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Abstract—We address the problem of estimating a random vectorX
from two sets of measurementsY and Z, such that the estimator is linear
in Y . We show that the partially linear minimum mean squared error
(PLMMSE) estimator does not require knowing the joint distr ibution of
X and Y in full, but rather only its second-order moments. This renders
it of potential interest in various applications. We further show that the
PLMMSE method is minimax-optimal among all estimators that solely
depend on the second-order statistics ofX andY . Finally, we demonstrate
our approach in the context of recovering a vector, which is sparse in a
unitary dictionary, from two sets of noisy measurements. Weshow that
in this setting PLMMSE estimation has a clear computationaladvantage,
while its performance is comparable to state-of-the-art algorithms.

Index Terms—Bayesian estimation, minimum mean squared error,
linear estimation.

I. I NTRODUCTION

Bayesian estimation is concerned with the prediction of a random
quantityX based on a set of observationsY , which are statistically
related toX. It is well known that the estimator minimizing the
mean squared error (MSE) is given by the conditional expectation
X̂ = E[X|Y ]. There are various scenarios, however, in which the
minimal MSE (MMSE) estimator cannot be used. This can either
be due to implementation constraints, because of the fact that no
closed form expression forE[X|Y ] exists, or due to lack of complete
knowledge of the joint distribution ofX and Y . In these cases,
one often resorts to linear estimation. The appeal of the linear
MMSE (LMMSE) estimator comes from the fact that it possessesan
easily implementable closed form expression, which merelyrequires
knowledge of the joint first- and second-order moments ofX andY .

For example, the amount of computation required for calculating
the MMSE estimate of a jump-Markov Gaussian random process
from its noisy version grows exponentially in time [1]. By contrast,
the LMMSE estimator in this setting possesses a simple recursive
implementation, similar to the Kalman filter [2]. A similar problem
arises in the area of sparse representations, in which the use of
sparsity-inducing Gaussian mixture priors and of Laplacian priors
is very common. The complexity of calculating the MMSE estimator
under the former prior is exponential in the vector’s dimension,
calling for approximate solutions [3]. The MMSE estimator under
the latter prior does not possess a closed form expression [4], which
has motivated the use of alternative estimation strategiessuch as the
maximum a-posteriori (MAP) method.

In practical situations, the reasons for not using the MMSE
estimator may only apply to a subset of the measurements. In these
cases, it may be desirable to construct an estimator that is linear in
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part of the measurements and nonlinear in the rest. For example, in
multi-view regression problems, the goal is to construct anestimator
of X based on two sets of featuresY andZ [5]. In these applications,
one may be given a large training set of examples{xi, zi} drawn
independently from the joint distributionFXZ(x, z) of X andZ and
only a small number of examples{xi, yi} drawn fromFXY (x, y).
Thus, FXZ(x, z) can be approximated from the first training set
with great accuracy, for example using nonparametric techniques.
However, due to its small cardinality, the second set can only be used
to estimate the cross-covariance matrixΓXY of X andY , but not the
entire distributionFXY (x, y). This implies that the MMSE estimator
E[X|Y, Z] cannot be computed and we must settle for estimators that
do not require knowingFXYZ . As we will see, one such approach is
minimization of the MSE over the class of estimators that arelinear
in Y .

Partially linear estimation was studied in the statisticalliterature in
the context of regression [6]. In this line of research, it isassumed that
the conditional expectationg(y, z) = E[X|Y = y, Z = z] is linear
in y. The goal, then, is to approximateg(x, y) from a set of examples
{xi, yi, zi} drawn independently from the joint distribution ofX, Y
and Z. In this correspondence, our goal is to derive the partially
linear MMSE (PLMMSE) estimator. Namely, we do not make any
assumptions on the structure of the MMSE estimateE[X|Y, Z], but
rather look for the estimator that minimizes the MSE among all
functionsg(x, y) that are linear iny.

The correspondence is organized as follows. In Section II we
present the PLMMSE estimator and discuss some of its properties.
In Section III, we show that the PLMMSE method is optimal among
all estimators that solely rely on the second-order statistics of X and
Y . Finally, we conclude in Section IV with a numerical simulation
demonstrating the usefulness of our approach in the contextof
recovering a sparse signal from noisy measurements.

II. PARTIALLY L INEAR ESTIMATION

We denote random variables (RVs) by capital letters. The pseudo-
inverse of a matrixA is denoted byA†. The meanE[X] of an RV
X is denotedµX and the auto-covariance matrixCov(X) = E[(X−
µX)(X − µX)T ] of X is denotedΓXX . Similarly, ΓXY stands for
the cross-covariance matrixCov(X,Y ) = E[(X − µX)(Y − µY )T ]
of two RVs X and Y . The joint cumulative distribution function
of X andY is writtenFXY (x, y) = P(X ≤ x, Y ≤ y), where the
inequalities are element-wise. By definition, the marginaldistribution
of X is FX(x) = FXY (x,∞). In our setting,X is the quantity to
be estimated andY andZ are two sets of measurements thereof. The
RVs X, Y andZ take values inRM , RN andRQ, respectively. The
MSE of an estimatorX̂ of X is defined asE[‖X − X̂‖2].

We begin by considering the most general form of a partially linear
estimator ofX based onY andZ, which is given by

X̂ = A(Z)Y + b(Z). (1)

HereA(z) is a matrix-valued function andb(z) is a vector-valued
function, so that the realizationz of Z is used to choose one of a
family of linear estimators ofx based ony.

http://arxiv.org/abs/1103.5639v1
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Theorem 1 Consider estimators of X having the form (1), for some
(Borel measurable) functions A : RQ → R

M×N and b : RQ → R
M .

Then the estimator minimizing the MSE within this class is given by

X̂ = ΓXY |ZΓ
†
Y Y |Z(Y − E[Y |Z]) + E[X|Z], (2)

where ΓXY |Z = E[(X − E[X|Z])(Y − E[Y |Z])T |Z] denotes the
cross-covariance of X and Y given Z and ΓY Y |Z = E[(Y −
E[Y |Z])(Y − E[Y |Z])T |Z] is the auto-covariance of Y given Z.

Proof: See Appendix A.
Note that (2) is indeed of the form of (1) withA(Z) =
ΓXY |ZΓ

†
Y Y |Z

and b(Z) = E[X|Z] − ΓXY |ZΓ
†
Y Y |Z

E[Y |Z]. As
can be seen, although the MMSE solution among the class of
estimators (1) has a simple form, it requires knowing the conditional
covarianceΓXY |Z , which limits its applicability. In particular, this
solution cannot be applied in cases where we merely know the
unconditional covarianceΓXY , such as in the multi-view regression
scenario described in Section I.

To relax this restriction, we next considerseparable partially
linear estimation. Namely, we seek to minimize the MSE among
all functions of the form

X̂ = AY + b(Z), (3)

where A is a deterministic matrix andb(z) is a vector-valued
function.

Theorem 2 Consider estimators of X having the form (3), for some
matrix A ∈ R

M×N and (Borel measurable) function b : RQ → R
M .

Then the estimator minimizing the MSE within this class is given by

X̂ = ΓXWΓ
†
WWW + E[X|Z], (4)

where
W = Y − E[Y |Z]. (5)

Proof: See Appendix B.
Note again that (4) is of the form of (3) withA = ΓXWΓ

†
WW

and b(Z) = E[X|Z] − ΓXWΓ
†
WWE[Y |Z]. The major advantage

of this solution with respect to the non-separable estimator (1), is
that the only required knowledge regarding the statisticalrelation
betweenX andY is of second-order type. Specifically, as we show
in Appendix C, (4) can be equivalently written as

X̂ =
(

ΓXY − ΓX̂Z ŶZ

)(

ΓY Y − ΓŶZ ŶZ

)† (

Y − ŶZ

)

+ X̂Z , (6)

where we denoted̂XZ = E[X|Z] and ŶZ = E[Y |Z]. Therefore,
all we need to know in order to be able to compute the separable
PLMMSE estimator (4) is the covariance matrixΓXY , the conditional
expectationE[X|Z] and the marginal joint cumulative distribution
function FY Z of Y and Z. This is illustrated in Fig. 1. In fact,
as we show in Section III, in addition to being optimal among all
partially linear methods, the PLMMSE solution (4) is also optimal
in a minimax sense among all estimation strategies that relysolely
on the quantities appearing in Fig. 1.

The intuition behind (4) is similar to that arising in dynamic
estimation schemes, such as the Kalman filter. Specifically,we begin
by constructing the estimateE[X|Z] of X based on the measurements
Z, which minimizes the MSE among all functions ofZ. Next, we
would like to account forY . However, sinceZ has already been
accounted for, we first need to subtract fromY all variations caused
by Z. This is done by constructing the RVW of (5), which can
be thought of as theinnovation associated with the measurementsY
with respect to the initial estimateE[X|Z]. Finally, since we want an
estimate that is partially linear inY , we update our initial estimate
with the LMMSE estimate ofX based onW .

X

Y Z

E[X|Z]

FY Z

Cov(X)

Cov(X,Y )

Fig. 1: The statistical knowledge required for computing the
PLMMSE estimator (4).

Before proving the minimax-optimality of the PLMMSE estimator,
it is insightful to examine several special cases, as we do next.

a) Independent Measurements: Consider first the case in which
Y andZ are statistically independent. In this setting,W = Y − µY

and therefore the PLMMSE estimator (4) becomes

X̂ = ΓXY Γ
†
Y Y (Y − µY ) + E[X|Z] = X̂L

Y + X̂Z − µX , (7)

whereX̂L
Y denotes the LMMSE estimate ofX from Y . Thus, in this

setting, the PLMMSE estimate reduces to a linear combination of the
LMMSE estimateX̂L

Y and the MMSE estimatêXZ . The need for
subtracting the expectation ofX arises from the fact that botĥXL

Y

and X̂Z account for it.
b) Z is Independent of X and Y : Suppose next that bothX

andY are statistically independent ofZ. Thus, in addition to the fact
that W = Y − µY , we also haveE[X|Z] = µX . Consequently, the
PLMMSE solution (4) reduces to the LMMSE estimate ofX given
Y :

X̂ = ΓXY Γ
†
Y Y (Y − µY ) + µX = X̂L

Y . (8)

c) Y is Uncorrelated with X and Independent of Z: Consider
the situation in whichX andZ are statistically independent andX
and Y are uncorrelated. ThenW = Y − µY , and alsoΓXW =
ΓXY = 0 so that (4) becomes the MMSE estimate ofX from Z:

X̂ = E[X|Z] = X̂Z . (9)

d) X is Independent of Z: In situations whereX and Z are
statistically independent, one may be tempted to conclude that the
PLMMSE estimator should not be a function ofZ. However, this
is not necessarily the case. Specifically, although the second term
in (4) becomes the constantE[X|Z] = µX in this setting, it is
easily verified thatΓXW = ΓXY , so that the first term in (4) does
not vanish unlessX is uncorrelated withY . As a consequence, the
PLMMSE estimator can be written as

X̂ = ΓXY Γ
†
WWY + µX − ΓXY Γ

†
WWE[Y |Z], (10)

in which the last term is a function ofZ. This should come as no
surprise, though, because if, for instance,Y = X + Z, then the
optimal estimate isX̂ = Y − Z, even ifX andZ are independent.
This solution is clearly a function ofZ.

e) X is Uncorrelated with Y : A similar phenomenon occurs
when X and Y are uncorrelated. Indeed in this case,ΓXW =
−ΓX̂Z ŶZ

, so that the first term in (4) does not vanish unlessX̂Z

is uncorrelated withŶZ . Consequently, the estimator (4) can be
expressed as

X̂ = −ΓX̂Z ŶZ
Γ

†
WWY + ΓX̂Z ŶZ

Γ
†
WWE[Y |Z] + E[X|Z], (11)

in which the first term is clearly a linear function ofY .
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f) Additive Noise: Perhaps the most widely studied measure-
ment model corresponds to linear distortion and additive noise.
Specifically, suppose that

Y = HX + U, Z = GX + V, (12)

where H ∈ R
N×M and G ∈ R

Q×M are given matrices andU
and V are zero-mean RVs such thatX, U and V are mutually
independent. As we show in Section IV, there are situations in
which the distribution ofX is such that the complexity of computing
the MMSE estimatorE[X|Y,Z] is huge, whereas the complexity
of computingE[X|Z] is modest. In these cases one may prefer to
resort to PLMMSE estimation. This method does not correspond to
a convex combination of the LMMSE estimate ofX from Y and
the MMSE estimate ofX from Z, as might be suspected. Indeed,
substitutingY = HX + U , we have thatΓXY = ΓXXH

T and
ΓY Y = HΓXXH

T + ΓUU . Furthermore,E[Y |Z] = HE[X|Z],
so that ΓX̂Z ŶZ

= ΓX̂ZX̂Z
H

T and ΓŶZ ŶZ
= HΓX̂ZX̂Z

H
T .

Consequently, the PLMMSE estimator (6) becomes

X̂ = AY + (I −AH)E[X|Z], (13)

whereI is the identity matrix andA is given by

A = (ΓXX − ΓX̂ZX̂Z
)HT

(

H(ΓXX − ΓX̂ZX̂Z
)HT + ΓUU

)†

.

(14)
We see that, as opposed to a convex combination ofX̂Z and X̂L

Y ,
the PLMMSE method reduces to a combination ofX̂Z and Y .
Furthermore, the weights of this combination are matrices rather than
scalars.

III. PARTIAL KNOWLEDGE OFSTATISTICAL RELATIONS

As discussed in Section II, one of the appealing properties of the
PLMMSE solution is that it does not require knowing the entire
joint distribution of X and Y , but rather only its second-order
moments. However, the fact that the PLMMSE estimator is merely
determined byE[X|Z], Cov(X,Y ) and FY Z(y, z), does not yet
imply that it is optimal among all methods that rely solely on
these quantities. The question of optimality of an estimator with
respect to partial knowledge regarding the joint distribution of the
signal and measurements was recently addressed in [7]. One of
the notions of optimality considered there, which we adopt here
as well, follows from a worst-case perspective. Specifically, for any
estimatorX̂ = g(Y,Z), there may be distributionsFXY Z(x, y, z)
consistent with our knowledge such that the MSE is high and there
may be distributions leading to low MSE. We consider an estimator as
optimal if its worst-case MSE over the set of all feasible distributions
is minimal. For example, it was shown in [7] that the LMMSE
estimator X̂L

Y attains the minimal possible worst-case MSE over
the set of distributionsFXY (x, y) with given first- and second-order
moments.

In the next theorem we show that the PLMMSE method is optimal
in the sense that its worst-case MSE over the set of all distributions
FXY Z(x, y, z) complying with the knowledge appearing in Fig. 1 is
minimal.

Theorem 3 Let A be the set of probability distributions of (X,Y, Z)
satisfying

Cov(X) = ΓXX , Cov(X,Y ) = ΓXY , E[X|Z] = g(Z),

FXY Z(∞, y, z) = FY Z(y, z), (15)

where ΓXX and ΓXY are given matrices, g(z) is a given function
and FY Z(y, z) is a given cumulative distribution function. Then,

among all estimators of X based on Y and Z, the PLMMSE method
(4) has the minimal worst-case MSE

sup
FXY Z∈A

EFXY Z

[

∥

∥

∥
X − X̂

∥

∥

∥

2
]

, (16)

over the set A.

Proof: See Appendix D.

IV. A PPLICATION TO SPARSEAPPROXIMATIONS

We now demonstrate the usefulness of the PLMMSE estimator
in the context of sparse approximations. Specifically, consider the
situation in whichX is known to be sparsely representable in a
unitary dictionaryΨ ∈ R

M×M in the sense that

X = ΨA (17)

for some RVA that is sparse with high probability. More concretely,
we assume, as in [3], that the elements ofA are given by

Ai = SiBi, i = 1, . . .M, (18)

where the RVs{Si} and{Bi} are statistically independent and dis-
tributed asP(Si = 1) = 1− P(Si = 0) = pi andBi ∼ N (0, σ2

Bi
).

Assume the signalX is observed through two linear systems, as
in (12), whereH is an arbitrary matrix,G = αI for some constant
α 6= 0, andU andV are Gaussian RVs withΓUU = ΓV V = σ2

I.
This setting can be cast in the standard sparse approximation form
as

(

Y
Z

)

=

(

H

αI

)

X +

(

U
V

)

. (19)

It is well known that the expression for the MMSE estimate
E[X|Y, Z] in this case generally comprises2M summands, which
correspond to the different possibilities of sparsity patterns inA [3].
This renders the computation of the MMSE estimate prohibitively
expensive even for modest values ofM and consequently various
approaches have been devised to approximate this solution by a small
number of terms (seee.g., [3] and references therein). For example,
the fast Bayesian matching pursuit (FBMP) algorithm developed in
[3] employs a search in the tree representing all sparsity patterns in
order to choose the terms participating in the approximation.

There are some special cases, however, in which the MMSE
estimate possesses a simple structure, which can be implemented
efficiently. As we show next, one such case is when both the channel’s
response and the dictionary over whichX is sparse correspond to
orthogonal matrices. Since in our settingΨ is unitary andG = αI,
we can efficiently compute the MMSE estimateE[X|Z] of X
from Z. This implies that, instead of resorting to schemes for
approximatingE[X|Y, Z], we can employ the PLMMSE estimator
of X based onY andZ, which possesses a closed form expression
(see (13)) in this situation. This technique is particularly effective
when the SNR of the observationY is much worse than that ofZ,
since the MMSE estimateE[X|Y,Z] in this case is close to being
partially linear inY . Such a setting is demonstrated in Section IV-C.

A. MMSE Estimation of a Sparse Signal in a Unitary Dictionary

In our setting

Z = αX + V = αΨA+ V, (20)

with A of (18). SinceΨ is unitary, it is invertible, and thus the RV

Z̃ = Ψ
TZ (21)

carries the same information onX asZ does, so that

E[X|Z] = E[X|Z̃ ] = ΨE[A|Z̃]. (22)
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Now, for everyi = 1, . . . ,M , we have thatZ̃i = αAi + Ṽi, where
Ṽ = Ψ

TV is distributedN (0, σ2
I). Therefore, the set{Z̃j}j 6=i is

statistically independent of the pair(Ai, Z̃i) and consequently

E[Ai|Z̃] = E[Ai|Z̃i]

= E[Ai|Z̃i, Si = 0]P(Si = 0|Z̃i)

+ E[Ai|Z̃i, Si = 1]P(Si = 1|Z̃i). (23)

If Si = 0 then alsoAi = 0, so that the first term in this expression
vanishes. Under the eventSi = 1, the RVsAi and Z̃i are jointly
normally distributed with mean zero, implying that

E[Ai|Z̃i, Si = 1] =
Cov(Ai, Z̃i)

Cov(Z̃i)
=

ασ2
Bi

α2σ2
Bi

+ σ2
W

Z̃i. (24)

Finally, using Bayes rule, the termP(Si = 1|Z̃i) reduces to

fZ̃i|Si
(Z̃i|Si = 1)P(Si = 1)

fZ̃i|Si
(Z̃i|Si = 0)P(Si = 0) + fZ̃i|Si

(Z̃i|Si = 1)P(Si = 1)

=
N (0, Z̃i; 0, α

2σ2
B + σ2)p

N (0, Z̃i; 0, σ2)(1− p) +N (0, Z̃i; 0, α2σ2
B + σ2)p

, (25)

whereN (γ;µ, σ2) denotes the Gaussian density function with mean
µ and varianceσ2, evaluated atγ. Substituting (25) and (24) into
(23) leads to the following observation.

Theorem 4 The MMSE estimate of X of (17) given Z of (20) is

E[X|Z] = Ψf̃
(

Ψ
TZ

)

, (26)

where f̃(z̃) = (f(z̃1), . . . , f(z̃M ))T , with

f(z̃i) =

ασ2

Bi

α2σ2

Bi
+σ2

W

pi N (z̃i; 0, α
2σ2

Bi
+ σ2) z̃i

pi N (z̃i; 0, α2σ2
Bi

+ σ2) + (1− pi)N (z̃i; 0, σ2)
. (27)

B. PLMMSE Estimation of a Sparse Signal From Two Observations

Equipped with a closed form expression forE[X|Z], we can now
obtain an expression for the PLMMSE estimator (13). Specifically,
we have that

ΓXX = ΨΓAAΨ
T , (28)

whereΓAA is a diagonal matrix with(ΓAA)i,i = piσ
2
Bi

. Similarly,

ΓX̂ZX̂Z
= ΨCov(f̃(Z̃))ΨT , (29)

where Cov(f̃(Z̃)) is a diagonal matrix whose(i, i) element is
βi = Cov(f(Z̃i)). This is due to the fact that the elements ofZ̃ are
statistically independent and the fact that the functionf̃(·) operates
element-wise on its argument. Therefore, the PLMMSE estimator is
given in our setting by equation (13) withE[X|Z] of (26) and with
the matrix

A = Ψ(ΓAA − Cov(f̃(Z̃)))ΨT

×H
T
(

HΨ(ΓAA − Cov(f̃(Z̃)))ΨT
H

T + σI
)†

. (30)

We note that ifpi = p andσ2
Bi

= σ2
B for every i, then alsoβi = β

for every i. In this case,

ΓXX = Ψ
(

pσ2
BI

)

Ψ
T = pσ2

BI (31)

and
ΓX̂ZX̂Z

= Ψ(βI)ΨT = βI, (32)

so thatA is simplified to

A = (pσ2
B − β)HT

(

(pσ2
B − β)HH

T + σI
)†

. (33)

Observe that there is generally no closed form expression for the
scalarsβi = Cov(f(Z̃i)), rendering it necessary to compute them
numerically.

C. Numerical Study

Figure 2 compares the MSE attained byX̂PLMMSE to that attained
by X̂Z , X̂L

Y and the approximation toE[X|Y,Z] produced by the
FBMP method. In this experimentΨ ∈ R

64×64 was taken to
be a Hadamard matrix with normalized columns. The matrixH

corresponded to (circular) convolution with the sequenceh[n] =
exp{−|n|/12.8}. To comply with the assumption made in [3] that the
columns of the measurement matrix are normalized, we normalized
the columns ofH to be of norm0.99 and set the scalarα to be0.01.
Figure 2 depicts the MSE of all estimators as a function of theinput
SNR, which we define as10 log10(pσ

2
B/σ

2). As can be seen, the
MSE of the PLMMSE method is significantly lower then that ofX̂Z

andX̂L
Y and is very close to that attained by the FBMP method. At

low SNR levels and low sparsity levels (highp) the performance of
the PLMMSE method is even slightly better than the FBMP approach.
Considering the fact that the PLMMSE method is also much faster
than the FBMP method in our setting, it seems that there is a clear
advantage to using it in scenarios of similar nature.

A word of caution is in place, though. In situations in which the
SNR of the measurementY is roughly the same as that ofZ (or
better), the FBMP method is advantageous in terms of performance.
Therefore in this regime, decision on the use of the PLMMSE method
boils down a performance-complexity tradeoff.

V. CONCLUSIONS

In this paper we derived the PLMMSE estimator, which is the
method whose MSE is minimal among all functions that are linear in
Y . We showed that the PLMMSE solution depends only on the joint
second-order statistics ofX andY , which renders it applicable in a
wide variety of situations. Furthermore, we showed that this estimator
attains the lowest worst-case MSE over the set of distributions whose
joint second-order moments ofX and Y are fixed. Finally, we
demonstrated our approach in the context of recovering a sparse
vector from noisy measurements. In this application, the PLMMSE
solution achieves an MSE very close to that attained by iterative
approximation strategies, such as the FBMP method of [3], and is
cheaper computationally.

APPENDIX A
PROOF OFTHEOREM 1

Using the smoothing property, the MSE of any estimator of the
form (1) is given by

E
[

E
[

‖X −A(Z)Y − b(Z)‖2 |Z
]]

. (34)

Thus, for every specific valuez thatZ can take, the optimal choice of
A(z) andb(z) is that minimizing the inner expectation. The solution
to this minimization problem corresponds to the LMMSE estimate
of X based onY , under the the joint distribution of(X,Y ) given
Z, concluding the proof.

APPENDIX B
PROOF OFTHEOREM 2

We start by noting that the setB of RVs constituting candidate
estimates is a closed linear subspace within the space of finite-second-
order-moment RVs taking values inRM . Therefore, the MMSE
estimateX̂ within this subspace, which is the projection of the RV
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Fig. 2: The MSE attained bŷXZ , X̂L
Y , X̂PLMMSE and the approximation ofE[X|Y, Z] produced by the FBMP method [3]. (a)p = 1/3.

(b) p = 1/2. (c) p = 2/3.

X onto B, is the unique1 RV whose estimation error̂X − X is
orthogonal to every RV of the formAY +b(Z). To demonstrate that
X̂ of (4) indeed satisfies this property, note that the inner product
betweenX̂ −X andAY + b(Z) is given by

E

[

(X̂ −X)T (AY + b(Z))
]

= Tr
{

E

[

(X̂ −X)Y T
]

A
T
}

+ Tr
{

E

[

(X̂ −X)b(Z)T
]}

.

(35)

Substituting (4), the expectation within the second term becomes

E

[(

ΓXWΓ
†
WWW + E[X|Z] −X

)

b(Z)T
]

= ΓXWΓ
†
WWE

[

Wb(Z)T
]

+ E

[

(E[X|Z] −X) b(Z)T
]

. (36)

Recall thatW = Y − E[Y |Z] is the estimation error incurred in
estimatingY from Z. Consequently,W andX−E[X|Z] are uncor-
related with every function ofZ and, in particular, withb(Z), so that
this expression vanishes. Similarly, substituting (4) andexpressing
Y = W +E[Y |Z], the expectation within the first summand in (35)
becomes

E

[(

ΓXWΓ
†
WWW + E[X|Z] −X

)

Y T
]

= ΓXWΓ
†
WWE

[

W (W + E[Y |Z])T
]

− E

[

(X − E[X|Z])(W + E[Y |Z])T
]

. (37)

Being a function ofZ, the RVE[Y |Z] is uncorrelated withW and
X − E[X|Z] so that this expression can be reduced to

ΓXWΓ
†
WWE

[

WW T
]

− E

[

(X − E[X|Z])W T
]

= ΓXWΓ
†
WWΓWW − E

[

(X − µX + µX − E[X|Z])W T
]

= ΓXW − ΓXW + E

[

(E[X|Z]− µX)W T
]

= ΓXW − ΓXW

= 0, (38)

where we used the facts thatE[W ] = 0, that ΓXWΓ
†
WWΓWW =

ΓXW [8, Lemma 2], and thatW is uncorrelated withE[X|Z] (due
to the same argument as above). This completes the proof.

1In an almost-sure sense.

APPENDIX C
DERIVATION OF EQUATION (6)

By definition,

ΓXW = E[(X − µX)(Y − E[Y |Z])T ]

= E[(X − µX)(Y − µY + µY − E[Y |Z])T ]

= E[(X−µX )(Y −µY )T ]− E[(X−µX )(E[Y |Z]−µY )T ]

= ΓXY − E[E[(X − µX)(E[Y |Z]− µY )T |Z]]

= ΓXY − E[(E[X|Z] − µX )(E[Y |Z]− µY )T ]

= ΓXY − ΓX̂Z ŶZ
, (39)

where the fourth equality is a result of the smoothing property and
the last equality follows from the facts thatE[E[X|Z]] = µX and
E[E[Y |Z]] = µY . In a similar manner, it is easy to show that

ΓY W = ΓY Y − ΓŶZ ŶZ
. (40)

Using (40) and the fact thatW is uncorrelated withE[Y |Z] − µY ,
we obtain

ΓWW = E[WW T ]

= E[(Y − E[Y |Z])W T ]

= E[(Y − µY )W T ]− E[(E[Y |Z]− µY )W T ]

= ΓY W

= ΓY Y − ΓŶZ ŶZ
. (41)

Substituting (39) and (41) into (4) leads to (6).

APPENDIX D
PROOF OFTHEOREM 3

Let ε(FXYZ , X̂) = EFXY Z
[‖X̂−X‖2] denote the MSE incurred

by an estimator̂X of X based onY andZ, when the joint distribution
of X, Y andZ is FXY Z(x, y, z). It is easily verified that

ε(FXYZ , X̂PLMMSE) = Tr{ΓXX}

−Tr
{

(ΓXY −ΓX̂Z ŶZ
)(ΓY Y −ΓŶZ ŶZ

)†(ΓXY −ΓX̂Z ŶZ
)T

}

(42)

for all FXY Z ∈ A. Therefore, in particular, (42) is also the worst-
case MSE ofX̂PLMMSE overA. We next make use of the following
lemma.
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Lemma 1 There exists a distribution F ∗
XY Z in the set A of distribu-

tions satisfying (15), under which the PLMMSE estimate of X based
on Y and Z coincides with the MMSE estimate E[X|Y, Z].

Proof: See Appendix E.
Now, any estimatorX̂ that is a function ofY andZ satisfies

sup
FXY Z∈A

ε(FXYZ , X̂) ≥ ε(F ∗
XY Z , X̂)

≥ min
X̂

ε(F ∗
XY Z , X̂)

= ε(F ∗
XY Z ,E[X|Y, Z])

= ε(F ∗
XY Z , X̂PLMMSE)

= max
FXY Z∈A

ε(FXYZ , X̂PLMMSE), (43)

where the first line follows from the fact thatF ∗
XY Z ∈ A, the third

line is a result of the fact that the MMSE and PLMMSE estimators
coincide underF ∗

XY Z , and the last line is due to the fact that
ε(FXYZ , X̂PLMMSE) is constant as a function ofFXY Z over A.
We have thus established that the worst-case MSE of any estimator
over A is greater or equal to the worst-case MSE of the PLMMSE
solution overA, proving thatX̂PLMMSE is minimax optimal.

APPENDIX E
PROOF OFLEMMA 1

We prove the statement by construction. LetY and Z be two
RVs distributed according toFY Z and denoteh(Z) = E[Y |Z] and
W = Y −h(Z). Let U be a zero-mean RV, statistically independent
of the pair(W,Z), whose covariance matrix is

ΓUU = ΓXX − Cov(g(Z))− ΓXWΓ
†
WWΓWX , (44)

Consider the RV2

X = ΓXWΓ
†
WWW + g(Z) + U. (45)

We will show that the so constructedX, Y and Z satisfy the
constraints (15). Indeed, using the fact thatU has zero mean and is
statistically independent ofZ, we find that the conditional expectation
of X of (45) givenZ is

E[X|Z] = g(Z). (46)

Furthermore, sinceW , g(Z) and U are pairwise uncorrelated, the
covariance ofX of (45) can be computed as

Cov(X) = ΓXWΓ
†
WWΓWWΓ

†
WWΓWX + Cov(g(Z)) + ΓUU

= ΓXWΓ
†
WWΓWX + Cov(g(Z))

+ ΓXX − Cov(g(Z))− ΓXWΓ
†
WWΓWX

= ΓXX , (47)

where we substituted (44). Finally, the cross covariance ofX of (45)
andY is given by

Cov(X,Y ) = ΓXWΓ
†
WWΓWY + Cov(g(Z), h(Z))

= ΓXWΓ
†
WWΓWW + Cov(g(Z), h(Z))

= ΓXW + Cov(g(Z), h(Z))

= ΓXY − Cov(g(Z), h(Z)) + Cov(g(Z), h(Z))

= ΓXY , (48)

where the second and fourth equalities follow from the thirdand
fourth lines of (41) and the third equality follows from [8, Lemma 2].
Equations (46), (47) and (48) demonstrate that the distribution F ∗

XY Z

2Recall thatΓXW and ΓWW are functions ofCov(X, Y ) and FY Z ,
which are given.

associated withX, Y andZ, belongs to the family of distributions
A satisfying (15).

Next, we show that the PLMMSE and MMSE estimators coincide
underF ∗

XY Z . Indeed, sinceU is statistically independent of the pair
(W,Z), we have thatE[U |W,Z] = E[U ] = 0, so that

E[X|Y, Z] = ΓXWΓ
†
WWE[W |Y,Z] + E[g(Z) + U |Y, Z]

= ΓXWΓ
†
WW (Y − h(Z)) + g(Z) + E[U |W,Z]

= ΓXWΓ
†
WW (Y − h(Z)) + g(Z), (49)

where we used the fact that there is a one-to-one transformation
between the pair(Y,Z) and the pair(W,Z). This expression is
partially linear inY , implying that this is also the PLMMSE estimator
in this setting. Thus, for the distributionF ∗

XYZ , the PLMMSE
estimator is optimal not only among all partially linear functions,
but also amongall functions ofY andZ.
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