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ABSTRACT

The problem considered in this paper is to estimate a deter-
ministic vector representing elements in an overcomplete dic-
tionary. The vector is assumed to be sparse and is to be esti-
mated from measurements corrupted by Gaussian noise. Our
goal is to derive a lower bound on the mean-squared error
(MSE) achievable in this setting. To this end, an appropri-
ate definition of unbiasedness in the sparse setting is devel-
oped, and the unbiased Cramér–Rao bound (CRB) is derived.
The resulting bound is shown to be identical to the MSE of
the oracle estimator. Combined with the fact that the CRB is
achieved at high signal-to-noise ratios by the maximum like-
lihood technique, our result provides a new interpretation for
the common practice of using the oracle estimator as a gold
standard against which practical approaches are compared.

Index Terms— Sparse estimation, Cramér–Rao bound

1. INTRODUCTION

The problem of estimating a sparse vector has been analyzed
intensively in recent years, and its applications span diverse
fields in signal processing and statistics [1–4]. We consider
the setting in which a deterministic sparse vector x0 ∈ Rm

is to be estimated from measurements b = Ax0 + w, where
w is white Gaussian noise and A ∈ Rn×m is a determin-
istic dictionary for which m > n. The maximum-likelihood
(ML) estimator for this setting cannot be calculated efficiently
by any known algorithm. However, several alternative tech-
niques are surprisingly successful in estimating x0; these in-
clude the Dantzig selector (DS) [4] and basis pursuit denois-
ing (BPDN), which is also referred to as the Lasso [1, 2, 5].

In this paper, we characterize the best achievable mean-
squared error (MSE) of estimators of x0, and compare this
lower bound with the actual performance obtained by prac-
tical techniques. A common approach for obtaining lower
bounds on the MSE is to derive the Cramér–Rao bound (CRB)
for unbiased estimators. Among other reasons, the CRB is a
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meaningful lower bound because it is typically achieved by
the ML estimator when the noise variance is small.

To apply these concepts to the sparse setting, we first de-
fine an appropriate extension of the notion of unbiasedness.
The unbiased CRB is then derived for the sparse estimation
scenario, based on the concept of a constrained CRB [6]. As
we show, the unbiased CRB equals the MSE of the “oracle
estimator” which knows the locations of the nonzero entries
of x0. The CRB can thus be viewed as an alternative justifica-
tion for the common use of the oracle estimator as a baseline
against which practical estimators are compared. This gives
further merit to recent results, which demonstrate that BPDN
and the DS both achieve near-oracle performance [4, 7].

2. PROBLEM SETTING

Let x0 ∈ Rm be an unknown deterministic vector satisfying

x0 ∈ S , {x ∈ Rm : ‖x‖0 ≤ k} (1)

for some known integer k � m. Here, ‖x‖0 denotes the
number of nonzero entries in x. We refer to the indices of
these nonzero components as the support set, and denote the
support set of the true parameter x0 by Λ0.

Our goal is to reconstruct x0 from the measurements

b = Ax0 + w (2)

where w is white Gaussian noise with variance σ2, and A ∈
Rn×m is a known overcomplete dictionary (m > n). We
assume that the columns ai of A satisfy ‖ai‖2 = 1.

To estimate x0, one might consider the ML technique

min
x
‖b−Ax‖22 s.t. ‖x‖0 ≤ k. (3)

Unfortunately, solving (3) is NP-hard, meaning that an effi-
cient algorithm providing the ML estimator for general A is
unlikely to exist. Consequently, several practical alternatives
have been proposed for estimating x0. One of these is the `1-
penalty version of BPDN [1], which is obtained by solving

min
x

1
2‖b−Ax‖22 + γ‖x‖1 (4)

with some regularization parameter γ. More recently, an al-
ternative known as the DS was proposed [4]; this approach



estimates x0 as a solution x̂DS to the optimization problem

min
x
‖x‖1 s.t. ‖A∗(b−Ax)‖∞ ≤ τ (5)

where τ is again a user-selected parameter. A modification of
the DS, known as the Gauss–Dantzig selector (GDS) [4], is to
use x̂DS only to estimate the support set Λ0. In this approach,
one solves (5) and determines the support set of x̂DS. The
GDS estimate is then obtained as

x̂GDS =

{
A†Λb on the support set of x̂DS

0 elsewhere
(6)

where the submatrix AΛ consists of the columns of A corre-
sponding to the support of x̂DS.

3. PERFORMANCE BOUNDS

3.1. Background

The MSE of an estimator is, in general, a function of the un-
known parameter x0; an estimator might be better suited for
some values of x0 than others. Performance bounds must thus
describe the achievable MSE as a function of x0.

Previous research has examined the performance of es-
timation techniques in terms of their worst-case MSE among
all possible values x0 ∈ S. Specifically, it has been shown [4]
that, for sufficiently small k and for an appropriate choice of
the regularization parameter τ , the DS of (5) satisfies

‖x0 − x̂DS‖22 ≤ Ckσ2 logm with high probability (7)

for some constant C. More recently, an identical property
was demonstrated for BPDN (4) with an appropriate choice
of γ [7]. Conversely, the worst-case error of any estimator
is at least a constant times kσ2 logm [8, §7.4]. Thus, both
BPDN and DS are optimal, up to a constant, in terms of worst-
case error. Nevertheless, the MSE of these approaches for
specific values of x0, even for a vast majority of such values,
might be much lower. Our goal is therefore to characterize
the pointwise performance of an estimator, i.e., the MSE for
specific values of x0.

One baseline with which practical techniques are often
compared is the oracle estimator, given by

x̂or =

{
A†Λ0

b on the support set Λ0

0 elsewhere
(8)

where AΛ0 is the submatrix constructed from the columns
of A corresponding to the nonzero entries of x0. In other
words, x̂or is the least-squares (LS) solution among vectors
whose support coincides with Λ0, which is assumed to have
been provided by an “oracle.” Of course, in practice Λ0 is
unknown, so that x̂or cannot actually be implemented. Nev-
ertheless, one often compares the performance of true estima-
tors with x̂or, whose MSE is given by [4]

σ2 Tr((A∗Λ0
AΛ0)−1). (9)

While x̂or is a reasonable technique to adopt if Λ0 is
known, this does not imply that (9) is a lower bound on the
performance of practical estimators. Indeed, as shown in Sec-
tion 4, when the SNR is low, both BPDN and the DS outper-
form x̂or, thanks to the use of shrinkage in these estimators. If
Λ0 is known, then there are even techniques which are better
than x̂or for all values of x0 [9]. In the sequel, we demon-
strate that one can indeed interpret (9) as a lower bound on
the achievable MSE, but such a result requires a certain re-
striction of the class of estimators under consideration.

3.2. Unbiasedness in the Sparse Setting

To obtain a meaningful pointwise bound on the MSE, one
must exclude some estimators from consideration; otherwise,
the bound will be tarnished by estimators such as x̂ = xu, for
some constant xu, which achieve an MSE of 0 at the specific
point x0 = xu. Thus, the only pointwise lower bound on the
MSE of all estimators is 0. This is clearly not a useful result.

A standard method of working around this difficulty is
to restrict attention to unbiased estimators, i.e., techniques x̂
whose bias b(x̂,x0) , E{x̂− x0} is zero. Thus, while the
estimate is not always accurate, it yields the correct value x0

“on average.” Furthermore, for high SNR, it can be shown
that biased estimators are suboptimal. Admittedly, there are
situations in which bias is productive (see Section 4). How-
ever, in this paper we focus on the unbiasedness approach,
and attempt to adapt it to the sparse estimation framework.

Observe first that since A is overcomplete, no estimator
can be unbiased for all x0 ∈ Rm. Indeed, all values of x0

in the nullspace of A yield an identical distribution of b, so
an estimator can be unbiased for one of these values at most.
This is a consequence of the underdetermined nature of (2).

The question is whether it is possible to construct estima-
tors which are unbiased over a subset of Rm. For example, it
is always possible to construct a technique which is unbiased
at a single point, say xu: this is again x̂ = xu, which is unbi-
ased at xu but nowhere else. To avoid this loophole, one can
require an estimator to be unbiased in the neighborhood

Bε(x0) = {x ∈ Rm : ‖x− x0‖2 ≤ ε} (10)

of x0, for some small ε. It follows that both the bias b(x) and
the bias gradient ∂b/∂x vanish at x = x0. This formulation
is the basis of the CRB, a lower bound on the MSE at x0

which applies to all estimators whose bias and bias gradient
are zero at x0.

However, it turns out that even this requirement is too
stringent: the CRB for the estimation problem (2) is infinite,
implying that no finite-variance estimator is unbiased in any
ε-neighborhood of any x0 [10]. The reason is related to the
fact that unbiasedness is required over the m-dimensional set
Bε(x0), whereas only n < m measurements are available.

A reasonable compromise is to require unbiasedness over



Bε(x0) ∩ S, i.e., over the neighborhood of x0 restricted1 to
the feasible set S of (1). This leads to a weaker requirement
on the bias gradient: namely, for any vector v ∈ Rm such that
(x0 + εv) ∈ S for all sufficiently small ε, it is required that

∂b
∂x

∣∣∣∣
x=x0

· v = 0. (11)

The vector v represents a direction by which x0 can change
without violating the constraint set S. Thus, we relax the de-
mand ∂b/∂x = 0 by requiring that the bias gradient vanish
only in feasible directions. We refer to this requirement as S-
unbiasedness at x0. Under this definition, one can construct a
CRB based on the methodology of [6], as shown below.

3.3. The Cramér–Rao Bound

The following theorem demonstrates that, under the definition
of S-unbiasedness obtained above, the CRB is finite for most,
but not all, values of x0 in S. The proof of Theorem 1 follows
the lines of [11] and appears in full in [10].

Theorem 1 Let x̂ be a finite-variance estimator of a parame-
ter x0 ∈ S from observations b given by (2). Then, x̂ cannot
be S-unbiased at any point for which ‖x0‖0 < k. Also, if x̂
is S-unbiased at a point for which ‖x0‖0 = k, then

E
{
‖x̂− x0‖22

}
≥ σ2 Tr((A∗Λ0

AΛ0)−1). (12)

The most striking feature of Theorem 1 is the fact that
for ‖x0‖0 = k, the CRB (12) is identical to the oracle MSE
(9). However, the CRB is of additional importance because
of the fact that the ML estimator achieves the CRB in the
limit when a large number of independent measurements are
available, a situation which is equivalent in our setting to the
limit σ → 0. In other words, an MSE of (9) is achieved at
high SNR by the ML approach (3). While the ML approach
is computationally intractable in the sparse estimation setting,
it is still implementable in principle, as opposed to x̂or, which
relies on unavailable information (namely, the support set of
x0). Thus, Theorem 1 gives an alternative interpretation to
comparisons of estimator performance with the oracle.

Next, suppose that ‖x0‖0 < k. In this case, changing any
single entry in x0, even an entry not in Λ0, will not violate the
constraint set S. Thus, Bε(x0) ∩ S is an m-dimensional set
at such points. Theorem 1 then states that no estimator can be
expected to be unbiased for such a high-dimensional set, just
as unbiased estimation is impossible in them-dimensional set
Bε(x0). However, it is still possible to obtain a finite CRB in
this setting by further restricting the definition of unbiased-
ness, as follows. If it is known that ‖x0‖0 = k̃ < k, then one
can redefine S in (1) by replacing k with k̃. This will reduce
the class of estimators considered S-unbiased, and Theorem 1
would then provide a finite lower bound on those estimators.

1We assume that x0 ∈ S, since otherwise Bε(x0) ∩ S = ∅ for small ε.

Observe that the bound (12) depends on the value of x0

(through its support set Λ0), which implies that some values
of x0 are more difficult to estimate than others. However,
for sufficiently incoherent dictionaries, Tr((A∗Λ0

AΛ0)−1) is
bounded above and below by a small constant times k, so that
in this case the CRB is similar for all values of x0. To see
this, let µ be the coherence of A, defined as

µ , max
i6=j
|a∗i aj | . (13)

By the Gershgorin disc theorem, the eigenvalues of A∗Λ0
AΛ0

are in the range [1−kµ, 1 +kµ]. It follows that the CRB (12)
is bounded above and below by

kσ2

1 + kµ
≤ σ2 Tr((A∗Λ0

AΛ0)−1) ≤ kσ2

1− kµ
. (14)

In other words, when k is somewhat smaller than 1/µ, the
CRB is roughly equal to kσ2 for all values of x0. As we have
seen in Section 3.1, for sufficiently small k, the worst-case
MSE of practical estimators, such as BPDN and the DS, is
O(kσ2 logm). Thus, practical estimators come almost within
a constant of the unbiased CRB, implying that they are close
to optimal for all values of x0, at least when compared with
unbiased techniques.

4. NUMERICAL RESULTS

To demonstrate the use of the CRB for measuring the achiev-
able MSE in a sparse estimation problem, a series of simula-
tions was performed. Specifically, a random 100×200 dictio-
nary A was constructed from a zero-mean Gaussian IID dis-
tribution, whose columns were normalized so that ‖ai‖2 = 1.
A random parameter x0 was selected by choosing a support
uniformly at random and selecting the nonzero elements as
Gaussian IID variables with mean 0 and variance 1. Noisy
measurements b were obtained from (2), and x0 was then es-
timated using BPDN (4), the DS (5), and the GDS (6). The
regularization parameters were chosen as τ = 2σ

√
logm and

γ = 4σ
√

log(m− k), rules of thumb which are motivated by
a theoretical analysis [7]. The MSE of each estimate was then
calculated by repeating this process with different realizations
of the random variables. The CRB was calculated from (12).

We first examined the CRB at various SNR levels. Here,
the ML estimator was also computed, in order to verify its
convergence to the CRB at high SNR. This necessitated the
selection of the rather low support size, k = 3. The MSE and
CRB were calculated for 15 different SNRs by choosing val-
ues of σ in the range 1 to 10−3. The MSE of the ML approach,
as well as the other estimators of Section 2, is compared with
the CRB in Fig. 1(a). The convergence of the ML estimator to
the CRB is clearly visible in this figure. The performance of
the GDS is also impressive, being as good or better than the
ML approach in this setting. Apparently, at high SNR, the DS
tends to correctly recover the true support set Λ0, and thus the
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Fig. 1. MSE of various estimators compared with the CRB (12), for (a) varying SNR and (b) varying sparsity levels.

GDS (6) approaches the performance of the oracle (8). Per-
haps surprisingly, applying a LS estimate on the support set
obtained by BPDN (not plotted in Fig. 1) does not work well
at all, and in fact results in higher MSE than a direct applica-
tion of BPDN.

While the CRB of Theorem 1 provides a useful lower
bound, we emphasize that it is applicable only to unbiased
estimators. The bias of most estimators tends to be negligi-
ble in low-noise settings, but often increases with σ2. Indeed,
when σ2 is as large as ‖x0‖22, the measurements carry very lit-
tle useful information about x0, and an estimator can improve
performance by shrinkage. Such a strategy, while clearly bi-
ased, yields lower MSE than a naive reliance on the noisy
measurements. This is indeed the behavior of the DS and
BPDN, since for large σ2, the `1 regularization becomes the
dominant term, resulting in heavy shrinkage. Consequently,
the unbiased CRB no longer applies to these estimators. This
is seen from the fact that some of the estimators outperform
the CRB when the SNR is exceedingly low.

The performance of the estimators of Section 2, excluding
the ML method, was also compared for varying sparsity lev-
els. To this end, the simulation was repeated for 15 support
sizes 1 ≤ k ≤ 30, with σ = 0.01. The results are plotted
in Fig. 1(b). While a substantial gap exists between the CRB
and the MSE of the practical estimators in this case, a sim-
ilar rate of increase is obtained as k grows. Interestingly, a
drawback of the GDS approach is visible in this setting: as
k increases, correct support recovery becomes more difficult,
and shrinkage becomes a valuable asset for reducing the sen-
sitivity of the estimate to random measurement fluctuations.
The LS approach practiced by the GDS, which does not per-
form shrinkage, leads to gradual performance deterioration.

Similar results were obtained with several deterministic
dictionaries A. These are omitted due to space restrictions.
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