

Sub-Nyquist Sampling of Analog Signals

Yonina Eldar

Moshe Mishali

Department of Electrical Engineering Technion – Israel Institute of Technology

http://www.ee.technion.ac.il/people/YoninaEldar http://www.technion.ac.il/~moshiko yonina@ee.technion.ac.il moshiko@tx.technion.ac.il

Compressed Sensing Workshop Feb. 26th, 2009

"Analog Girl in a Digital World..."

Judy Gorman '99

"Can we not just directly measure the part that will not end up being thrown away?"

(Donoho '06)

Compressed Sensing

Main ideas:

- Sensing = inner products $\mathbf{y}_i = \langle \mathbf{\Phi}_i, \mathbf{x} \rangle$
- Random projections
- Polynomial-time recovery algorithms

K-sparse

(Donoho '06) (Candès, Romberg, Tao '06)

Model

Generalized sampling

 $\mathbf{y}_i = \langle \mathbf{a}_i, \mathbf{x} \rangle$

Standard CS Discrete Framework

$$\|\mathbf{x}\|_0 \leq K$$

$$y = Ax$$

Finite dimensional elements

What is a sparse analog signal?

$$\mathbf{y}[n] = \mathbf{A}\{\mathbf{x}(t)\}$$
 \uparrow

Infinite Operator Continuous sequence $L_2 \to l_2$ signal

I choose sampling, not the matrix

Standard CS Discrete Framework

$$\|\mathbf{x}\|_0 \leq K$$

$$y = Ax$$

Finite dimensional elements

Random A is "good" w.h.p

Sensing matrix

Analog Domain

What is a sparse analog signal?

$$\mathbf{y}[n] = \mathbf{A}\{\mathbf{x}(t)\}$$
 \uparrow

Infinite Operator Continuous sequence $L_2 \to l_2$ signal

Fully Random \rightarrow Infinitely many \mathbf{a}_i

Must have some structure to implement

Model

Generalized sampling

 $\mathbf{y}_i = \langle \mathbf{a}_i, \mathbf{x} \rangle$

Sensing matrix

Reconstruction

Standard CS Discrete Framework

$$\|\mathbf{x}\|_0 \leq K$$

$$y = Ax$$

Finite dimensional elements

Random A is "good" w.h.p

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_p} \text{ s.t. } \mathbf{y} = \mathbf{A}\mathbf{x}$$

Finite program, well-studied

What is a sparse analog signal?

$$\mathbf{y}[n] = \mathbf{A}\{\mathbf{x}(t)\}$$
 \uparrow

Infinite Operator Continuous sequence $L_2 \to l_2$ signal

Fully Random \rightarrow Infinitely many \mathbf{a}_i

$$\min_{\mathbf{x}(t)} \|\mathbf{x}(t)\|_{\ell_p} \text{ s.t. } \mathbf{y}[n] = \mathbf{A}\{\mathbf{x}(t)\}$$

Undefined program over a continuous signal

I can only do a reasonable amount of computations

Goals for Analog CS

- Signal model
 - convenient enough to represent real-life situations
- Hardware implementation
- "Light" computational load
- Real-time processing

Approach: Combine CS with analog sampling ideas

Time-domain approach:

Time-domain approach:

Tones model (sensitive)

System "grid" must match signal tones grid

$$f(t) = \sum_{w \in \Omega} s_w \exp(j2\pi wt)$$

$$\frac{\|f(t) - \hat{f}(t)\|}{\|f(t)\|} = 1.7$$

Time-domain approach:

Tones model (sensitive)

System "grid" must match signal tones grid

High computational load

$$\Phi = R \times W \quad \frac{10\% \text{ tones}}{-10\% \text{ tones}} \qquad \Phi = 100 \times 1000$$

Time-domain approach:

Tones model (sensitive)

System "grid" must match signal tones grid

High computational load

Can't treat true analog signals

50 MHz information band with W = 10 GHzRequires $\sim 100 \cdot 10^6 \text{ tones} \rightarrow \mathbf{\Phi}$ is huge-scale $(10^7 \times 10^{10})$

Frequency-domain approach:

Outline

- Analog model information bands in wide spectrum
- The "modulated wideband converter" hardware implementation
- CTF a "light" computational load on reconstruction
- Advantages wideband regime, realtime, baseband

"Think in frequency-domain – Implement in time-domain"

Analog Signal Model

Mutliband signals:

- Each band has an uncountable number of non-zero elements
- 2. Band locations lie on the continuum
- 3. Band locations are unknown in advance

 $\mathcal{M} = \{ x(t) \mid \text{ no more than } N \text{ bands, max width } B, \text{ bandlimited to } [-\frac{1}{2}f_{\text{NYQ}}, +\frac{1}{2}f_{\text{NYQ}}) \}$

(Mishali and Eldar 2007)

Analog Signal Model

Mutliband signals:

 $\mathcal{M} = \{ x(t) \mid \text{ no more than } N \text{ bands, max width } B, \text{ bandlimited to } [-\frac{1}{2}f_{\text{NYQ}}, +\frac{1}{2}f_{\text{NYQ}}) \}$

(Mishali and Eldar 2007)

Sparse union of shift invariant subspaces:

$$x(t) = \sum_{l=1}^{N} \sum_{n=-\infty}^{\infty} d_l[n] a_l(t-n)$$

only $K \ll N$ sequences $d_l[n]$ are non-zero

(Eldar 2008)

Conceptual System

The Modulated Wideband Converter

 T_p -periodic $p_i(t)$ gives the desired aliasing effect

Advantages - Sampling

- Any periodic mixing function
- An accurate lowpass filter (any order)
- Flexible control of sampling rate at each channel
- Can implement the idea with a single channel
- One shift register can be used for all branches
- Parameter choice is insensitive to exact width B

Continuous

$$\mathbf{y}(f) = \mathbf{A}\mathbf{z}(f), \quad -\frac{1}{T_p} \le f \le \frac{1}{T_p}$$

Finite

$$V = AU$$

Frame construction
In practice, only a few time instances suffice

 $\begin{array}{c} \text{CS system (MMV)} \\ \text{Small size } m \times M \\ m \approx N \quad M \approx \frac{f_{\text{NYQ}}}{B} \\ \text{Using advanced techniques } m = 1 \; ! \end{array}$

Advantages - Reconstruction

 Perfect reconstruction for analog signals at lowest possible rate Realtime processing

CTF - Support recovery

- Decouples support recovery from signal reconstruction:
 - CTF works on small size CS system (fast, low memory req.)
 - Actual recovery works on signal dimension, but realtime (known support)
 - Baseband processing
- In practice, CTF requires only a small set of samples

Simulation

Theory: P.R. requires 1.2 GHz

In practice: 99% recovery (out of 500 trials)

 $7 \text{ channels} \times 250 \text{ MHz}$ each

=1.8 GHz (S-OMP algorithm)

CTF observes the input for 2 μ secs only!

Can further reduce the system to 4 channels \times 450 MHz (CTF with 10 μ secs) 1 channel \times 1.8 GHz (CTF with 40 μ secs)

Landau's theorem (for known support)

Theorem (non-blind recovery)

Let R be a sampling set for $\mathcal{B}_{\mathcal{F}} = \{x(t) \in L^2(\mathbb{R}) \mid \text{supp } X(f) \subseteq \mathcal{F}\}.$ Then,

$$D^-(R) \ge \lambda = |\mathcal{F}|$$

Landau (1967)

- Landau's theorem (for known support)
- Minimal rate for multiband signals

Theorem (blind recovery)

Let
$$R$$
 be a sampling set for $\mathcal{N}_{\lambda} = \bigcup_{|\mathcal{F}| \leq \lambda} \mathcal{B}_{\mathcal{F}}$.
Then, $D^{-}(R) \geq \min \{2\lambda, f_{\text{NYQ}}\}$

Mishali and Eldar (2007)

- Landau's theorem (for known support)
- Minimal rate for multiband signals
- IMV model and support recovery (CTF)

Recovery with infinite measurement vectors

(IMV)
$$\mathbf{y}(\lambda) = \mathbf{A}\mathbf{x}(\lambda), \quad \lambda \in \Gamma$$

Joint-sparsity assocciated with infinitely many CS systems

(CTF) If $\mathbf{x}(\Gamma)$ has $|S| \leq K$ and $\sigma(\mathbf{A}) \geq 2K$, then there exists a unique sparsest solution matrix \mathbf{U}_0 and $S = I(\mathbf{U}_0)$

Mishali and Eldar (2007)

- Landau's theorem (for known support)
- Minimal rate for multiband signals
- IMV model and support recovery (CTF)
- Unique mapping conditions

Theorem (unique mapping analog \Leftrightarrow digital)

Let x(t) be a multiband signal in \mathcal{M} . If,

• $mf_s \ge 2NB$ • $p_i(t)$ have enough "transients"

then, x(t) is the unique analog input matching the samples.

Mishali and Eldar (2009)

Does the dream come true?

References

- H. J. Landau, "Necessary density conditions for sampling and interpolation of certain entire functions," Acta Math., vol. 117, pp. 37–52, Feb. 1967.
- M. Mishali and Y. C. Eldar, "Blind multiband signal reconstruction: Compressed sensing for analog signals," IEEE Trans. Signal Processing, vol. 57, no. 3, pp. 993–1009, Mar. 2009.
- M. Mishali and Y. C. Eldar, "Reduce and boost: Recovering arbitrary sets of jointly sparse vectors," IEEE Trans. Signal Processing, vol. 56, no. 10, pp. 4692–4702, Oct. 2008.
- M. Mishali, Y. C. Eldar, and J. A. Tropp, "Efficient sampling of sparse wideband analog signals," in Proc. of IEEEI, 25th convention, Dec. 2008, pp. 290–294.
- Y. C. Eldar, "Compressed sensing of analog signals," arXiv.org 0806.3332; submitted to IEEE Trans. Signal Processing, Jun. 2008.
- Y. C. Eldar, "Uncertainty relations for analog signals," arXiv.org 0809.3731; submitted to IEEE Trans. Inform. Theory, Sep. 2008.
- M. Mishali and Y. C. Eldar, "From theory to practice: sub-Nyquist sampling of sparse wideband analog signals," arXiv 0902.4291; submitted to IEEE Selected Topics on Signal Processing, Feb. 2009.

Thank you

