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Abstract—In medical ultrasound imaging, a pulse of known shape is
transmitted into the respective medium, and the received echoes are
sampled and digitally processed in a way referred to as beamforming
to form an ultrasound image. Applied spatially, beamforming allows to
improve resolution and signal-to-noise ratio. The structure of medical
ultrasound signals allow for significant reduction of both sampling and
processing rates by relying on ideas of Xampling, sub-Nyquist sampling
and frequency domain beamforming. In this paper we present an
implementation on an ultrasound machine using sub-Nyquist sampling
and processing and the obtained imaging results. The provided system
configuration exploits the advantages of beamforming in the frequency
domain, which is performed at a low-rate. Our results prove that the
concept of porting heavy computational tasks to the cloud is feasible
for medical ultrasound, leading to potential of considerable reduction in
future ultrasound machines size, power consumption and cost.

Index Terms—Array Processing, Ultrasound, Beamforming, Com-
pressed Sensing, Sub-Nyquist

I. INTRODUCTION

Diagnostic ultrasound has been used for decades to visualize body
structures. The overall imaging process is described as follows:
An energy pulse is transmitted along a narrow beam. During its
propagation echoes are scattered by acoustic impedance perturbations
in the tissue, and detected by the elements of the transducer. Collected
data are sampled and digitally processed in a way referred to as beam-
forming, which results in signal-to-noise ratio (SNR) enhancement.
Such a beamformed signal forms a line in the image.

According to the classic Shannon-Nyquist theorem [1], the sam-
pling rate at each transducer element should be at least twice the
bandwidth of the detected signal. In legacy systems, rates up to 3-10
times the modulation frequency are required in order to avoid artifacts
caused by digital implementation of beamforming in the time domain
[2]. Such rates can be up to 4 times the Nyquist rate of the detected
signal. Taking into account the number of transducer elements and
the number of lines in an image, the amount of sampled data that
needs to be digitally processed is enormous, motivating methods to
reduce sampling rates.

Reduction of processing rate is possible within the classical sam-
pling framework, by exploiting the fact that the signal is modulated
onto a carrier and occupies only a portion of its entire baseband
bandwidth. Accordingly, state-of-the-art systems digitally demodulate
down-sample the data at the system’s front-end. However, this does
not change the sampling rate since demodulation takes place in the
digital domain. In addition, resulting processing rate may be reduced
up to 1/4 of the standard beamforming rate, but the signal becomes
complex in this setup, and the number of samples effectively is only
twice smaller.

A different approach to sampling rate reduction was introduced in
[3]. Tur et. al. regard the ultrasound signal detected by each receiver
within the framework of finite rate of innovation (FRI) [4], modeling
it as L replicas of a known pulse-shape, caused by scattering of the

transmitted pulse from reflectors, located along the transmitted beam.
Such an FRI signal is fully described by 2L parameters, correspond-
ing to the replica’s delays and amplitudes. These parameters can be
extracted from a small set of the signal’s Fourier series coefficients.
A mechanism, referred to as Xampling, derived in [5], [6] extracts
such a set of coefficients from 4L real-valued samples. This work is
continued in [7], where Wagner et. al. introduce a generalized scheme,
referred to as compressed beamforming, which allows to compute
the Fourier series coefficients of the beamformed signal from the
low-rate samples of signals detected at each element. The problem
of reconstruction of the beamformed signal from a small number
of its Fourier series coefficients is solved via a compressed sensing
(CS) technique, while assuming a small number L of replicas. This
approach allows to reconstruct an image comprised of macroscopic
perturbations, but did not treat the speckle, which is of significant
importance in medical imaging.

A solution to the problem of speckle retaining was proposed in
[8], where Chernyakova et al. extended the notion of compressed
beamforming to beamforming in frequency and proposed alternative
approach for reconstruction of the signal from partial frequency data.
Beamforming in frequency exploits the low bandwidth of the signal
and allows to bypass the oversampling required for beamforming in
time. Arbitrary set of discrete Fourier transform (DFT) coefficients
of the beamformed signal can be computed as a linear combination
of DFT coefficients of the detected signals. The latter can be
computed from low-rate generalized samples of the detected signals,
obtained by Xampling scheme. Once partial beamformed frequency
data is obtained, appropriate CS techniques can be used to recover
the beamformed signal. Such a framework, utilizing sub-Nyquist
sampling, frequency domain beamforming and CS techniques for
signal recovery allows for significant reduction in both sampling and
processing rates, while retaining sufficient image quality.

In this paper we introduce the implementation of beamforming in
frequency and sub-Nyquist processing on a stand alone ultrasound
machine and show that such processing is feasible and is not just a
theoretical framework. Low-rate processing is performed on the data
obtained in real-time by scanning a phantom with an 64 element
probe. The proposed approach allows for significant rate redaction
with respect to the lowest processing rates that are achievable today.
The achieved saving in data and processing rates enable beamforming
by remote servers in a computer network cloud. This approach is
expected to have a significant impact on system size, power con-
sumption and cost. It consolidates with the trend of cloud computing
in general [9] and its proposed application in medical ultrasound
imaging systems [10].
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II. BEAMFORMING IN TIME

We begin by describing the beamforming process which takes place
in a typical B-mode imaging cycle. In the transmit path, a pulse
is generated and transmitted by the array of transducer elements.
The pulse transmitted by each element is timed and scaled, so that
the superposition of all transmitted pulses creates a directional beam
propagating at a certain angle. By subsequently transmitting at dif-
ferent angles, a whole sector is radiated. The real time computational
complexity in the transmit path is negligible since transmit parameters
per angle are calculated off-line and saved in tables.

Consider an array comprised of M transceiver elements aligned
along the x axis, as illustrated in Fig. 1.

Fig. 1: M transceivers aligned along the x axis, with an acoustic
pulse transmitted at direction θ.

The reference element m0 is set at the origin and the distance to
the m-th element is denoted by δm. The image cycle begins at t = 0,
when the array transmits an energy pulse in the direction θ. After each
transmission, the transducer array immediately switches to receive
mode. The pulse propagates trough the tissue at speed c, and at time
t ≥ 0 its coordinates are (x, z) = (ct sin θ, ct cos θ). A potential
point reflector located at this position scatters the energy, such that
the echo is detected by all array elements at a time depending on
their locations. Denote by φm(t; θ) the signal detected by the m-th
element and by τ̂m(t; θ) the time of detection. It is readily seen that:

τ̂m(t; θ) = t+
dm(t; θ)

c
, (1)

where dm(t; θ) =
√

(ct cos θ)2 + (δm − ct sin θ)2 is the distance
traveled by the reflection. Beamforming involves averaging the sig-
nals detected by multiple receivers while compensating the differ-
ences in detection time.

Using (1), the detection time at m0 is τ̂m0(t; θ) = 2t since δm0 =
0. Applying an appropriate delay to φm(t; θ), such that the resulting
signal φ̂m(t; θ) satisfies φ̂m(2t; θ) = φm(τ̂m(t; θ)), we can align
the reflection detected by the m-th receiver with the one detected at
m0. Denoting τm(t; θ) = τ̂m(t/2; θ) and using (1), the following
aligned signal is obtained:

φ̂m(t; θ) = φm(τm(t; θ); θ), (2)

τm(t; θ) =
1

2

(
t+

√
t2 − 4(δm/c)t sin θ + 4(δm/c)2

)
.

The beamformed signal may now be derived by averaging the aligned
signals:

Φ(t; θ) =
1

M

M∑
m=1

φ̂m(t; θ). (3)

Such a beamformed signal is optimally focused at each depth and
hence exhibits improved angular localization and enhanced SNR.

Ultrasound systems perform the beamforming process defined in
(3) in the digital domain: analog signals φm(t; θ) are amplified
and sampled by an Analog to Digital Converter (ADC), preceded
by an anti-aliasing filter. As mentioned in Section I, in legacy

systems severe oversampling is required in order to perform beam-
forming digitally. State-of-the-art systems, though, exploit the fact
that the detected signals are centered about a carrier frequency f0.
As provided in [11] this signal can be represented in the form
φm(t; θ) = im(t; θ)(cosω0t)+qm(t; θ)(sinω0t) where im(t; θ) and
qm(t; θ) are its in-phase and quadrature components. Each quadrature
component bandwidth is identical to that of the transmitted pulse
bandwidth.

The demodulation process is performed digitally since digital
demodulation eliminates the analog mixers required in [11]. Fig. 2
presents a schematic block diagram of the transmit and receive front-
end of a state-of-the-art medical ultrasound system. The drawback
of digital demodulation is a requirement for high sampling rates of
the analog amplifier output. We note that in state-of-the-art systems
this rate can be as high as 50 MHz. Following demodulation, low
pass filters are used for decimation. This operation provides reduction
in processing rate, which is now dictated by the quadrature signals
bandwidth. The sampled signals are scaled, time delayed summed
and averaged according to (3).

The beamforming process is repeated for multiple angles until a
whole sector is covered. Computation wise, this is the weakest link
of the receive path, limiting the achievable image frame rate. To
provide enough computational resources, most systems use dedicated
DSP engines, with considerable impact on system’s size, power
consumption and cost.

To get a sense of rate requirements in medical ultrasound, we
evaluate the number of samples taken at each transducer element. In
our study we used a breadboard ultrasonic scanner of 64 acquisition
channels, similar to the one depicted in Fig. 2. The radiated depth
r = 15.7 cm and the speed of sound c = 1540 m/sec yield a
signal of duration T = 2r/c ≃ 204 µsec. The acquired signal is
characterized by a narrow bandpass bandwidth of 1.77 MHz, centered
at the carrier frequency f0 ≈ 3.4 MHz, leading, theoretically, to
a standard beamforming rate of fb ≈ 12 MHz and Tfb = 2448
real-valued samples. In practice, the imaging system samples the
detected signals at rate of 50 MHz and then digitally demodulates
and down-samples it to demodulated processing rate of fp ≈ 2.94
MHz, resulting in 1224 real-valued samples per transducer element.
Multiplying the number of real-valued samples by the number of
array elements and resolution of 12 bits per sample we get a data
rate of 0.95 MBit/beam. Since acquiring at about 100 different angles
is required in order to create a single image, the data rate per frame is
95 Mbit/frame. For moving images at rate 25 frames/sec, the overall
beamform sampling data rate would thus be above 2.33 Gbit/Sec.

To conclude this section, processing in the time domain even by
state-of-the-art systems imposes high sampling rate and considerable
burden on the beamforming block. This high data rate makes it
infeasible to perform beamforming by a remote sever. We now show
that the number of samples and processing rate can be reduced
significantly by sub-Nyquist sampling, beamforming in frequency and
CS-based signal reconstruction.

III. BEAMFORMING IN FREQUENCY

A. Beamforming in Frequency and Sampling Scheme

Beamforming in frequency introduced in [8] is an extension of
the compressed beamforming framework, developed by Wagner et
al. [7]. This technique allows to compute the DFT coefficients of the
beamformed signal from a weighted average of the DFT coefficients
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Fig. 2: Transmit and receive front-end of state-of-the-art medical
ultrasound system.

of each individual signal:

ck ≃ 1

M

M∑
m=1

∑
n∈ν(k)

φm[n]Qk,m;θ[k − n], (4)

where ck and φm[n] denote the DFT coefficients of the beamformed
and individual signals respectively, Qk,m;θ[n] are the Fourier coeffi-
cients of the distortion function qk,m(t; θ), defined in [8].

It is important to emphasize that {Qk,m;θ[n]} are defined by
the geometry of the transducer and do not depend on the detected
signals. Hence, these weights can be computed off-line and be used
as a look-up-table during the imaging cycle. In addition, numerical
studies show that most of the energy of the set {Qk,m;θ[n]} is
concentrated around the direct current (DC) component, implying
small cardinality of the set ν(k). Therefore, in order to calculate an
arbitrary set κ of DFT coefficients of the beamformed signal, we
need ν = ∪k∈κν(k) DFT coefficients of each one of the individual
signals. Experimental results show that due to the decay property
of {Qk,m;θ[n]}, |ν| ≈ |κ|. Hence, the beamforming in frequency
is performed at a low rate, dictated by the cardinality of set κ, and
the sampling at each transducer element is reduced to extraction of
K = |κ| DFT coefficients of the detected signal.

To this end, similarly to [7] and [6], we can use a mechanism,
referred to as Xampling, derived in [3]. Such Xampling scheme
allows to obtain K coefficients from K point-wise samples of the
detected signal filtered with an appropriate kernel s∗(−t), which is
designed according to the transmitted pulse-shape and the required
set κ. Thus, the DFT coefficients can be computed from low-rate
generalized samples of the signal. It is important to emphasize that
processing rate in this case is twice the sampling rate, since K point-
wise samples are real, but K coefficients are complex. To conclude,
the number of samples that should be taken at each individual element
is equal to the number of DFT coefficients of the beamformed signal
we want to compute, leading to significant rate reduction.

B. Beamformed Signal Reconstruction

Next, we would like to address the following question: how can we
reconstruct the beamformed signal from such partial frequency data?
We begin by introducing the parametric model for the beamformed
signal. According to [3], [7], the beamformed signal in ultrasound
imaging obeys an FRI model:

Φ(t; θ) ≃
L∑

l=1

b̃lh(t− tl), (5)

where h(t) is the transmitted pulse, L is the number of scattering
elements in direction θ, {b̃l}Ll=1 are the unknown amplitudes of the
reflections and {tl}Ll=1 denote the unknown delays. The signal in
(5) is completely defined by the unknown amplitudes and delays.

Since the beamformed signal only exists in the digital domain, we
can rewrite this model accordingly by sampling both sides of (5) at
rate fs and quantizing the unknown delays {tl}Ll=1 with quantization
step 1/fs, such that tl = ql/fs, ql ∈ Z:

Φ[n; θ] ≃
L∑

l=1

b̃lh[n− ql] =

N−1∑
l=0

blh[n− l], (6)

where
bl =

{
b̃l if l = ql
0 otherwise.

(7)

Calculating the DFT using (6):

ck =

N−1∑
n=0

Φ[n; θ]e−i 2π
N

kn = hk

N−1∑
l=0

ble
−i 2π

N
kl, (8)

where hk is the DFT coefficient of h[n]. Assuming that we have a
set κ, |κ| = K of DFT coefficients of the beamformed signal, (8)
can be recast in vector-matrix notation:

c = HDb, (9)

where c is a K-length vector with k-th entry ck, H is a K × K
diagonal matrix with hk as its k-th entry, D is a K × N matrix
formed by taking the set κ of rows from an N ×N DFT matrix, and
vector b is of length N with l-th entry bl.

Our goal is to extract those values, namely the unknown vector
b, from the measurement vector c of DFT coefficients. This can be
done by applying CS techniques. A typical beamformed ultrasound
signal is comprised of a relatively small number of strong reflections,
corresponding to strong perturbations in the tissue, and a bunch of
much weaker scattered echoes, originated from microscopic changes
in acoustic impedance of the tissue. Hence, it is natural to assume
that coefficient vector b is compressible or approximately sparse.
This approach can be translated into the l1 optimization problem:

min
b

∥b∥1 subject to ∥HDb− c∥2 ≤ ε, (10)

which can be solved using numerous CS techniques.
To demonstrate beamforming in frequency and evaluate the impact

of rate reduction on image quality, we applied the proposed method
on in vivo cardiac data obtained by the imaging system, similar to
one depicted in Section II. Due to slightly wider bandwidth of the
transmitted pulse, standard beamforming rate in this case is fb = 16
MHz, leading to 3360 real-valued samples. In practice, demodulated
processing rate fp = 4 MHz leads to 832 real-valued samples, used to
perform beamforming in time. To perform beamforming in frequency
we used a subset κ of 100 DFT coefficients, which can be obtained
from 100 real-valued samples by the proposed Xampling scheme.
This implies 32 fold reduction in sampling and 16 fold reduction in
processing rate, compared to standard beamforming rate, as well as
8 fold reduction compared to demodulated processing rate. As can
be seen in Fig. 3, we are able to retain sufficient image quality.

C. Implementation, System Configuration and Data Rates

As a next step we have implemented low-rate frequency domain
beamforming on an ultrasound imaging system. The lab setup used
for implementation and testing is shown in Fig. 4. We have used a
state of the art ultrasound machine, a phantom and an ultrasound
scanning probe with parameters identical to those presented in
Section II. At this point of our work, as illustrated in Fig. 5, in-
phase and quadrature components of the detected signals were used
to obtain the desired set of their DFT coefficients.

Using this set, the DFT coefficients of beamformed signal were
obtained using (4). In this setup sampling rate remained unchanged,
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(a) (b)
Fig. 3: Cardiac images obtained by (a) Beamforming in frequency at
a low rate (b) Beamforming in time at a standard rate

but the frequency domain beamforming was performed at a low rate.
In our experiments we computed 76 DFT coefficients of beamformed
signal, using 76 DFT coefficients of each one of the detected signals.
This corresponds to 152 real-valued samples used for beamforming
in frequency. As mentioned in Section II, the number of samples
required by standard beamforming rate is 2448 and the number of
samples required by demodulated processing rate is 1224. Hence,
beamforming in frequency is performed at the rate corresponding to
152/2448 ≈ 1/16 of standard beamforming rate and to 152/1224 ≈
1/8 of demodulated processing rate. Images obtained by low-rate
beamforming and frequency and standard time-domain beamforming
are presented in Fig. 6. As can be readily seen, we are able to retain
sufficient image quality despite the significant reduction in processing
rate.

Fig. 4: Lab setup: Ultrasound system, probe and cardiac phantom.

Fig. 5: Transmit and receive paths of medical ultrasound system with
beamforming in the frequency domain.

D. Conclusions and Future Work

In this work we implemented a novel approach of frequency
domain beamforming on a stand alone ultrasound machine. This
framework allows for 8 fold reduction in processing rate with
respect to the lowest processing rates that are achievable today. Rate

(a) (b)

Fig. 6: Phantom images obtained by (a) Beamforming in frequency
at a low rate (b) Beamforming in time at a standard rate

reduction with respect to standard beamforming rates is even higher.
It is important to emphasize that the achieved rate is far below the
Nyquist rate of the signal. It can be readily seen, that achieved
beamforming data rate is about 290 MBit/sec, Vs. 2.33 GBit/sec
in the state of the art system example of section II.

Our implementation was done on a state-of-the-art system, sam-
pling the output of the analog amplifier at a high rate. Data and
processing rates reduction took place following DFT, in the fre-
quency domain. However, by implementing the Xampling scheme
for sampling analog amplifier output as described in Section III-A,
the required 76 DFT coefficients of the detected signals, required for
frequency domain beamforming, can be obtained from 76 real-valued
low rate samples. This implies achieving 32 fold reduction in signal
sampling rate with respect to standard beamforming sampling rate.

By utilizing the low data rate, the beamformer can be either local
or in a network cloud, providing for cloud based ultrasound imaging
systems.
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