ⊗A)B is full column rank if M2 ≥ 2N and
2M > N + 1.

From Proposition 2, (20) and (25) have a unique solution even
for M < N which is our basic assumption. If M ≥ 4, we have
M2/2 ≥ 2M − 1. Thus, in this case, the values of M for which we
obtain a unique solution are (N + 1)/2 < M < N . The minimal
sampling rate is then

f(1) = Mfs >
N + 1

2
B =

fNyq +B

2
, (26)

where B � fNyq. This means that even without any sparsity
constraints on the signal, we can retrieve its SCF from sub-Nyquist
samples by exploiting its cyclostationary property, whereas the
measurement vector z exhibits no stationary nor cyclostationary
properties in general. This was already observed in [10] for the digital
model, without proof.

B. Sparsity Assumption and Non-Blind Detection

We now consider the second scheme, where we have a priori
knowledge on the frequency support of x(t) and we assume that
it is sparse. Instead of reconstructing the entire SCF, we exploit the
knowledge of the signal’s potential cyclic and angular frequencies in
order to reconstruct only the potentially occupied bands. This will
allow us to further reduce the sampling rate.
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In this scenario, the only non zero elements of Rx are Kf =
2Nsig diagonal elements and the corresponding Kf second diagonal
elements, where Kf � N . The reduced systems become

rz = Φ̂r̂x or rz = Φ̂r̂c (27)

where r̂x and r̂c are vectors of size 2Kf that contain the potentially
non zero elements of rx and rc respectively, and Φ̂ contains the
corresponding 2Kf columns of Φ.

The following proposition provides conditions for the systems
defined in (27) to have a unique solution.

Proposition 3. Let A be a full spark M × N matrix with N
even (M ≤ N ) and B be defined as in Proposition 2. Let
C = (A∗ ⊗A)B and H be the 2N × 2Kf that selects 2Kf < 2N
columns of C as defined above. The matrix D = CH is full column
rank if M2 ≥ 2Kf and 2M > Kf + 1.

From Proposition 3, for M ≥ 4, if M > (Kf + 1)/2, where
Kf � N , we obtain a unique solution for (27). In this case, the
minimal sampling rate is

f(2) = Mfs >
2Nsig + 1

2
B = (Nsig + 0.5)B. (28)

Landau [13] developed a minimal rate requirement for perfect
signal reconstruction in the non-blind setting, which corresponds to
the actual band occupancy. Here, we find that the minimal sampling
rate for perfect SCF recovery is equal to half the Landau rate plus
half the maximal bandwidth of the narrowband transmissions.

C. Sparsity Assumption and Blind Detection

We now consider the scheme where x(t) is sparse, without any a
priori knowledge on the support. In the previous section, we showed
that Φ̂ is full column rank, for any choice of 2Kf columns of Φ,
provided M2 ≥ 2Kf and 2M > Kf +1. Thus, for M ≥ 4, we have
spark(Φ) = 2M − 1. Therefore, if rx or rc, is (M − 1)-sparse, it is
the unique sparsest solution of (20) or (25) respectively. In this case,
the minimal sampling rate is

f(3) = Mfs > (2Nsig + 1)B, (29)

which is twice the rate obtained in the previous case. As in signal
recovery, the minimal rate for blind reconstruction is twice the
minimal rate for non-blind recovery [3].

V. SIMULATION RESULTS

We now demonstrate the performance of the proposed detector in
the presence of noise and compare it to energy detection. We consider
the analog model and use the MWC [4] for the sampling stage.

In order to estimate the autocorrelation matrix Rz, we first
compute z(i), 1 ≤ i ≤ M , using FFT on the samples zi[n] over
a finite time window. We then estimate the elements of Rz using P
realizations of z(·, ·) as follows

R̂z(i, j, f) =

P∑
p=1

zp(i, f)z∗p(j, f), f ∈ Fs, (30)

where P is the number of frames for the averaging of the SCF.
We then perform cyclostationary detection on the reconstructed

SCF. We use a single-cycle detector which computes the energy at
several frequencies around f = 0 and at a single cyclic frequency α.
In the simulations, we consider AM modulated signals with cyclic
features at α = 2fc, where fc is the carrier frequency of the signal
to be detected.

Fig. 1. Receiver operating characteristic (ROC) at SNR=-12dB, -14dB, for
both energy detection and cyclostationary detection.

We consider a blind scenario where the carrier frequencies of the
signals occupying the wideband channel are unknown and we have
Nsig = 3 potentially active transmissions, with single-sided band-
width B = 150MHz. The Nyquist rate of x(t) is fNyq = 10GHz.
We consider N = 64 spectral bands and M = 7 analog channels,
each sampling at fs = 156MHz. The overall sampling rate is
Mfs = 1.09GHz which is 121% of the Landau rate and 10.9% of
the Nyquist rate. The receiver operating characteristic (ROC) curve
is shown in Fig. 1 for different SNR regimes (the averages were
performed over P = 15 frames), illustrating that cyclostationary
detection outperforms energy detection.
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