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“Analog Girl in a Digital World...”

Judy Gorman 99
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Voice recorder Camera Medical imaging

“Can we not just directly measure the part that

will not end up being thrown away ?” (Donoho 06)




Compressed Sensing
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mXn, mIn

Entries ~ Gaussian
[
Bernoulli /
partial DFT ...

Main ideas:

e Sensing = inner products y; = (®;, x) I{LOHg
-sparse
e Random projections
(Donoho "06)

e Polynomial-time recovery algorithms - 2
- A (Candes, Romberg, Tao "06)
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Naive Extension to Analog Signals

Standard CS Analog Domain

Discrete Framework !
|

Ix|lo £ K

C Iknow whatitis...




Naive Extension to Analog Signals

Standard CS Analog Domain

Discrete Framework !
|

Ixllo < K What is a sparse analog signal ?
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What am [ dealing with ? (O6 “';
.____________ e —— ~
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Naive Extension to Analog Signals

_ Standard CS Analog Domain
Discrete Framework !
Xllog < K What is a sparse analog signal ?
I & 518
!
y = Ax Generalized sampling Y[n] — A{X(f)}
T/ yi = {ai,X) / [T
Infinite Operator Continuous

Finite dimensional elements A
“ " sequence [, — [  signal

I — -~ e
I . LY

[ choose sampling, not the matrix f 606 ";
.________- _______-— ———— -...‘\




Naive Extension to Analog Signals

~ Standard CS Analog Domain
Discrete Framework !
Ixllo < K What is a sparse analog signal ?
}
y = Ax Generalized sampling Y[n] — A{X(f)}
\ T/ yi = (i, X) / ! T
S | I Infinite  Operator Continuous
Finite dimensional elements i sequence L:’E s Ig signal

Random A is “good” w.h.p Sensing matrix Fully Random =2 Infinitely many a;

———— e " "

i o — ."" \"-\,

S = : B e { ; \
C Must have some structure to unplen‘tent 606
S - e - \¢_FP)




Naive Extension to Analog Signals

_ Standard CS Analog Domain
Discrete Framework !
Ix|lo < K What is a sparse analog signal ?

y = Ax Generalized sampling y[n] — A{X(f)}
.\ T/ Y= (8, X) / ] e

| l'el i Infinite Operator Continuous
Finite dimensional elements .
“ " i sequence [, — [  signal
I [ L
Random A is “good” w.h.p Sensing matrix Fully Random =2 Infinitely many a;
|
min ||x||¢, s.t. y = Ax Reconstruction min [|x(t)|le, s.t. y[n] = A{x(t)}
x a | x(t)
Finite program, well-studied | Undefined program over a continuous signal

< Tcan only do a reasonable amount of computations

. - .x‘h
f
[ ©6




Goals for Analog CS

e Signal model

— convenient enough to represent real-life situations
* Hardware implementation
e "Light” computational load

* Real-time processing

‘ Approach: Combine CS with analog sampling ideas
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Road Map

Time-domain approach:

]ﬁ (751 S1 !
J AL ‘ H I Solve CS system : 3
&), e W s | F(2),
samples Sl ‘I’S coefficients
"Nyquist” t e [0 1) g y 3
rate W Wi YR SWw
(R<< W)

(Tropp et. al. "07-09)
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Road Map

Time-domain approach:

(751 . S1 !
f(t) f&t ‘ ‘ ‘ I R Solve CS system W . fit)
samples - (Ip coefficients 2
" Nyquist” - y o S
D te|0,1) — >
rate W : YR Sw
{R KW } (Tropp et. al, "07-09)
Tones model (sensitive) = 1% grid mismatch
System “grid” must match signal tones grid ol
f(t) = > s,exp(j2rwt) )l
well - I
Bl
o 7|
L) =FOI _ 4
ron. -0
*T073 073 074 0045 0.5
Time [sec)
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Road Map

Time-domain approach:

Y1 51
f(t) f&i _I_I_J_I R Solve CS system W o f(t)
samples O |
Tl samples — ‘I’S coefficients
Nyquist t e [0 1) : y 2
rate W Wi YR SWw
(R W)

(Tropp et. al. "07-09)

Tones model (sensitive)
System “grid” must match signal tones grid

Hich computational load
')

1 kHz bandwidth

10% tones
d=RxW 0 TOLES » & =100 x 1000
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Road Map

Time-domain approach:

Y1 51
f(t) f&i _I_I_J_I R Solve CS system W o f(t)
samples O |
Tl samples — ‘I’S coefficients
Nyquist t e [0 1) : y 2
rate W Wi YR SWw
(R W)

(Tropp et. al. "07-09)

Tones model (sensitive)
System “grid” must match signal tones grid

Hich computational load
')

Can’t treat true analog signals

50 MHz information band with W = 10 (GHz
Requires ~ 100 - 10° tones — @ is huge-scale (107 x 10'Y)
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Road Map

Frequency-domain approach:

LPF Aliasine y1[n Realtime processing ‘ 2l
:I’:(If) l1asing ¥ =1 > (1
m : t N lowrate HZ( )
: Support N lowrate g 2
- 5 i sequences sequences
Limited freq. . CTF - Support recovery >
support Ym|n] zn [n]

QOuthine

* Analog model — information bands in wide spectrum
* The “modulated wideband converter” — hardware ilﬂi.“'lEIHEi"ltatiDll
* CTF —a “light” computational load on reconstruction

* Advantages — wideband regime, realtime, baseband

“Think in frequency-domain — Implement in time-domain” |
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Analog Signal Model

Mutliband signals: |
fnvg ~ 10’s GHz

2 z /

—3nvQ 0 L fava

. Each band has an uncountable 9" "Band locations lie'on the continuum

number of non-zero elements

3. Band locations are unknown in advance

M

{ 2(t)| no more than N bands, max width B, bandlimited to - L favqs +3/8vQ) )

(Mishali and Eldar 2007)
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Analog Signal Model

Mutliband signals: |
fnvg ~ 10’s GHz
B
G
1A N A AN,
—3nvQ 0 L fava

M = { z(t)| no more than N bands, max width B, bandlimited to [-3 fxvq, +3/fyva) |

(Mishali and Eldar 2007)

Sparse union of shift invariant subspacesz

N o0
(1) = Z Z di[n]a;(t —n)

=1 n=—00

only K « N sequences d;[n] are non-zero
(Eldar 2008)
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Conceptual System

¢ f
k=B 0 b
z(f)
! M
- 1 1 'lr
‘ Ty 2T,
é M == %&3 — 10°s=200
it =nl,
1 Sampling: only a few channels
X . Bl Analog /il PG 4
. lll'ﬂtl‘i:": M seCuences ]
—&)— H( A L i
. Aliasing (intentionally)
- H * :
O HU) y(f) = Az(f), f€ [~z 5)

A=mx M /' Hrn[”-f

: § Recovery: solve inf. CS systems

”{ } ‘ Nice "(CS”
A properties

No discretization (“implement in time...")




The Modulated Wideband Converter

®
x(t) . m sequences
R -
é == /. Ym [ﬂ']
2T,

T,,—periodic p;(t) gives the desired aliasing effect

| ‘ ‘ ‘ \ M/\AAA and many
I 0 {4

more...
1)
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Advantages - Sampling

Any periodic mixing function

An accurate lowpass filter (any order)

Flexible control of sampling rate at each channel
Can implement the 1dea with a smgle channel
One shift register can be used for all branches

® & & o o

e Parameter choice is insensitive to exact width B
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Reconstruction

y (1] ] Realtime processing —

= y[n]

m”r[”] T

Support recovery

CTF block

+ o0 ' '
‘Q = ¥ ylnly" [} ‘ Q=VV! | | V=AU ||5=supp(Uy) ‘
Continuous Finite
y(f) =Az(f), -z <f<+ > V=AU
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Reconstruction

y (1] ] Realtime processing —

= y[n]

m”r[”] T

Support recovery

CTF block

-+

\q: > yinly® [

n=——0

‘ Q= vVH ‘ V =AU ‘5‘ = supp(Up) ‘

Frame construction

In practice, only a lew time instances sufhice
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Reconstruction

y (1] ] Realtime processing —

= y[n]

m”r[”] T

Support recovery

CTF block

+ oo

‘Q= > yinlyH[r]

= —

‘ Q=VVEZ ‘ V =AU ‘5’ = supp(Up) ‘

CS system (MMV)

Small size m x M
o= A M o 4N
Using advanced technigues m | |
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Reconstruction

y (1] ] Realtime processing —

= y[n]

m”r[”] T

Support recovery

CTF block

+ oo

‘Q= > yinlyH[r]

= —

‘ Q=VvVvHd ‘ V=AU ‘SIHH]}]‘)(UH] ‘

Matrix support = Signal support

EEEE BN BN




Reconstruction

, | E\ . :f.'[t) Once support is known:
yp|n S Al ‘ Analog L2 N
.[ | 2 .._.. back-end e Digital processing
, = Fi”] |
Ym 1] ' T e at input rate (realtime)
e Baseband processing
i Support recovery
CTF block
+0o0 v
‘ Q= > ylnly"[n] ‘ Q=VV# V =AU S = supp(Uyp)
=—0o

12/18



Advantages - Reconstruction

Realtime processing

e Perfect reconstruction for analog
signals at lowest possible rate

CTF - Support recovery

e Decouples support recovery from signal
reconstruction:
— CTF works on small size CS system (fast, low memory req.)

— Actual recovery works on signal dimension, but realtime
(known support)

— Baseband processing

e In practice, CTF requires only a small set of samples
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Simulation

LA A, 8 8 AN

f""-."ﬁ Q =50 MHz ,f‘.:*-,q—} GHz

+ wideband Gﬂll&b]ﬁl] noise

Theory: P.R. requires 1.2 GHz 1
In practice: 99% recovery (out of 500 trials) 0.8
7 channels % 250 MHz each
—1.8 GHz (S-OMP algorithm) 0.6

SNR (dB)

C'TF observes the input for 2 usecs onlv !
| J \

Can further reduce the system to
4 channels x 450 MHz (CTF with 10 psecs)
| channel x 1.8 GHz (CTF with 40 pusecs)
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The Underlying Theory

* Landau’s theorem (for known support)

Theorem (non-blind recovery)

Let R be a sampling set for B = {z(t) € L*(R) | supp X(f) C F}.
Then,

_ S ) —
D (R) > A u:| Landau (1967)
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The Underlying Theory

* Landau’s theorem (for known support)
* Minimal rate for multiband signals

Theorem (blind recovery)

Let R be a sampling set for Ny = |J Br.
|F|<A

Then, D™ (R) > min {2, fNYQ}’

Mishali and Eldar (2007)

L} Minimal rate tor M 1s 2N B



The Underlying Theory

* Landau’s theorem (for known support)
* Minimal rate for multiband signals

 IMV model and support recovery (CTF)

Recovery with infinite measurement vectors

(IMV) y(A\) = Ax()\), XeTl

Joint-sparsity assocciated with infinitely many CS systems

(CTF) If x(I') has |[S| < K and 0(A) > 2K, then there exists
a unique sparsest solution matrix Uy and S = I(Uj)
Mishali and Eldar (2007)



The Underlying Theory

* Landau’s theorem (for known support)
* Minimal rate for multiband signals
 IMV model and support recovery (CTF)
* Unique mapping conditions

Theorem (unique mapping analog < digital)

Let x(t) be a multiband signal in M. If,
e mfs=>2NB e p;(t) have enough ”transients”
then, x(t) is the unique analog input matching the samples.

Nlshali and Eldar (2009)
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Does the dream come true ?

Pi iﬂ t = T, 5" order Chebyshev Type-I Filter
. y; lm s
z(t) | Tl
Sign wavefor generator @ 54 MHz

Spectrum Analyzer M: :

= '

/

I

Scope

Power splitter Mixer Lowpass
(m=2 channels) filter

Signal generator
carrier @ 500 MHz
(11 dBm)
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MATLAB ™
(reconstruction)
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