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Abstract—We address the problem of estimating a random vectorX
from two sets of measurements” and Z, such that the estimator is linear
in Y. We show that the partially linear minimum mean squared error
(PLMMSE) estimator does not require knowing the joint distribution of
X and Y in full, but rather only its second-order moments. This rencers
it of potential interest in various applications. We further show that the
PLMMSE method is minimax-optimal among all estimators that solely
depend on the second-order statistics ok and Y. Finally, we demonstrate
our approach in the context of recovering a vector, which is garse in a
unitary dictionary, from two sets of noisy measurements. Weshow that
in this setting PLMMSE estimation has a clear computationaladvantage,
while its performance is comparable to state-of-the-art ajorithms.

Index Terms—Bayesian estimation, minimum mean squared error,
linear estimation.

I. INTRODUCTION

Bayesian estimation is concerned with the prediction ofraloan
guantity X based on a set of observatiokis which are statistically

related to X. It is well known that the estimator minimizing the

mean squared error (MSE) is given by the conditional expiecta

X = E[X|Y]. There are various scenarios, however, in which th
minimal MSE (MMSE) estimator cannot be used. This can eith

be due to implementation constraints, because of the fattrth

closed form expression fd[X|Y] exists, or due to lack of complete
knowledge of the joint distribution ofX and Y. In these cases,
one often resorts to linear estimation. The appeal of thealin
MMSE (LMMSE) estimator comes from the fact that it possesses

easily implementable closed form expression, which memdyires
knowledge of the joint first- and second-order momentXoindY'.
For example, the amount of computation required for catmda

the MMSE estimate of a jump-Markov Gaussian random proce

from its noisy version grows exponentially in time [1]. Byntoast,

the LMMSE estimator in this setting possesses a simple sagur

implementation, similar to the Kalman filtér/[2]. A similargblem

arises in the area of sparse representations, in which taeofis

sparsity-inducing Gaussian mixture priors and of Laplagpiors

is very common. The complexity of calculating the MMSE estior

under the former prior is exponential in the vector's dimens
calling for approximate solutions [[3]. The MMSE estimatarder

the latter prior does not possess a closed form expressjpwiich

has motivated the use of alternative estimation strategieb as the
maximum a-posteriori (MAP) method.

part of the measurements and nonlinear in the rest. For drainp
multi-view regression problems, the goal is to construcestimator

of X based on two sets of featurEsand Z [5]. In these applications,
one may be given a large training set of examples, z;} drawn
independently from the joint distributioRx z (z, z) of X andZ and
only a small number of examplese;,y;} drawn from Fxy (z,y).
Thus, Fxz(x,z) can be approximated from the first training set
with great accuracy, for example using nonparametric tecies.
However, due to its small cardinality, the second set cay balused
to estimate the cross-covariance mafrixy of X andY’, but not the
entire distributionF’xy (x, y). This implies that the MMSE estimator
E[XY, Z] cannot be computed and we must settle for estimators that
do not require knowing"xy z. As we will see, one such approach is
minimization of the MSE over the class of estimators thatlarear
inY.

Partially linear estimation was studied in the statistlitatature in
the context of regressionl[6]. In this line of research, @ssumed that
the conditional expectation(y, z) = E[X|Y =y, Z = 2] is linear
in y. The goal, then, is to approximaigz, y) from a set of examples
Fis Yis z; } drawn independently from the joint distribution &f, Y
and Z. In this correspondence, our goal is to derive the partially
linear MMSE (PLMMSE) estimator. Namely, we do not make any
assumptions on the structure of the MMSE estinB{t& |Y, Z], but
rather look for the estimator that minimizes the MSE amorlg al
functionsg(x,y) that are linear iny.

The correspondence is organized as follows. In Sediibn Il we
present the PLMMSE estimator and discuss some of its pliepert
In Sectior1ll, we show that the PLMMSE method is optimal agnon

|| estimators that solely rely on the second-order stesistf X and

. Finally, we conclude in Sectidn |V with a numerical simigat
demonstrating the usefulness of our approach in the coraéxt
recovering a sparse signal from noisy measurements.

Il. PARTIALLY LINEAR ESTIMATION

We denote random variables (RVs) by capital letters. Thegse
inverse of a matrixA is denoted byA'. The meanE[X] of an RV
X is denotedux and the auto-covariance matf@ov(X) = E[(X —
pux)(X — ux)T) of X is denotedl" x x. Similarly, T'xy stands for
the cross-covariance matrov(X,Y) = E[(X — ux)(Y — uy)T)
of two RVs X and Y. The joint cumulative distribution function

In practical situations, the reasons for not using the MMSEf X andY is written Fxy (z,y) = P(X < z,Y <y), where the

estimator may only apply to a subset of the measurementhiebet
cases, it may be desirable to construct an estimator thatdarlin
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inequalities are element-wise. By definition, the margiliatribution
of X is Fx(z) = Fxy(z,00). In our setting,X is the quantity to
be estimated an8l” and Z are two sets of measurements thereof. The
RVs X, Y and Z take values iR, RN andR?, respectively. The
MSE of an estimatoiX of X is defined asi[||X — X|?].

We begin by considering the most general form of a partiatigdr
estimator of X based ornY” and Z, which is given by

X =A2)Y +b(2). 1)

Here A(z) is a matrix-valued function anél(z) is a vector-valued
function, so that the realization of Z is used to choose one of a
family of linear estimators of based ony.
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Theorem 1 Consider estimators of X having the form (TJ), for some Cov(X)
(Borel measurable) functions A : RY — RM*N and b : R® — RM,
Then the estimator minimizing the MSE within this class is given by

X =TxyzThy,, (Y ~ E[Y|Z)) + E[X|Z], ) Cov(X, Yy @[Xw]

where T'xy |z = E[(X — E[X|Z])(Y — E[Y|Z])"|Z] denotes the
cross-covariance of X and Y given Z and I'yy |z = E[(Y —

E[Y|Z))(Y — E[Y|Z])T|Z] is the auto-covariance of Y given Z. Fyz
Proof: See Appendix_A. m Fig. 1: The statistical knowledge required for computinge th
Note that [2) is indeed of the form of(1) withd(Z) = PLMMSE estimator[{4).
Txy 2T}y, and b(Z) = E[X|Z] — Dxy|zTy ,E[Y]Z]. As
can be seen, although the MMSE solution among the class of
estimators[{{L) has a simple form, it requires knowing thedit@mal Before proving the minimax-optimality of the PLMMSE estitog

covariancerl xy |z, which limits its applicability. In particular, this it is insightful to examine several special cases, as we ot ne
solution cannot be applied in cases where we merely know the a) Independent Measurements: Consider first the case in which
unconditional covarianc® xy, such as in the multi-view regressiony” and Z are statistically independent. In this settif§, = Y — uy
scenario described in Sectifin I. and therefore the PLMMSE estimatéi (4) becomes

To relax this restriction, we next consideeparable partially . . .
linear estimation. Namely, we seek to minimize the MSE among X = TxyDh (Y —uy) +EX|Z] = Xy + Xz —px,  (7)

all functions of the form . ) o
where Xy denotes the LMMSE estimate &f from Y. Thus, in this

X =AY +b(2), (3) setting, the PLMMSE estimate reduces to a linear combinaifdhe
LMMSE estimateX and the MMSE estimat&Xz. The need for
subtracting the expectation of arises from the fact that botA
and Xz account for it.

Theorem 2 Consider estimators of X having the form (@), for some b) Z is Independent of X and Y: Suppose next that bot
matrix A € RM* and (Borel measurable) function b : R — R™.  andY are statistically independent &. Thus, in addition to the fact
Then the estimator minimizing the MSE within this classis given by  thatWW = Y — uy, we also haveE[X|Z] = ux. Consequently, the

where A is a deterministic matrix and(z) is a vector-valued
function.

L= FXWI‘LVWW +E[X]Z], ) }P/I'_MMSE solution [(#) reduces to the LMMSE estimate Xfgiven

where N i AL
W =Y —E[Y|Z]. (5) X =TxyLyy (Y — py) + px = Xy. ®)
Proof: See AppendixB. u ¢) Y is Uncorrelated with X and Independent of Z: Consider

Note again that[{4) is of the form of](3) witkdA = FXWWVW the situation in whichX and Z are statistically independent ard
and b(Z) = E[X|Z] — CxwTi,,E[Y|Z]. The major advantage and Y are uncorrelated. Thell’ = Y — uy, and alsolxw =
of this solution with respect to the non-separable estim@@ip is I'xy = 0 so that[#) becomes the MMSE estimate6ffrom Z:
that the only required knowledge regarding the statistieddtion . N

betweenX andY is of second-order type. Specifically, as we show X =E[X|Z] = Xz. ©)

in Appendix[C, [#) can be equivalently written as d) X is Independent of Z: In situations whereX and Z are

o o o\ v > statistically independent, one may be tempted to conclhde the
X= (FXY FXZYZ) (FYY FYZYZ) (Y YZ) Xz (6) PLMMSE estimator should not be a function 4t However, this
where we denoted{,; = E[X|Z] and Yz = E[Y|Z]. Therefore, ?s not necessarily the case. Specifically, al_though the_mbct_err_n
all we need to know in order to be able to compute the separabiie @ becomes the constafit[X|Z] = px in this setting, it is
PLMMSE estimator{4) is the covariance matftx v, the conditional €asily verified thaf"xw = I'xy, so that the first term i {4) does
expectationE[X|Z] and the marginal joint cumulative distributionnOt vanish unlessx' is uncorrelated with’. As a consequence, the
function Fyz of Y and Z. This is illustrated in Fig[Jl. In fact, PLMMSE estimator can be written as
as we show in Sectiop]ll, in addition to being optimal amorig a
partially linear methods, the PLMMSE solutiof] (4) is alscdiml

in a minimax sense among all estimation strategies thatselgly i, which the last term is a function of. This should come as no

on the quantities appearing in FIg. 1. surprise, though, because if, for instandé,= X + Z, then the
The intuition behind [(4) is similar to that arising in dynami optimal estimate is{ = Y — Z, even if X and Z are independent.

estimation schemes, such as the Kalman filter. Specifica#lybegin  This solution is clearly a function of.

by constructing the estimal& X | Z] of X based on the measurements e X is Uncorrelated with Y: A similar phenomenon occurs

Z, which minimizes the MSE among all functions gf Next, we when X and Y are uncorrelated. Indeed in this cadeyyw =

would like to account forY. However, sinceZ has already been T, ., so that the first term if{4) does not vanish unlégs
XYy

accounted for, we first need to subtract frdmall variations caused . S .
by Z. This is done by constructing the RW of (§), which can ';X:rgz(;gglzfd withYz. Consequently, the estimatd (4) can be

be thought of as thinnovation associated with the measuremehts
Wlth respect to the |n.|t|al gstlmaE[X|Z]. Finally, since we wantan ¥ — ~Tg, v, Tl Y + Ty, rl,wE[Y|Z] +E[X|Z], (11)
estimate that is partially linear i, we update our initial estimate

with the LMMSE estimate ofX based oni¥/. in which the first term is clearly a linear function &f.

X =TxyTi, Y + pux — CxyTh,  E[Y|Z], (10)



f) Additive Noise: Perhaps the most widely studied measureamong all estimators of X based on Y and Z, the PLMMSE method
ment model corresponds to linear distortion and additiviseno () has the minimal worst-case MSE

Specifically, suppose that 2

wp]thUX—X ], (16)
Y=HX+U Z=GX+V, (12) Fxyz€A
NxM Qx M . . over the set A.

where H € R and G € R are given matrices an@

and V are zero-mean RVs such thaf, U and V are mutually Proof: See AppendiXD. ]

independent. As we show in Sectign] IV, there are situations i

which the distribution ofX is such that the complexity of computing IV. APPLICATION TO SPARSEAPPROXIMATIONS

the MMSE estimatorE[ XY, Z] is huge, whereas the complexity e now demonstrate the usefulness of the PLMMSE estimator
of computingE[X|Z] is modest. In these cases one may prefer §@ the context of sparse approximations. Specifically, wBrsthe

resort to PLMMSE estimation. This method does not corredgon sjtuation in which X is known to be sparsely representable in a
a convex combination of the LMMSE estimate &f from Y and ypjtary dictionary® € R™*M in the sense that

the MMSE estimate ofX from Z, as might be suspected. Indeed,

substituting = HX + U, we have thal'xy = I'xxH” and X=TA (17)
Tyy = HTxxH" + Tyu. Furthermore,[E[Y|Z] HE[X|ZIL for some RVA that is sparse with high probability. More concretely,
so thatTy y = Ty ¢ H" andTy gy = HTy ¢ H'. \ye assume, as i][3], that the elementsdofire given by

Consequently, the PLMMSE estimat@ (6) becomes
X A; = SiB;, i=1,...M, (18)
X =AY +(I - AH)E[X|Z], (13) L . .
where the RVS[S;} and {B;} are statistically independent and dis-

where T is the identity matrix andA is given by tributed asP(S; = 1) =1 —P(S; = 0) = p; and B; ~ N (0, 0251.).
t Assume the signak is observed through two linear systems, as

A= Txx — PXZXZ)HT (H(I‘XX - FXZXZ)HT + I‘UU) . in (I2), whereH is an arbitrary matrix(z = oI for some constant

(14) a#0,andU andV are Gaussian RVs withyy = T'vy = 1.
We see that, as opposed to a convex combinatioX gfand X+, This setting can be cast in the standard sparse approximtion
the PLMMSE method reduces to a combination & and Y. as
Furthermore, the weights of this combination are matrie¢isar than (Y) = (H) X + (U) : (19)
scalars. z ol v
It is well known that the expression for the MMSE estimate
E[XY, Z] in this case generally compris@d’ summands, which
correspond to the different possibilities of sparsity @ats in A [3].

As discussed in Sectidnl Il, one of the appealing propertieh® This renders the computation of the MMSE estimate prolviii
PLMMSE solution is that it does not require knowing the emntirexpensive even for modest values &f and consequently various
joint distribution of X and Y, but rather only its second-orderapproaches have been devised to approximate this solutiarsmall
moments. However, the fact that the PLMMSE estimator is tperenumber of terms (seeg., [3] and references therein). For example,
determined byE[X|Z], Cov(X,Y) and Fyz(y,z), does not yet the fast Bayesian matching pursuit (FBMP) algorithm dewetbin
imply that it is optimal among all methods that rely solely orj3] employs a search in the tree representing all sparsittee in
these quantities. The question of optimality of an estimatih order to choose the terms participating in the approximatio
respect to partial knowledge regarding the joint distiifiutof the There are some special cases, however, in which the MMSE
signal and measurements was recently addressed]in [7]. ®neestimate possesses a simple structure, which can be impiethe
the notions of optimality considered there, which we adopteh efficiently. As we show next, one such case is when both thereis
as well, follows from a worst-case perspective. Specificdtir any response and the dictionary over whigh is sparse correspond to
estimatorX = g(Y, Z), there may be distribution$’xy z(z,y,2) orthogonal matrices. Since in our settidigis unitary andG = ol,
consistent with our knowledge such that the MSE is high aedeth we can efficiently compute the MMSE estimaBX|Z] of X
may be distributions leading to low MSE. We consider an estiimas from Z. This implies that, instead of resorting to schemes for
optimal if its worst-case MSE over the set of all feasibldriisitions  approximatingE[X|Y, Z], we can employ the PLMMSE estimator
is minimal. For example, it was shown inl[7] that the LMMSEof X based orly” and Z, which possesses a closed form expression
estimator X% attains the minimal possible worst-case MSE ovefsee [(IB)) in this situation. This technique is particyleeffective
the set of distributiong’xy (x, y) with given first- and second-order when the SNR of the observatidsi is much worse than that of,
moments. since the MMSE estimat&[X Y, Z] in this case is close to being

In the next theorem we show that the PLMMSE method is optimghrtially linear inY. Such a setting is demonstrated in Seclion 1V-C.
in the sense that its worst-case MSE over the set of all bigtans

Fxvz(z,y,z) complying with the knowledge appearing in Fig. 1 isp. MMSE Estimation of a Sparse Sgnal in a Unitary Dictionary
minimal.

I11. PARTIAL KNOWLEDGE OF STATISTICAL RELATIONS

In our setting
Theorem 3 Let A be the set of probability distributions of (X, Y, Z)

satisfying Z=aX+V=aV%A+V, (20)
with A of (I8). SinceW is unitary, it is invertible, and thus the RV
Cov(X) =Txx, Cov(X,Y)=Txy, E[X|Z] =g(2), _ ,
Fxyz(00,y,2) = Fyz(y, 2), (15) Z=v7 (21)

. . . . . carries the same information 0¥ as Z does, so that
where T'x x and I'xy are given matrices, g(z) is a given function

and Fyz(y,z) is a given cumulative distribution function. Then, E[X|Z] = E[X|Z] = WE[A|Z]. (22)



Now, for everyi = 1,..., M, we have thatZ; = a4; + V;, where
V = ®'V is distributed\ (0, °T). Therefore, the sefZ;} ;i is
statistically independent of the p&irl;, Z;) and consequently
E[A;|Z] = E[Ai|Zi]
= E[A;|Zi, Si = O|P(S; = 0|Z;)

+ E[Ai|Zs, Si = 1JP(Si = 1]Z;). (23)

Observe that there is generally no closed form expressiotht®
scalarsp; = Cov(f(Z;)), rendering it necessary to compute them
numerically.

C. Numerical Sudy

Figure(2 compares the MSE attained By 1 vvse to that attained
by Xz, X¥ and the approximation t&[X|Y, Z] produced by the

If S; = 0 then alsoA; = 0, so that the first term in this expressionFBMP method. In this experimen® < R5*%! was taken to

vanishes. Under the eveis; = 1, the RVs A; and Z; are jointly
normally distributed with mean zero, implying that

> 2
ElAZ, 85 = 1] = VWAL Z) 998 5 (o
Cov(Zy) a“og, + oy
Finally, using Bayes rule, the teri(S; = 1|Z;) reduces to
f2,5,(Zi|Si = DP(S; = 1)
[2,15,(ZilSi = 0)P(Si = 0) + [z,5,(Zi|Si = DP(Si = 1)
> 2 2 2
_ N(0,Z;:;0,0°0% + o°)p 25

N(0,Zi50,02)(1 = p) + N(0, Zi;0, a%0%, + 02)p

be a Hadamard matrix with normalized columns. The maffx
corresponded to (circular) convolution with the sequehfe] =
exp{—|n|/12.8}. To comply with the assumption made liri [3] that the
columns of the measurement matrix are normalized, we nizetl
the columns ofH to be of norm0.99 and set the scalar to be0.01.
Figure[2 depicts the MSE of all estimators as a function ofiripeit
SNR, which we define at0log,,(po%/0?). As can be seen, the
MSE of the PLMMSE method is significantly lower then that’$f
and X+ and is very close to that attained by the FBMP method. At
low SNR levels and low sparsity levels (high the performance of
the PLMMSE method is even slightly better than the FBMP apgino
Considering the fact that the PLMMSE method is also muchefast

where (v; 1, o) denotes the Gaussian density function with meafan the FBMP method in our setting, it seems that there isar cl
1 and variances?, evaluated aty. Substituting [(Z5) and(24) into advantage to using it in scenarios of similar nature.

(23) leads to the following observation.

Theorem 4 The MMSE estimate of X of (I7) given Z of (20)is

E[X|Z] = ©f (\IITZ) , (26)
where F(2) = (f(1),.., f(5a1))", with
% piN(2i;0,0%0%, +0°) %
f(z) o (27)

T piNGi0,0205, +0%) + (1 - p) N (5;0,07)

B. PLMMSE Estimation of a Sparse Signal From Two Observations

Equipped with a closed form expression (X |Z], we can now
obtain an expression for the PLMMSE estimafor] (13). Spedific
we have that

Txx = ¥Taa0", (28)

whereT 44 is a diagonal matrix withT'a4):: = pio,. Similarly,

Tg, %, = YCov(f(2))®", (29)

where Cov(f(Z)) is a diagonal matrix whos€i,i) element is
B: = Cov(f(Z:)). This is due to the fact that the elements/fare
statistically independent and the fact that the functfc@ operates
element-wise on its argument. Therefore, the PLMMSE es$tima
given in our setting by equation (113) with[ X |Z] of (26) and with
the matrix

A=W (Tas—Cov(f(2))®"
« H” (H\IJ(FAA — Cov(f(2))®e"H" + 01)T . (30)

We note that ifp; = p ando, = o3 for everyi, then alsoB; = 3
for everyi. In this case,

Txx =¥ (popI) " = popl (31)
and
Tg, ¢, =¥(BNY" =4I, (32)
so thatA is simplified to
;
A= (poy — HH" ((po} - HHH" +0I) . (33)

A word of caution is in place, though. In situations in whidtet
SNR of the measurement is roughly the same as that d&f (or
better), the FBMP method is advantageous in terms of pegoce
Therefore in this regime, decision on the use of the PLMMSEho
boils down a performance-complexity tradeoff.

V. CONCLUSIONS

In this paper we derived the PLMMSE estimator, which is the
method whose MSE is minimal among all functions that areglirie
Y. We showed that the PLMMSE solution depends only on the joint
second-order statistics of andY’, which renders it applicable in a
wide variety of situations. Furthermore, we showed that éstimator
attains the lowest worst-case MSE over the set of distdbgtivhose
joint second-order moments ok and Y are fixed. Finally, we
demonstrated our approach in the context of recovering asspa
vector from noisy measurements. In this application, thé/RISE
solution achieves an MSE very close to that attained by titera
approximation strategies, such as the FBMP method lof [3], ian
cheaper computationally.

APPENDIXA
PROOF OFTHEOREM]

Using the smoothing property, the MSE of any estimator of the
form () is given by

E[E[|X - A2)Y -b(2)|*|2]] - (34)

Thus, for every specific valuethat Z can take, the optimal choice of
A(z) andb(z) is that minimizing the inner expectation. The solution
to this minimization problem corresponds to the LMMSE estien
of X based onY’, under the the joint distribution ofX,Y") given
Z, concluding the proof.

APPENDIXB
PROOF OFTHEOREM[Z

We start by noting that the sé8 of RVs constituting candidate
estimates is a closed linear subspace within the space w&f-fiacond-
order-moment RVs taking values iR™. Therefore, the MMSE
estimateX within this subspace, which is the projection of the RV
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Fig. 2: The MSE attained bz, X+, XpLuuse and the approximation dE[X|Y, Z] produced by the FBMP method][3]. (a)= 1/3.
(b)p=1/2. (c)p =2/3.

APPENDIXC
DERIVATION OF EQUATION (B)

X onto B, is the uniqtﬂ RV whose estimation erroX — X is
orthogonal to every RV of the forrdY +b(Z). To demonstrate that
X of (@) indeed satisfies this property, note that the innedpco

betweenX — X and AY + b(Z) is given by By definition,
. - o Txw = E[(X — ux)(Y —E[Y|2])"]
E [(X—X) (AY+b(Z))] Tr{IE [ (X - X)Y ] A } _ BIX — )Y — g+ oy — E[Y12)7]
+ 1 {E[(X - X))} = E[(X—px)(¥ — )] ~ E[(X —px)(E[Y | 2] oy )]
(35) =Txy —EE[(X — ux)(E[Y|Z] — pv)"|Z]]
Substituting [(%), the expectation within the second termobges =Ixy —E[E [X|Z] HX)(E[Y|Z] py)']
—Txy —Tyg,y, (39)

E [(I‘XWI‘TWWW—&-IE[X|Z] —X) b(Z)T] - .
where the fourth equality is a result of the smoothing prgpand
[Wb(Z)T] +E [(]E[XIZ] the last equality follows from the facts thB{E[X|Z]] = px and
E[E[Y|Z]] = py. In a similar manner, it is easy to show that
Recall thatW = Y — E[Y'|Z] is the estimation error incurred in

= TxwTi,, E ~X) b(Z)T] . (36)

estimatingy” from Z. Consequently}¥’ and X —E[X|Z] are uncor- Pyw =Tyy =Ty y . (40)
related with every function of and, in particular, witth(7), so that . . .
this expression vanishes. Similarly, substitutiiyy (4) axgressing \yve”;%t[azlg) and the fact that” is uncorrelated Witt[y’| 2] — pv,
Y = W 4+ E[Y]Z], the expectation within the first summand [n](35)
becomes Tww =EWWT]
T
E [(FXWFLVWW+E[X|Z] —X) YT] :E[(Y—E[YIZ]T)W ] ]
=E[(Y — )W = E[(E[Y]Z] — py)W"]
=TxwliywE |WW +E[Y|2]))"
xw Ty B [W (W + ElY|2))" ] 1y
~E[(X - E[X|Z)(W +E[Y|2)"] . (37) =Tyy -Ty 5 . (41)

Being a function ofZ, the RVE[Y'|Z] is uncorrelated witiV and ~Substituting [3p) and_(41) int¢(4) leads fd (6).

X — E[X]Z] so that this expression can be reduced to
APPENDIXD
PROOF OFTHEOREM[3

Lete(Fxyz,X) =Eryy,[||X — X|*] denote the MSE incurred
by an estimatoX of X based orY” andZ, when the joint distribution
of X,Y andZ is Fxvyz(z,y,2). It is easily verified that

CxwDiy, E [WWT] —E [(X - ]E[X|Z])WT]
=Txwliyy Tww —E [(X —px +px — IE[XIZ])WT]
—Txw - Cxw + E [(IE[X|Z] - MX)WT]

=Txw —Txw

0 e(Fxyz, XPLMMSE) =Tr{Txx}
- b

—Tr {(I‘XY -I'g,v,)Tyy —FyZyZ)T(FXY—FvaZ)T}
(42)

(38)

where we used the facts thB{IV] = 0, that Uxw '}, Tww =
I'xw [8 Lemma 2], and thatV is uncorrelated witfE[X|Z] (due

to the same argument as above). This completes the proof. for all Fxyz € A. Therefore, in particular[{42) is also the worst-

case MSE ofXprymse over.A. We next make use of the following

1 lemma.
In an almost-sure sense.



Lemma 1 There existsa distribution F'xy » inthe set A of distribu-  associated withX, Y and Z, belongs to the family of distributions

tions satisfying (I5), under which the PLMMSE estimate of X based A satisfying [I5).

on Y and Z coincides with the MMSE estimate E[ XY, Z]. Next, we show that the PLMMSE and MMSE estimators coincide
Proof: See AppendigE. - under Fxy . Indeed, sincd/ is statistically independent of the pair

Now, any estimatorX that is a function oft” and Z satisfies (W, Z), we have thalE[U|W, Z] = E[U] = 0, so that
E[X|Y, Z] = CxwTl, wEW|Y, Z] + E[g(Z) + U|Y, Z]

sup  e(Fxyz,X) > e(Fxyz, X)

FxyzeA = Txw Ty (Y = h(2)) + g(2) + E[U|W, Z]
> mine(Fiyz, X) = TxwTl, (Y — h(2)) + g(2), (49)
=e(Fxyz, E[X]|Y, Z]) where we used the fact that there is a one-to-one transfmimat
_ E(Fg”}yz,XpLMMSE) between the pailY, Z) and the pair(W, Z). This expression is

F % 43 partially linear inY’, implying that this is also the PLMMSE estimator
FXT,E’Z”EAE( xvz, Xeiamse),  (43) iy this setting. Thus, for the distributiody ,, the PLMMSE
estimator is optimal not only among all partially linear tions,

where the first line follows from the fact thdtx, , € A, the third rbut also amongill functions of Y’ and Z.

line is a result of the fact that the MMSE and PLMMSE estimato
coincide underF%y », and the last line is due to the fact that
e(Fxyz, XpLmuse) is constant as a function af'xy, over A.

We have thus established that the worst-case MSE of anyastim [1] H. A. P. Blom and Y. Bar-Shalom, “The interacting mulépimodel
over A is greater or equal to the worst-case MSE of the PLMMSE algorithm for systems with Markovian switching coefficigfit |EEE

: . o . . : Trans. Autom. Control, vol. 33, no. 8, pp. 780-783, 1988.
solution overA, proving thatXprumse is minimax optimal. [2] O. L. V. Costa, “Linear minimum mean square error estioratfor

discrete-time Markovian jump linear systemEZEE Trans. Autom. Con-
APPENDIXE trol, vol. 39, no. 8, pp. 1685-1689, 1994.
[3] P. Schniter, L. C. Potter, and J. Ziniel, “Fast Bayesiaatching pursuit,”
PROOF OFLEMMALT in Information Theory and Applications Workshop (ITA'08), 2008, pp.
We prove the statement by construction. ¥étand Z be two 326-333.

RVs distributed according téy z and denoteh(Z) = E[Y|Z] and [4] M. Girolami, “A Variational method for learning sparsadciovercomplete

W =Y —h(Z). LetU be a zero-mean RV, statistically independent ;%Fgfse”tations”Ne”raj Computation, vol. 13, no. 11, pp. 2517-2532,
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statistically independent d¢f, we find that the conditional expectation
of X of (@8) givenZ is
E[X|Z] = g(2). (46)
Furthermore, sincéV, ¢g(Z) and U are pairwise uncorrelated, the
covariance ofX of (48) can be computed as
Cov(X) = CxwIlyw Tww Il Twx + Cov(g(2)) + Tou
= TxwTyy Twx + Cov(g(Z))
+Txx —Cov(g(Z)) = TxwTli,Twx
=Ixx, 47)
where we substituted (#4). Finally, the cross covarianc aff (45)
andY is given by
Cov(X,Y) = TxwTlwTwy + Cov(g(Z),h(Z))
= FXWFI/VWFWW + Cov(g(Z), M(Z))
=Txw + Cov(g9(Z),h(2))
=T'xy — Cov(g(2),h(Z)) + Cov(g(Z),h(Z))
=TIxvy, (48)
where the second and fourth equalities follow from the trard

fourth lines of [41) and the third equality follows froin [8etnma 2].
Equations[(46)[{47) an@_(18) demonstrate that the digtabu"%+

2Recall thatT' xy and Ty are functions ofCov(X,Y) and Fy z,
which are given.
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