
A Guide to the STML MATLAB Package

Amir Beck and Yonina C. Eldar

April 17, 2009

1 Overview

This short note briefly describes the usage of the functions in the STML package which are

based on the paper

Amir Beck and Yonina C. Eldar, “Structured Total Maximum Likelihood:

An Alternative to Structured Total Least-Squares”, submitted for publication.

Our goal is to find a “solution” of an approximate linear system

Ax ≈ b,

where both A and b are noisy. We further assume that A possesses some linear structure.

In particular, the assumed linear model is:
(

A0 +

p∑
i=1

eiAi

)
x = b0 + w,

where

• A0 ∈ Rm×n,b0 ∈ Rm. A0 is the nominal measurement matrix and b0 is the observed

data vector (both are known).

• A1, . . . ,Ap are the structure matrices describing the corresponding linear structure.

• e1, . . . , ep are unknown perturbations of the structure components assumed to be dis-

tributed as N(0, σ2
e).

• w1, . . . , wm are the components of the vector w which is the perturbation to the right-

hand side vector b. It is assumed that w1, . . . , wm are distributed as N(0, σ2
w).

An underlying assumption is that the m + p random variables w1, . . . , wm, e1, . . . , ep are

independently distributed. The STLS solution to the problem is an optimal solution to the

following nonconvex optimization problem

(STLS) : min
x

(Ax− b)TΣ−1
x (Ax− b), (1.1)

1



where

Σx = σ2
e

p∑
i=1

AixxTAT
i + σ2

wI. (1.2)

The STML estimate is an optimal solution of the problem

(STML) : min
x
{(Ax− b)TΣ−1

x (Ax− b) + log detΣx}. (1.3)

2 General Structures

In this section the following functions are described:

mstls.m

stls.m

detect_structure.m

detect_structure_unweighted.m

Suppose that A0 is a 3× 2 matrix of the form




a1 a1

a2 a1

0 a2




For example, consider the following observed matrix and righthand side vector:

>>A_0=[0.234,0.234;0.14,0.234;0,0.14]

A_0 =

0.2340 0.2340

0.1400 0.2340

0 0.1400

>>b_0=[1;2;3]

b_0 =

1

2

3

If the true structure components are assumed to be given by

g1 = a1 + ε1, g2 = a2 + ε2, (a1 = 0.234, a2 = 0.14)

where εi ∼ N(0, σ2
e), then the structure matrices can be defined by

>>A(:,:,1)=[1,1;0,1;0,0];

>>A(:,:,2)=[0,0;1,0;0,1]

A(:,:,1) =

2



1 1

0 1

0 0

A(:,:,2) =

0 0

1 0

0 1

Assuming that σe = σw = 0.1, the STLS solution of the problem can be found by the

function stls.m as follows:

x_stls=stls(2,A,A_0,b_0,0.1,0.1)

and the output is

Optimization terminated: relative infinity-norm of gradient less than

options.TolFun.

x_stls =

-14.8060

19.2849

To find the STML solution, the following command should be invoked:

>>x_stml=stml(2,A,A_0,b_0,0.1,0.1)

Optimization terminated: relative infinity-norm of gradient less

than options.TolFun.

x_stml =

-12.0923

15.7693

The function stml.m invokes the MATLAB function fmincon and uses the BFGS method.

A message describing the stopping criteria used to terminate the algorithm used by fmincon

is given.

Now consider the following symmetric Toeplitz matrix

>>A_0=toeplitz([100,3,1,0,0])

A_0 =

100 3 1 0 0

3 100 3 1 0

1 3 100 3 1

0 1 3 100 3

0 0 1 3 100

3



This matrix has three structure components. In some scenarios it is more logical to assume

that the perturbations of the structure components are proportional to their nominal value.

That is, instead of assuming that the “true” structured matrix is




100 + ε1 3 + ε2 1 + ε3 0 0

3 + ε2 100 + ε1 3 + ε2 1 + ε3 0

1 + ε3 3 + ε2 100 + ε1 3 + ε2 1 + ε3

0 1 + ε3 3 + ε2 100 + ε1 3 + ε2

0 0 1 + ε3 3 + ε2 100 + ε1




,

where εi ∼ N(0, σ2
e), i = 1, 2, 3, it is more reasonable to assume that the“true” matrix is




100(1 + ε1) 3(1 + ε2) 1(1 + ε3) 0 0

3(1 + ε2) 100(1 + ε1) 3(1 + ε2) 1(1 + ε3) 0

1(1 + ε3) 3(1 + ε2) 100(1 + ε1) 3(1 + ε2) 1(1 + ε3)

0 1(1 + ε3) 3(1 + ε2) 100(1 + ε1) 3(1 + ε2)

0 0 1(1 + ε3) 3(1 + ε2) 100(1 + ε1)




,

The only difference is that the structure matrices should include the nominal value and not

just zeros and ones:

>>clear A;

>>A(:,:,1)=toeplitz([100,0,0,0,0]);

>>A(:,:,2)=toeplitz([0,3,0,0,0]);

>>A(:,:,3)=toeplitz([0,0,1,0,0])

A(:,:,1) =

100 0 0 0 0

0 100 0 0 0

0 0 100 0 0

0 0 0 100 0

0 0 0 0 100

A(:,:,2) =

0 3 0 0 0

3 0 3 0 0

0 3 0 3 0

0 0 3 0 3

0 0 0 3 0

A(:,:,3) =

0 0 1 0 0

0 0 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

4



If the righthand side vector b0 is given by

>>b_0=[1;2;3;4;5]

b_0 =

1

2

3

4

5

Then with σe = σw = 0.1, the MSTLS solution can be computed by1

>> x_stml=stml(3,S,A_0,b_0,0.1,0.1)

Optimization cannot make further progress:

relative change in x less than options.TolX.

x_stml =

0.0091

0.0184

0.0275

0.0372

0.0481

It is also possible to extract the structure matrices using the function detect_structure.m.

Just write

>> [p,S]=detect_structure(A_0)

p =

3

S(:,:,1) =

0 0 1 0 0

0 0 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

1In our demonstration the standard deviations σw, σw are the same, but it is perfectly legitimate to use
different standard deviations.

5



S(:,:,2) =

0 3 0 0 0

3 0 3 0 0

0 3 0 3 0

0 0 3 0 3

0 0 0 3 0

S(:,:,3) =

100 0 0 0 0

0 100 0 0 0

0 0 100 0 0

0 0 0 100 0

0 0 0 0 100

This function will work only when values of different structure components are not the same.

If un-weighted structure matrices are required, then the function

detect_structure_unweighted.m

should be invoked:

>>[p,S]=detect_structure_unweighted(A_0)

p =

3

S(:,:,1) =

0 0 1 0 0

0 0 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

S(:,:,2) =

0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

S(:,:,3) =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

6



3 The Matrix-Restricted structure

The function

mstls_dec.m

can be used when the perturbation matrix has the matrix-structure DEC where

• E ∈ Rp×q is an unknown matrix whose components are independently and normally

distributed as N(0, σ2
e).

• D ∈ Rm×p,C ∈ Rn×q are known.

The linear model here is therefore

(A0 + DEC)x = b0 + w

For example if A0,b0,D and C are given by

>>A_0=[1,2;3,4]

A_0 =

1 2

3 4

>>b_0=[5;6]

b_0 =

5

6

>>D=[1,-1;2,-3]

D =

1 -1

2 -3

>>C=[1,0;1,2]

C =

1 0

1 2

then the STML solution with σe = σw = 0.1 can be found by

>>x_stml1=stml_dec(A_0,b_0,D,C,0.1,0.1)

Func-count x f(x) Procedure

1 38.1966 -1.41606 initial

2 61.8034 3.17932 golden

7



3 23.6068 11.1174 golden

4 46.4718 -0.77517 parabolic

5 37.2693 -1.30881 parabolic

6 40.4887 -1.48735 parabolic

7 42.774 -1.33908 golden

8 40.0843 -1.49262 parabolic

9 40.0081 -1.49282 parabolic

10 39.9858 -1.49283 parabolic

11 39.987 -1.49283 parabolic

12 39.9871 -1.49283 parabolic

13 39.9871 -1.49283 parabolic

14 39.9871 -1.49283 parabolic

Optimization terminated:

the current x satisfies the termination criteria using OPTIONS.TolX of 1.000e-006

x_stml1 =

-4.0025

4.4491

Thus, the STML solution is

(−4.0025

4.4491

)
and the optimal value is -1.49283. As a sanity

check, let us compute the same solution using the function stml.m that can handle general

structures. Denoting

E =

(
ε1 ε2

ε3 ε4

)
,

DEC =

(
1 −1

2 −3

)(
ε1 ε2

ε3 ε4

) (
1 0

1 2

)

= ε1

(
1 0

2 0

)
+ ε2

(
1 2

2 4

)
+ ε3

(−1 0

−3 0

)
+ ε4

(−1 −2

−3 −6

)
.

Therefore, the structure matrices can be defined:

>>clear A;

>>A(:,:,1)=[1,0;2,0];

>>A(:,:,2)=[1,2;2,4];

>>A(:,:,3)=[-1,0;-3,0];

>>A(:,:,4)=[-1,-2;-3,-6]

A(:,:,1) =

1 0

2 0

A(:,:,2) =

1 2

2 4

8



A(:,:,3) =

-1 0

-3 0

A(:,:,4) =

-1 -2

-3 -6

and the STML estimate can now be found using stml.m:

>>[x_stml2,f]=stml(4,A,A_0,b_0,0.1,0.1)

Optimization terminated: relative infinity-norm of gradient less

than options.TolFun.

x_stml2 =

-4.0025

4.4491

f =

-1.4928

Obviously this is the same solution as the one produced by stml_dec.m. It is impor-

tant to note that for matrix-restricted structures, the function stml_dec.m is more rec-

ommended than the function stml.m. The latter function first reduces the problem into a

one-dimensional problem and is more efficient and less likely to get stuck at a local mini-

mum. In addition, when both D and C are the identity matrices (of appropriate sizes), we

are dealing with the unstructured case and the function stml_dec.m is guaranteed to find

the exact STML solution.

4 The Circulant Structure

The function

stml_circulant.m

can be used in order to find the STML estimate for the circulant structure. The function

is guaranteed to produce a global optimal solution of the corresponding nonconvex problem.

Let us begin with a small example. Suppose that we consider the 4×4 circulant matrix with

first row

>>a_0=[1,2,3,4]

a_0 =

1 2 3 4

We can compute the circulant matrix by using the following command:

9



>> A_0=gallery(’circul’,a_0)

A_0 =

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

The righthand side vector is defined by

>> b_0=[5;6;7;8]

b_0 =

5

6

7

8

Suppose that σe = σw = 0.1. Then the STML estimate can be computed via the command

stml_circulant.m

>>x_stml=stml_circulant(a_0,b_0,0.1,0.1)

#ITER #1D-PROBLEMS #MAX-INTERVAL

0 4 1.127e+000

1 4 7.511e-001

2 4 5.007e-001

3 4 3.338e-001

4 4 2.226e-001

5 4 1.484e-001

6 4 9.891e-002

7 4 6.594e-002

8 4 4.396e-002

. . .

. . .

. . .

42 4 4.529e-008

43 1 3.019e-008

44 1 2.013e-008

45 1 1.342e-008

46 1 8.945e-009

10



x_mstls =

0.8973

0.8997

0.8973

-0.0953

We can also compute this solution using the general purpose function stml.m. For that, we

first need to find the corresponding structure matrices:

>>[p,S]=detect_structure_unweighted(A_0)

p =

4

S(:,:,1) =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

S(:,:,2) =

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

S(:,:,3) =

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

S(:,:,4) =

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

and then invoke the function:

>>stml(p,S,A_0,b_0,0.1,0.1)

Optimization cannot make further progress:

relative change in x less than options.TolX.

ans =

0.8973

0.8997

0.8973

-0.0953

Let us now take a larger example. Begin by fixing the seeds of randn and rand

11



>>randn(’seed’,314);

>>rand(’seed’,314);

Now, let us generate the “true” circulant matrix by randomly generating the first row:

>>a_t=rand(100,1);

Let us assume that the “true” signal is the vector of 100 ones:

>>x_t=ones(100,1);

The ”true” righthand side is computed as follows:

>> A_t=gallery(’circul’,a_t);

>> b_t=A_t*x_t;

The observed righthand side and first row of the matrix are randomly generated as

>> a_0=a_t+0.1*randn(100,1);

>> b_0=b_t+0.1*randn(100,1);

>> A_0=gallery(’circul’,a_0);

The solution to the system A0x = b0 is given by

>> x_ls=A_0\b_0;

The STML solution is

>> x_stml=stml_circulant(a_0,b_0,0.1,0.1);

This is a much better solution to the problem. To see this, we can just write

>> mean(abs(x_ls-x_t))

ans =

0.3675

>> mean(abs(x_stml-x_t))

ans =

0.0385

That is, the average error per component of the naive solution is one order of magnitude

larger than the error of the STML solution. Although not recommended, we can solve the

same problem with the general purpose algorithm stml.m:

12



>> [p,S]=detect_structure_unweighted(A_0);

>> x_stml2=stml(p,S,A_0,b_0,0.1,0.1);

In this case we get the same solution (up to the tolerance):

>> norm(x_stml2-x_stml)

ans =

2.8989e-006

If we start with a random vector:

>> x_stml3=stml(p,S,A_0,b_0,0.1,0.1,10*randn(100,1));

then we also get the same solution, but this time the algorithm is much slower (since the

initial guess was far). It is not difficult to find scenarios in which the algorithm of stml.m

does not find the optimal solution since this is a general purpose algorithm for nonconvex

optimization. On the other hand, the function stml_circulant is guaranteed to produce

the global optimal solution.

13


