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Abstract

We consider unbiased estimation of a sparse nonrandom vector corrupted by additive white Gaussian

noise. We show that while there are infinitely many unbiased estimators for this problem, none of them

has uniformly minimum variance. Therefore, we focus on locally minimum variance unbiased (LMVU)

estimators. We derive simple closed-form lower and upper bounds on the variance of LMVU estimators

or, equivalently, on the Barankin bound (BB). Our bounds allow an estimation of the threshold region

separating the low-SNR and high-SNR regimes, and they indicate the asymptotic behavior of the BB at

high SNR. We also develop numerical lower and upper bounds which are tighter than the closed-form

bounds and thus characterize the BB more accurately. Numerical studies compare our characterization

of the BB with established biased estimation schemes, and demonstrate that while unbiased estimators

perform poorly at low SNR, they may perform better than biased estimators at high SNR. An interesting

conclusion of our analysis is that the high-SNR behavior of the BB depends solely on the value of the

smallest nonzero component of the sparse vector, and that this type of dependence is also exhibited by

the performance of certain practical estimators.
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I. INTRODUCTION

Research in the past few years has led to a recognition that the performance of signal processing

algorithms can be boosted by exploiting the tendency of manysignals to have sparse representations.

Applications of this principle include signal reconstruction (e.g. in the context of compressed sensing [1,

2]) and signal enhancement (e.g. in the context of image denoising and deblurring [3–5]).

In this work, we consider the estimation of anS-sparse, finite-dimensional vectorx∈R
N. By “S-sparse”

we mean that the vectorx has at mostS nonzero entries, which is denoted by‖x‖0 , | supp(x)| ≤ S,

wheresupp(x) denotes the set of indices of the nonzero entries ofx. The “sparsity”S is assumed to

be known, and typicallyS ≪N . However, the positions of the nonzero entries (i.e.,supp(x)) as well

as the values of the nonzero entries are unknown. We investigate how much we can gain in estimation

accuracy by knowinga priori that the vectorx is S-sparse. We will use the frequentist setting [6] of

estimation theory, i.e., we will modelx as unknown but deterministic. This is in contrast to Bayesian

estimation theory, where one treatsx as a random vector whose probability density function (pdf)or

certain moments thereof are assumed to be known. In the Bayesian setting, the sparsity can be modeled

by using a pdf that favors sparse vectors, see e.g. [7–9].

A fundamental concept in the frequentist setting is that of unbiasedness [6, 10, 11]. An unbiased

estimator is one whose expectation always equals the true underlying vectorx. The restriction to unbiased

estimators is important as it excludes trivial and practically useless estimators, and it allows us to study

the difficulty of the estimation problem using established techniques such as the Cramér–Rao bound

(CRB) [10–12]. Another justification of unbiasedness is that for typical estimation problems, when the

variance of the noise is low, it is necessary for an estimatorto be unbiased in order to achieve a small

mean-squared estimation error (MSE) [6].

These reasons notwithstanding, there is no guarantee that unbiased estimators are necessarily optimal.

In fact, in many settings, including the scenario describedin this paper, there exist biased estimators which

are strictly better than any unbiased technique in terms of MSE [13–15]. Nevertheless, for simplicity and

because of the reasons stated above, we focus on bounds for unbiased estimation in this work. As we

will see, bounds on unbiased techniques give some indication of the general difficulty of the setting, and

as such some of our conclusions will be shown empirically to characterize biased techniques as well.

Our main contribution is a characterization of the optimal performance of unbiased estimatorsx̂(y)

that are based on observing

y = Ax+ n (1)
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where A ∈ R
M×N (M ≥ N ) is a known matrix with orthonormal columns, i.e.,ATA = IN , and

n ∼ N (0, σ2IM) denotes zero-mean white Gaussian noise with known varianceσ2 (here,IN denotes

the identity matrix of sizeN×N ). Note that without loss of generality we can then assume that A = IN

andM = N , i.e.,y = x+n, since premultiplication of the model (1) byAT will reduce the estimation

problem to an equivalent problemy′ = A′x+ n′ in which A′ = ATA = IN and the noisen′ = ATn

is again zero-mean white Gaussian with varianceσ2. Such a sparse signal model can be used, e.g., for

channel estimation [16] when the channel consists only of few significant taps and an orthogonal training

signal is used [17]. Another application that fits our scope is image denoising using an orthonormal

wavelet basis [3]. We note that parts of this work were previously presented in [18].

The estimation problem (1) withA = IN was studied by Donoho and Johnstone [19, 20]. Their

work was aimed at demonstrating asymptotic minimax optimality, i.e., they considered estimators having

optimal worst-case behavior when the problem dimensionsN,S tend to infinity. By contrast, we consider

the finite-dimensional setting, and attempt to characterize the performance at each value ofx, rather than

analyzing worst-case behavior. Such a “pointwise” approach was also advocated by the authors of [21,

22], who studied the CRB for the sparse linear model (1) with arbitrary A. However, the CRB is a

local bound, in the sense that the performance characterization it provides is only based on the statistical

properties in the neighborhood of the specific value ofx being examined. In particular, the CRB for a

givenx is only based on alocal unbiasedness assumption, meaning that the estimator is only required to

be unbiased atx and in its infinitesimal neighborhood. Our goal in this paperis to obtain performance

bounds for the more restrictive case of globally unbiased estimators, i.e., estimators whose expectation

equals the truex for eachS-sparse vectorx. Since any globally unbiased estimator is also locally

unbiased, our lower bounds will be tighter than those of [21,22].

Our contributions and the organization of this paper can be summarized as follows. In Section II, we

show that whereas only one unbiased estimator exists for theordinary (nonsparse) signal in noise model,

there are infinitely many unbiased estimators for the sparsesignal in noise model; on the other hand,

none of them has uniformly minimum variance. In Sections IIIand IV, we characterize the performance

of locally minimum variance unbiased estimators by providing, respectively, lower and upper bounds on

their mean-squared error (MSE). These bounds can equivalently be viewed as lower and upper bounds on

theBarankin bound[23, 24]. Finally, numerical studies exploring and extending our performance bounds

and comparing them with established estimator designs are presented in Section V.

Notation: Throughout the paper, boldface lowercase letters (e.g.,x) denote column vectors while

boldface uppercase letters (e.g.,M) denote matrices. We denote by tr(M), MT, and M† the trace,
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transpose, and Moore-Penrose pseudoinverse ofM, respectively. The identity matrix of sizeN×N is

denoted byIN . The notationM � N indicates thatM−N is a positive semidefinite matrix. The set

of indices of the nonzero entries of a vectorx is denoted bysupp(x), and‖x‖0 is defined as the size

of this set. Thek th entry of x is written xk. We also use the signum function of a real numbery,

sgn(y) , y/|y|. The sets of nonnegative, nonpositive, and positive real numbers will be denoted byR+,

R−, andR++, respectively.

II. T HE SPARSESIGNAL IN NOISE MODEL

A. Problem Setting

Let x ∈ R
N be an unknown deterministic vector which is known to beS-sparse, i.e.,

x∈XS , with XS , {x∈R
N : ‖x‖0 ≤ S} .

The vectorx is to be estimated based on the observation of a vectory which is the sum ofx and

zero-mean white Gaussian noise. Thus

y = x+ n , with x∈XS , n ∼ N (0, σ2IN ) (2)

where the noise varianceσ2 is assumed to be nonzero and known. It follows that the pdf ofy,

parameterized by the deterministic but unknown parameterx∈XS , is

f(y;x) =
1

(2πσ2)N/2
exp

(
− 1

2σ2
‖y−x‖22

)
. (3)

We refer to (2) as thesparse signal in noise model(SSNM). As explained previously, settings of the

form (1) with an orthonormal matrixA can be converted to the SSNM (2). The caseS=N corresponds

to the situation in which no sparsity assumption is made. As we will see, this case is fundamentally

different from the sparse settingS<N , which is our focus in this paper.

An estimatorx̂(y) of the parameterx is a function that maps (a realization of) the observationy to

(a realization of) the estimated vectorx̂, i.e.,

x̂(·) : RN→ R
N : y 7→ x̂.

With an abuse of notation, we will use the symbolx̂ for both the estimator (which is a function) and the

estimate (a specific function value). The meaning should be clear from the context. The question now

is how we can exploit the information thatx is S-sparse in order to construct “good” estimators. Our
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measure of the quality of an estimatorx̂(·) for a given parameter valuex∈XS will be the estimator’s

MSE, which is defined as

ε(x; x̂) , Ex

{
‖x̂(y) − x‖22

}
.

Here, the notationEx{·} means that the expectation is taken with respect to the pdff(y;x) of the

observationy parameterized byx. Note that even thoughx is known to beS-sparse, the estimateŝx are

not constrained to beS-sparse.

The MSE can be written as the sum of a bias term and a variance term, i.e.,

ε(x; x̂) = ‖b(x; x̂)‖22 + V (x; x̂)

where the biasb(x; x̂) , Ex{x̂(y)} − x accounts for systematic estimation errors and the variance

V (x; x̂) , Ex{‖x̂(y) − Ex{x̂(y)}‖22} accounts for errors due to random fluctuations of the estimate.

Thus, for unbiased estimators (b(x; x̂) = 0 for all x∈XS), the MSE is equal to the variance, i.e.,ε(x; x̂)

= V (x; x̂).

We will also consider the mean power (second moment) of an estimator,

P (x; x̂) , Ex

{
‖x̂(y)‖22

}
= V (x; x̂) + ‖Ex{x̂(y)}‖22 . (4)

For unbiased estimators,‖Ex{x̂(y)}‖22 = ‖x‖22; thus, minimizing the varianceV (x; x̂) at a fixedx∈XS

among all unbiased estimators is equivalent to minimizingP (x; x̂).

B. Estimator Design

Two well-established estimator designs are the least squares (LS) estimator defined by

x̂LS(y) , argmin
x′∈XS

‖y−x′‖22 (5)

and the maximum likelihood (ML) estimator defined by

x̂ML (y) , argmax
x′∈XS

f(y;x′). (6)

For the SSNM, due to (3), the LS and ML estimators coincide; they are easily seen to be given by

x̂LS(y) = x̂ML (y) = PS(y) (7)

wherePS is an operator that retains theS largest (in magnitude) components and zeros out all others.The

LS/ML estimator is biased unlessS=N . Note that this estimator is not based on a direct minimization
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of the MSE. Indeed, if the sparsity constraint is removed (S=N ) andN≥ 3, it has been shown [13–15]

that there exist estimators which yield a better MSE performance than that of the LS/ML estimator.

The MSEε(x; x̂) of a specific estimator̂x(·) depends on the value of the parameterx. This makes

it difficult to define optimality in terms of minimum MSE. For example, if an estimator̂x(·) performs

well (i.e., has a small MSE) for a specific parameter valuex1, it may still exhibit poor performance (i.e.,

a large MSE) for a different parameter valuex2. Ideally, an optimal estimator should have minimum

MSE for all parameter valuessimultaneously. However, such an optimality criterion is unobtainable

since the minimum MSE achievable at a specific parameter value x1 is zero; it is achieved by the trivial

estimatorx̂(y) ≡ x1 which is constant and completely ignores the observationy. Therefore, if there

were auniformly minimum MSEestimator, it would have to achieve zero MSE for all parameter values,

which is obviously impossible. Thus, requiring the estimator to minimize the MSE at all parameter values

simultaneously makes no sense.

One useful optimality criterion is the minimax approach, which considers the worst-case MSE

sup
x∈XS

ε(x; x̂)

of an estimator̂x(·). An optimal estimator in the minimax sense minimizes the worst-case MSE, i.e., is

a solution of the optimization problem

inf
x̂(·)

sup
x∈XS

ε(x; x̂) .

Considerable effort has been spent to identify minimax estimators for sparse models such as the SSNM

in (2); see, e.g., [19, 20, 25]. However, these results only apply in the asymptotic regime, i.e., when

N,S → ∞. By contrast, our goal is to analyze estimator performance for finite problem dimensions.

There are no known closed-form expressions of the minimax risk or of minimax-optimal estimators for

the SSNM in this case.

In this work, rather than pursuing the minimax criterion, weconsiderunbiasedestimatorsx̂(·) for

the SSNM. An unbiased estimator is one for which the biasb(x; x̂) is zero for allS-sparse parameter

vectors i.e.,

Ex{x̂(y)} = x for all x∈XS . (8)

Let U denote the set of all unbiased estimatorsx̂(·) for the SSNM. Constraining an estimator to be

unbiased excludes such trivial estimators asx̂(y) ≡ x1 wherex1∈XS is some fixedS-sparse parameter

vector.
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C. Unbiased Estimation for the SSNM

We now study the setU of unbiased estimators for the SSNM in more detail. In particular, we will

show that with the exception of the caseS =N , this set is uncountably large, i.e., there are infinitely

many unbiased estimators. We will also show that there exists no uniformly minimum variance unbiased

estimator unlessS = N . In what follows, we will say that an estimator̂x has a bounded MSE if

ε(x; x̂) ≤ C for all x∈R
N, whereC is a constant which may depend onN , S, andσ2.

Theorem 1. Consider the SSNM(2) with S = N , i.e., without a sparsity constraint, in which case

XS = R
N. Then, there exists exactly one unbiased estimator having bounded MSE (up to deviations

having zero measure). This estimator is given byx̂(y) = y, which equals the LS/ML estimator in(5)–(7).

The proof of this result can be found in Appendix A. By contrast with Theorem 1, when sparsity

constraints are imposed there exists a large family of unbiased estimators, as we now show.

Theorem 2. For 1≤S<N , there are uncountably infinitely many unbiased estimatorsfor the SSNM.

Proof. Consider the class of estimators defined by

x̂(y) = y + ay1

[
S+1∏

k=2

h(c,d)(yk)

]
(
1 0 · · · 0

)T
, a ∈ R, c, d ∈ R++ (9)

where

h(c,d)(y) ,





sgn(y), |y| ∈ [c, c+ d]

0, else.
(10)

A straightforward calculation shows that each estimator ofthis uncountably infinite class is an unbiased

estimator for the SSNM. �

This (constructive) proof points at a noteworthy fact. Consider a particular parameter valuex. By an

appropriate choice of the parametersa, c, d in (9), one can reduce the magnitude of the estimatex̂(y) for

sets of realizationsy with high probability, i.e., for whichf(y;x) is large. This results in a reduced mean

power and (since the estimator is unbiased) in a reduced variance and MSE at the specific parameter

value x. One can thus construct an unbiased estimator that performsbetter than the (biased) LS/ML

estimator at the givenx.

In view of Theorems 1 and 2, we will only consider the caseS < N in the following. Since in

this case there are infinitely many unbiased estimators, we would like to find an unbiased estimator
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having minimum variance (and, thus, minimum MSE) among all unbiased estimators. If there exists an

unbiased estimator̂x(·) ∈ U which minimizes the variancesimultaneouslyfor all S-sparse parameter

vectorsx∈XS , then this estimator is called auniformly minimum variance unbiased(UMVU) estimator

[6]. In other words, a UMVU estimator for the SSNM solves the optimization problem

argmin
x̂(·)∈U

V (x; x̂) (11)

simultaneously for allx∈XS . In the nonsparse caseS =N , it is well known that the LS estimator is

the UMVU estimator [10]; however, in light of Theorem 1, thisis not a very strong result, sincêxLS is

the only unbiased estimator in that case. On the other hand, for the sparse caseS <N , the following

negative result is shown in Appendix B.

Theorem 3. For the SSNM withS < N , there exists no UMVU estimator, i.e., there is no unbiased

estimatorx̂∈ U that minimizesV (x; x̂) simultaneously for all parameter vectorsx∈XS .

Despite the fact that a UMVU estimator does not exist for the SSNM, one can still attempt to solve

the optimization problem (11) separately for each value ofx∈XS. An unbiased estimator which solves

(11) for a specific value ofx is said to belocally minimum variance unbiased(LMVU) [6]. The MSE

of this estimator atx cannot be improved upon by any unbiased estimator. When viewed as a function

of x, this minimum MSE is known as theBarankin bound(BB) [23, 24]. Thus, the BB characterizes

the minimum MSE achievable by any unbiased estimator for each value ofx∈XS; it is the highest and

tightest lower bound on the MSE of unbiased estimators. As such, the BB serves as a measure of the

difficulty of estimatingx.

Computing the BB is equivalent to calculatingminx̂(·)∈U V (x; x̂) for each parameter vectorx∈XS

separately. Unfortunately, there does not appear to be a simple closed-form expression of the BB, and

the numerical computation of the BB seems to be difficult as well. Therefore, in the remainder of this

paper, we will provide lower and upper bounds on the BB. When these bounds are close to one another,

they provide an accurate characterization of the BB.

III. L OWER BOUNDS ON THEM INIMUM MSE

In this section, we will develop a lower bound on the BB (whichis thus a lower bound on the MSE

of any unbiased estimator) by calculating a limiting case ofthe Hammersley–Chapman–Robbins bound

[23] for the SSNM.
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A. Review of the CRB

A variety of techniques exist for developing lower bounds onthe MSE of unbiased estimators. The

simplest is the CRB [11, 12, 26], which was previously derived for a more general sparse estimation

setting in [21, 22]. In the current setting, i.e., for the SSNM (1), the CRB is given by

ε(x; x̂) ≥




Sσ2, ‖x‖0 = S

Nσ2, ‖x‖0 < S
(12)

wherex̂∈ U , i.e., x̂(·) is any unbiased estimator for the SSNM.

In the case of parameter valuesx∈XS with non-maximal support, i.e.,‖x‖0 < S, the CRB isNσ2.

This is the MSE of the trivial unbiased estimatorx̂(y) = y. Since the CRB is thus achieved by an

unbiased estimator, we conclude that the CRB is amaximally tightlower bound for‖x‖0 < S; no other

lower bound can be tighter (higher). We also conclude that for ‖x‖0 < S, the trivial estimator̂x(y) = y

is the LMVU estimator; no other unbiased estimator can have asmaller MSE.

For parameter valuesx∈XS with maximal support, i.e.,‖x‖0 = S, we will see that the CRB is not

maximally tight, and the trivial estimator̂x(y) = y is not the LMVU estimator. Indeed, one problem with

the CRB in (12) is that it is discontinuous in the transition between‖x‖0 = S and‖x‖0 < S. Since the

MSE of any estimator is continuous [6], this discontinuity implies that the CRB is not the tightest lower

bound obtainable for unbiased estimators. In order to obtain tighter bounds for‖x‖0 = S, it is important

to realize that the CRB is a local bound, which assumes unbiasedness only in a neighborhood ofx. Since

we are interested in estimators that are unbiased for allx∈XS , which is a more restrictive constraint

than local unbiasedness, tighter (i.e., higher) lower bounds can be expected for unbiased estimators in

the case‖x‖0 = S.

B. Hammersley–Chapman–Robbins Bound

An alternative lower bound for unbiased estimators is the Hammersley–Chapman–Robbins bound

(HCRB) [23, 27, 28], which can be stated, in our context, as follows.

Proposition 4. Given a parameter valuex ∈ XS , consider a set ofp “test points” {vi}pi=1 such that

x + vi ∈ XS for all i = 1, . . . , p. Then, the covariance of any unbiased estimatorx̂(·), C(x; x̂) ,

Ex

{[
x̂(y)− Ex{x̂(y)}

][
x̂(y) − Ex{x̂(y)}

]T}
, satisfies

C(x; x̂) � VJ†VT (13)
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where

V , (v1 · · ·vp) ∈ R
N×p (14)

and the(i, j)th entry of the matrixJ ∈ R
p×p is given by

(J)i,j , exp

(
vT
i vj

σ2

)
− 1 . (15)

In particular, the MSE of̂x(·) satisfies

ε(x; x̂) ≥ tr
(
VJ†VT

)
. (16)

The proof of Proposition 4, which can be found in Appendix C, involves an application of the

multivariate HCRB of Gorman and Hero [23] to the SSNM setting. Note that both the number of test

pointsp and their valuesvi are arbitrary and can depend onx. In general, including additional test points

vi will result in a tighter HCRB [23]. Our goal in this section isto choose test pointsvi which result in

a tight but analytically tractable bound.

Before attempting to derive a bound which is tighter than theCRB, we first observe that the CRB

itself can be obtained as the limit of a sequence of HCRBs withappropriately chosen test points. Indeed,

consider the specific test points given by1

{tei}i∈supp(x) , ‖x‖0 = S (17a)

{tei}i∈{1,...,N} , ‖x‖0 < S (17b)

wheret > 0 is a constant andei represents theith column of theN ×N identity matrix. Note thatp=S

in (17a) andp=N in (17b). Each value oft yields a different set of test points and, via Proposition 4,

a different lower bound on the MSE of unbiased estimators. Weshow in Appendix D that the CRB in

(12) is the limit of a sequence of such bounds ast→ 0, and that it is tighter than any bound that can be

obtained via Proposition 4 using the test points (17) for a fixed t> 0.

Can a set of test points different from (17) yield a lower bound that is tighter than the CRB? As

discussed above, this is only possible for parameter valuesx having maximal support, i.e.,‖x‖0 = S,

because for‖x‖0 < S the CRB is already maximally tight. Therefore, let us consider a parameterx

with ‖x‖0 = S. Suppose one of the entries within the support,xj for somej ∈ supp(x), has a small

magnitude. Such a parameterx just barely qualifies as having maximal support, so it makes sense to

1Note that, with a slight abuse of notation, the indexi of the test points is now allowed to take on non-sequential values from

the set{1, . . . , N}.
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adapt the optimal test points (17b) from the non-maximal support case. However, including a test point

tei with i /∈ supp(x) is not allowed, since in this casex+ tei is not inXS . Instead, one could include

the test pointvi = tei − xjej, which satisfies the requirementx + vi ∈ XS and is still close totei if

xj is small. More generally, for any maximal-support parameter x, we propose the set ofN test points

given by

vi =




tei , i ∈ supp(x)

tei − ξe(S) , i /∈ supp(x)
(18)

for i = 1, . . . , N . Here,ξ denotes the smallest (in magnitude) of theS nonzero components ofx and

e(S) denotes the corresponding unit vector. These test pointsvi satisfy the conditionx+ vi ∈ XS . Note

that the test points in (17a), which yield the CRB, are a subset of the test points in (18). It can be shown

[23] that this implies that the bound induced by (18) will always be at least as tight as that obtained from

(17a). It is important to note that (18) usesN test points for parameter values with maximal support,

just as (17b) does for parameter values with non-maximal support. In fact, there is a smooth transition

between the optimal test points (17b) for non-maximal support and the proposed test points (18) for

maximal support.

While an expression of the HCRB can be obtained by simply plugging (18) into (16), the resulting

bound is extremely cumbersome and not very insightful. Instead, in analogy to the derivation of the CRB

above, one can obtain a simple result by taking the limit fort→ 0. This leads to the following theorem,

which combines the cases of maximal support ((16) using (18)for t→ 0) and non-maximal support ((16)

using (17b) fort→ 0), and whose proof can be found in Appendix E.

Theorem 5. The MSE of any unbiased estimatorx̂ ∈ U for the SSNM satisfies

ε(x; x̂) ≥ HCRB(x) ,





Sσ2 + (N−S−1)e−ξ2/σ2

σ2, ‖x‖0 = S

Nσ2, ‖x‖0 < S ,
(19)

where, in the case‖x‖0 = S, ξ is the smallest (in magnitude) of theS nonzero entries ofx.

For simplicity, we will continue to refer to (19) as an HCRB, even though it was obtained as a limit

of HCRBs. Note that when‖x‖0 <S, the HCRB in (19) is identical to the CRB in (12), since in that

case the CRB is maximally tight and cannot be improved. The HCRB also approaches the CRB when

‖x‖0 = S and all components ofx are much larger thanσ: heree−ξ2/σ2

is negligible and the respective

bound in (19) converges toSσ2, which is equal to the CRB in (12). This is due to the fact that the CRB
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is achieved by the ML estimator asymptotically2 as ξ2/σ2 → ∞, and is therefore also maximally tight

when ξ ≫ σ. Furthermore, if we define the “worst-case component SNR” (briefly denoted as SNR) as

ξ2/σ2, then Theorem 5 hints that the convergence to the high-SNR limit is exponential in the SNR.

One of the motivations for improving the CRB (12) was that (12) is discontinuous in the transition

between‖x‖0 = S and ‖x‖0 < S. While the HCRB (19) is still discontinuous in this transition, the

discontinuity is much smaller than that of the CRB. Indeed, the transition from‖x‖0 = S to ‖x‖0 < S

corresponds toξ→ 0, in which case the first bound in (19) tends to(N−1)σ2, whereas the second bound,

valid for ‖x‖0<S, is Nσ2; thus, the difference between the two bounds in (19) isσ2. By contrast, the

difference between the two bounds in (12) is(N −S)σ2, which is typically much larger. Again, the

discontinuity of (19) implies that (19) is not the tightest lower bound obtainable for unbiased estimators.

In Section V, we will demonstrate experimentally that this discontinuity can be eliminated altogether by

using a much larger number of test points. However, in that case the resulting bound no longer has a

simple closed-form expression and can only be evaluated numerically.

IV. U PPERBOUND ON THE M INIMUM MSE

As pointed out in the previous section, the lower bound HCRB(x) on the BB is not maximally tight

since it is discontinuous in the transition between parameter vectors with‖x‖0 = S and those with

‖x‖0 < S. In other words, there is a gap between the HCRB and the BB. Howlarge is this gap? We will

address this issue by deriving anupper bound on the BB. This will be done by finding a constrained

solution of (11). If this upper bound is close to the lower bound HCRB(x), we can conclude that both

bounds are fairly tight and thus provide a fairly accurate characterization of the BB. As before, we

consider the nontrivial case‖x‖0 = S.

We first note (cf. (4)) that (11) is equivalent to the optimization problemargminx̂(·)∈U Ex

{
‖x̂(y)‖22

}

= argminx̂(·)∈U
∑N

k=1 Ex

{
(x̂k(y))

2
}

, wherex̂k denotes thekth entry of x̂. This, in turn, is equivalent

to theN individual scalar optimization problems

argmin
x̂k(·)∈Uk

Ex

{
(x̂k(y))

2
}
, k = 1, . . . , N (20)

2This can be explained by the fact that according to (7), the MLestimator for the SSNM retains theS largest components

in y and zeros out all other components. For noise variancesσ2 that are extremely small compared to the nonzero entries, i.e.,

for ξ2/σ2 → ∞, the probability that the ML estimator selects the true components becomes very close to one. Therefore, for

high ξ2/σ2, the ML estimator behaves like an oracle estimator which knows the support ofx and whose MSE is equal toSσ2.

June 1, 2010 DRAFT



13

whereUk denotes the set of unbiased estimators of thekth entry ofx, i.e.,

Uk ,
{
x̂k(·)

∣∣ Ex{x̂k(y)} = xk for all x∈XS

}
.

By combining the unbiased estimatorsx̂k(·) for k = 1, . . . , N into a vector, we obtain an unbiased

estimator of the parameterx.

It will be convenient to write thekth scalar estimator as

x̂k(y) = yk + x̂′k(y) (21)

with x̂′k(y) , x̂k(y) − yk. Since for anyx̂k(·) ∈ Uk we haveEx{x̂k(y)} = Ex{yk} + Ex{x̂′k(y)} =

xk + Ex{x̂′k(y)}, the unbiasedness condition̂xk(·) ∈ Uk is equivalent to

Ex{x̂′k(y)} = 0 for all x∈XS .

For k ∈ supp(x), the solution of the optimization problem (20) is stated in the following lemma, which

is proved in Appendix F. In what follows, it will be convenient to denote bŷx(x)(y) a solution of the

optimization problem (11) for a given parameter vectorx∈XS . We recall that the estimator̂x(x)(y) is

an LMVU at the parameter valuex, and its MSE,ε(x; x̂(x)) = minx̂(·)∈U V (x; x̂), equals the BB atx.

Lemma 6. Consider a parameter vectorx ∈ XS with maximal support, i.e.,‖x‖0 = S. Then, for any

k ∈ supp(x), the solution of the optimization problem(20) is given by

x̂
(x)
k (y) = yk , k ∈ supp(x) .

Moreover, this is the LMVU fork ∈ supp(x). The MSE of this estimator isσ2.

Because Lemma 6 describes the scalar LMVU estimators for allindices k ∈ supp(x), it remains

to consider the scalar problem (20) fork /∈ supp(x). Sinceε(x; x̂(x)) is the minimum ofε(x; x̂) as

defined by the optimization problem (11), we can obtain an upper bound onε(x; x̂(x)) by placing further

constraints on the estimatorx̂(·) to be optimized. We will thus consider the modified optimization problem

argmin
x̂(·)∈U∩Ax

V (x; x̂) (22)

where the setAx is chosen such that a simpler problem is obtained. We will defineAx in a componentwise

fashion. More specifically, thekth component̂xk(y) of x̂(y), wherek /∈ supp(x), is said to belong to

the setAk
x if the correction term̂x′k(y) = x̂k(y) − yk (see (21)) satisfies the following two properties.
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• Odd symmetrywith respect tok and all indices insupp(x):

x̂′k(. . . ,−yl, . . .) = − x̂′k(. . . , yl, . . .) , for all l ∈ {k} ∪ supp(x) . (23)

• Independencewith respect to all other indices:

x̂′k(. . . , yl, . . .) = x̂′k(. . . , 0, . . .) , for all l /∈ {k} ∪ supp(x) . (24)

We then defineAx as the set of estimatorŝx(y) such that̂xk(y)∈Ak
x for all k /∈ supp(x). Note that any

functionx̂(y)∈Ak
x is fully specified by its values for all argumentsy such thatsupp(y) = {k}∪ supp(x)

and all entries ofy are nonnegative. The values ofx̂(y) for all othery follow by the decomposition (21)

and the properties (23) and (24).

To solve the modified optimization problem (22), we considerthe equivalent scalar form

argmin
x̂k(·)∈Uk∩Ak

x

Ex

{
(x̂k(y))

2
}
, k /∈ supp(x) . (25)

The resulting minimum MSE is stated by the following lemma, whose proof can be found in Appendix

G.

Lemma 7. Consider a parameter vectorx ∈ XS with maximal support, i.e.,‖x‖0 = S. Then, for any

k /∈ supp(x), the minimum MSE of any estimatorx̂k(·) ∈ Uk ∩ Ak
x, denoted byBBk

c (x), is given by

BBk
c (x) =

[
1−

∏

l∈supp(x)

g(xl;σ
2)

]
σ2 (26)

with

g(x;σ2) =
1√
2πσ2

∫ ∞

0
e−(x2+y2)/(2σ2) sinh

(
xy

σ2

)
tanh

(
xy

σ2

)
dy . (27)

Lemma 7 identifies the minimum MSE of any unbiased estimator of the kth component ofx (where

k /∈ supp(x)) that is also constrained to be an element ofAk
x. Note that BBkc (x) does not depend onk.

It provides an upper bound on the minimum MSE of any unbiased estimator of thekth component of

x, for anyk /∈ supp(x).

The total MSE of a vector estimator̂x(·) can be decomposed asε(x; x̂) =
∑

k∈supp(x) ε(x; x̂k) +
∑

k /∈supp(x) ε(x; x̂k) with the component MSEε(x; x̂k) , Ex

{
(x̂k(y) − xk)

2
}

. Inserting the minimum

component MSE fork ∈ supp(x) (which is σ2 according to Lemma 6) in the first sum and the upper

bound BBkc (x) on the minimum component MSE fork /∈ supp(x) in the second sum, we obtain the

following upper bound on the minimum total MSE of any unbiased vector estimator.
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Theorem 8. The minimum MSE achievable by any unbiased estimator for theSSNM at a parameter

vectorx∈XS with ‖x‖0 = S satisfies

ε(x; x̂(x)) ≤ BBc(x) , Sσ2 + (N−S)BBk
c(x) (28)

with BBk
c (x) given by(26).

Depending on the parameter vectorx, the upper bound BBc(x) varies between two extreme values.

For decreasing SNRξ2/σ2, it converges to the low-SNR valueNσ2 (because the factorg(ξ, σ2) in (26)

vanishes forξ2/σ2 → 0). On the other hand, we will show below that for increasing SNR, BBc(x)

converges to its high-SNR value, which is given bySσ2.

The lower bound HCRB(x) in (19) for the case‖x‖0 = S, i.e.,Sσ2+(N−S−1)e−ξ2/σ2

σ2, exhibits an

exponential transition between the low-SNR and high-SNR regimes. More specifically, when considering

a sequence of parameter vectorsx∈XS with increasing SNRξ2/σ2, the bound transitions from the low-

SNR value(N−1)σ2 (obtained forξ2/σ2 = 0) to the high-SNR valueSσ2 (obtained forξ2/σ2 → ∞);

this transition is exponential in the SNR. The upper bound BBc(x) in (28) also exhibits a transition that

is exponential inξ2/σ2. In fact, it is shown in Appendix H that

BBc(x) ≤ Sσ2 + (N−S) 3S e−ξ2/(2σ2)σ2. (29)

This shows that for increasingξ2/σ2, the upper bound BBc(x)—just like the lower bound HCRB(x)—

decays exponentially to its asymptotic valueSσ2, which is also the asymptotic value of HCRB(x). It

follows that the BB itself also converges exponentially toSσ2 as ξ2/σ2 increases. This result will be

further explored in Section V-C.

V. NUMERICAL RESULTS

In this section, we describe several numerical studies which explore and extend the theoretical bounds

developed above. These include a numerical improvement of the bounds, a comparison with practical

(biased) estimation techniques, an analysis of the performance at high SNR, and an examination of the

ability to estimate the threshold region in which the transition from low to high SNR occurs.

We will first show that it is possible to obtain significantly tighter versions of the lower and upper

bounds developed in Sections III and IV. These tightened versions can only be computed numerically and

no longer have a simple form; consequently, they are less convenient for theoretical analyses. Nevertheless,

they characterize the BB very accurately and therefore alsoprovide an indication of the accuracy of the

simpler, closed-form bounds.
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Fig. 1. Lower bounds HCRB(x), HCRBV(x) and upper bounds BBc(x), BB′
c(x) on the MSEε(x; x̂(x)) of the LMVU estimator

at x = c (1 0 0 0 0)T , with c varied to obtain different values of SNR(x) = ξ2/σ2. The SSNM parameters areN=5, S=1,

andσ2=1.

A. Numerical Lower Bound

For a parameter vectorx with ‖x‖0=S, let us reconsider the HCRB in (16). We will show that by

using an increased number of appropriately chosen test points, we can obtain a lower bound that is higher

(thus, tighter) than (19). Specifically, assume without loss of generality thatsupp(x) = {1, . . . , S}, and

consider the set of test points

V , V0 ∪
S⋃

k=1

(Vk ∪Wk)

with the component sets

V0 ,
⋃

l∈ supp(x)

{αel}

Vk ,
⋃

l∈{S+1,...,N}
{αel −xkek} , k = 1, . . . , S

Wk ,
⋃

l∈{S+1,...,N}
{xk el −xkek} , k = 1, . . . , S

whereα = 0.02σ. In Fig. 1, the HCRB (16) for the new setV of test points—denoted HCRBV(x)—is

displayed versus the SNR and compared with HCRB(x). For this figure, we choseN=5, S=1, σ2=1,

andx = c (1 0 0 0 0)T , where the parameterc∈R is varied to obtain different SNR values.3 As before,

3The use of a low-dimensional model is mandated by the complexity of the numerical approximation to the upper bound on

the BB which will be described in Section V-B.
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the SNR is defined as SNR(x) = ξ2/σ2, whereξ is theS-largest (in magnitude) component ofx (in

our example withS = 1, ξ is simply the single nonzero component). It can be seen from Fig. 1 that

the numerical lower bound HCRBV(x) computed from the above test points is indeed tighter than the

closed-form lower bound HCRB(x) in (19).

B. Numerical Upper Bound

It is also possible to find upper bounds on the BB that are tighter (lower) than the upper bound BBc(x)

in (28). Consider a parameter vectorx with ‖x‖0=S. We recall that BBc(x) was derived by constructing,

for all k /∈ supp(x), unbiased estimatorŝxk(y) = yk + x̂′k(y) with x̂′k(y) constrained by (23) and (24).

We will now investigate how much we can improve on BBc(x) if we remove the constraint (23). Thus,

in the optimization problem (22), the constraint setAx is hereafter considered to correspond only to the

constraint (24).

In order to numerically solve this modified optimization problem (22), a discrete approximation for

x̂′k(y) was used. More specifically, we definedx̂′k(y) to be piecewise constant in each of the components

yl with l ∈ {k} ∪ supp(x), and constant in the remaining componentsyl (the latter being required by

(24)). We usedQ piecewise constant segments for eachl ∈ {k} ∪ supp(x), with each segment of length

∆= 10σ/Q. These arrays of constant segments were centered abouty = x. The remaining values of

x̂′k(y) were set to0. Thus, we obtained a function̂x′k(y) with linear dependence on a finite numberQS+1

of parameters. For functions of this form, the optimizationproblem (22) becomes a finite-dimensional

quadratic program with linear constraints, which can be solved efficiently [29]. The MSE of the resulting

estimator, denoted by BB′c(x), is an upper bound on the BB. This bound is tighter than the closed-form

upper bound BBc(x) in (28) if Q is large enough. In Fig. 1, we compare BB′
c(x) for Q=20 with BBc(x)

as a function of the SNR. The improved accuracy of BB′
c(x) relative to BBc(x) is evident, particularly at

high SNR values. Moreover, the proximity of the numerical upper bound BB′c(x) to the numerical lower

bound HCRBV(x) indicates that these two bounds achieve an accurate characterization of the BB, since

the BB lies between them.

C. The Role ofξ

We have seen in Section IV that for‖x‖0=S, the MSE of the LMVU estimator at high SNR is given

by Sσ2, and furthermore, convergence to this value is exponentialin the quantityξ2/σ2. A remarkable

aspect of this conclusion is the fact that convergence to thehigh-SNR regime depends solely onξ, the

smallest nonzero component ofx, rather than having a more complex dependency on all theS nonzero
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Fig. 2. MSEε(xr; x̂ML ) of the ML estimator for randomly generated parameter vectors xr at four different SNRsξ2/σ2, for

SSNM parametersN=10, S=4, andσ2=1.

components ofx. For example, one might imagine the behavior of an estimatorto be rather different

when all nonzero components have the same valueξ, as opposed to the situation in which one component

equalsξ and the others are much larger. However, our analysis shows that whenξ ≫ σ, the remaining

components ofx have no effect on the performance of the LMVU estimator. We will next investigate

whether practical estimators also exhibit such an effect.

To answer this question, we examined the MSE of the ML estimator (7) for a wide range of parameter

vectorsx having a predetermined smallest componentξ. More specifically, for a given value ofξ,

we randomly generated100 parameter vectorsxr, r = 1, . . . , 100, with xr ∈ XS and ‖xr‖0 = S,

whose minimum nonzero component was equal toξ. The other nonzero components were generated

as independent, identically distributed realizations of the random variablex = ξ(1 + 3σ|q|), where

q ∼ N (0, 1) is a standard Gaussian random variable andσ is the standard deviation of the noise. The

MSE ε(xr; x̂ML ) of the ML estimator is shown in Fig. 2 forN = 10, S = 4, and four different SNRs

ξ2/σ2, with the horizontal axis representing the different choices ofxr in arbitrary order. It is seen that

for largeξ, the performance of the ML estimator, like that of the LMVU, depends almost exclusively on

ξ. This suggests that the performance guarantees of SectionsIII and IV, while formally valid only for

unbiased estimators, can still provide general conclusions which are relevant to biased techniques such

as the ML estimator. Moreover, this result also justifies ourdefinition of the SNR as the ratioξ2/σ2,

since this is the most significant factor determining estimation performance for the SSNM.
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D. Threshold Region Identification

In Sections III and IV, we characterized the performance of unbiased estimators as a means of

quantifying the difficulty of estimation for the SSNM. A common use of this analysis is in the

identification of the threshold region, a range of SNR valueswhich constitutes a transition between

low-SNR and high-SNR behavior [30–32]. Specifically, in many cases the performance of estimators can

be calculated analytically when the SNR is either very low orvery high. It is then important to identify

the threshold region which separates these two regimes. Although the analysis is based on bounds for

unbiased estimators, the result is often heuristically assumed to approximate the threshold region for

biased techniques as well [30, 32].

For ‖x‖0 = S, the lower and upper bounds on the BB (HCRB(x) in (19), BBc(x) in (28)) exhibit

a transition between a low-SNR region, where both bounds areon the order ofNσ2, and a high-SNR

region, for which both bounds converge toSσ2. The BB therefore also displays such a transition. One

can define the threshold region of the SSNM (for unbiased estimation) as the range of values ofξ2/σ2

in which this transition takes place. Since the BB is itself alower bound on the performance of unbiased

estimators, one would expect the transition region of actual estimators to occur at slightly higher SNR

values than that of the BB.

To test this hypothesis, we compared the bounds of Sections III and IV with the MSE of two well-

known estimation schemes, namely, the ML estimator in (7) and the hard-thresholding (HT) estimator

x̂HT(y), which is given componentwise as

x̂HT,k(y) =





yk, |yk| ≥ T

0, else

for a given thresholdT >0. In our simulations, we chose the commonly used valueT = σ
√
2 logN [33].

Note that since the ML and HT estimators are biased, their MSEis not bounded by BBc(x), HCRB(x),

and the CRB. Assuming SSNM parametersN = 10 and S = 4, we generated a number of parameter

vectorsx from the setR ,
{
c (1 1 1 1 0 0 0 0 0 0)T

}
c∈R, wherec was varied to obtain a range

of SNR values. For thesex, we calculated the MSE of the two estimatorsx̂ML and x̂HT by means of

numerical integration (see Appendix I for a discussion of the computation ofε(x; x̂ML )).

The results are displayed in Fig. 3 as a function of the SNRξ2/σ2. Although there is some gap

between the lower bound (HCRB) and the upper bound (BBc), a rough indication of the behavior of the

BB is conveyed. As expected, the threshold region exhibitedby the ML and HT estimators is somewhat

higher than that predicted by the bounds. Specifically, the threshold region of the BB (as indicated by
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Fig. 3. MSE of the ML and HT estimators compared with the performance bounds BBc(x), HCRB(x), and CRB (≡ Sσ2), as

a function of the SNRξ2/σ2, for SSNM parametersN=10, S=4, andσ2=1.

the bounds) can be seen to occur at SNR values between−5 and5 dB, while the threshold region of the

ML and HT estimators is at SNR values between5 and12 dB. Another effect which is visible in Fig. 3

is the convergence of the ML estimator to the BB at high SNR; this is a manifestation of the well-known

fact that the ML estimator is asymptotically unbiased and asymptotically optimal. Finally, at low SNR,

both the ML and HT estimators are better than the best unbiased approach. This is because unbiased

methods generally perform poorly at low SNR, so that even thebest unbiased technique is outperformed

by the biased ML and HT estimators. On the other hand, for medium SNR, the MSE of the ML and

HT estimators is significantly higher than the BB. Thus, there is a potential for unbiased estimators to

perform better than biased estimators in the medium-SNR regime.

One may argue that considering only parameter vectorsx in the setR is not representative, since

R covers only a small part of the parameter spaceXS. However, the choice ofR is conservative in

that the maximum deviation between HCRB(x) and BBc(x) is largest when the nonzero entries ofx

have approximately the same magnitude, which is the case foreach element ofR. This is illustrated

in Fig. 4, which shows the ratio between the two bounds versusthe SNRξ2/σ2 for three different

configurations of the nonzero entries in the parameter vector. Specifically, we considered the two additional

setsR2 ,
{
c (10 1 1 1 0 0 0 0 0 0)T

}
c∈R andR3 ,

{
c (0.1 1 1 1 0 0 0 0 0 0)T

}
c∈R, in which

the nonzero entries have different magnitudes. It can be seen from Fig. 4 that the ratio BBc(x)/HCRB(x)

is indeed highest whenx is in R.
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Fig. 4. Ratio BBc(x)/HCRB(x) versus the SNRξ2/σ2 for different sets of parameter vectorsx.

VI. CONCLUSION

In this paper, we have studied unbiased estimation of a sparse vector in white Gaussian noise within a

frequentist setting. As we have seen, without the assumption of sparsity, there exists only a single unbiased

estimator. However, the addition of a sparsity assumption yields a rich family of unbiased estimators.

The analysis of the performance of these estimators has beenthe primary goal of this paper. We first

demonstrated that there exists no uniformly minimum variance unbiased estimator, i.e., no single unbiased

estimator is optimal for all parameter values. Consequently, we focused on analyzing the Barankin bound

(BB), i.e., the MSE of the locally minimum variance unbiasedestimator, or equivalently, the smallest

MSE achievable by an unbiased estimator for each value of thesparse vector.

For the sparse estimation problem considered, as for most estimation problems, the BB cannot be

computed precisely. However, we demonstrated that it can becharacterized quite accurately using

numerical lower and upper bounds. Furthermore, we derived simple closed-form lower and upper bounds

which are somewhat looser than the numerical bounds. These closed-form bounds allow an estimation

of the threshold region separating the low-SNR and high-SNRregimes, and they indicate the asymptotic

behavior of the BB at high SNR. In particular, a notable conclusion is that the high-SNR behavior of

the BB depends solely on the value of the smallest nonzero component of the sparse vector.

While the unbiasedness property is intuitively appealing and related to several desirable asymptotic

features of an estimator [6], one can often obtain biased estimators which outperform any unbiased

estimator [13–15]. Thus, it is interesting to note that someof the conclusions obtained from our analysis

of unbiased estimators appear to provide insight into the behavior of standard biased estimators. In
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particular, we saw that the behavior of two commonly used biased estimators at high SNR corresponds

to the predictions of our unbiased bounds, not only in terms of the asymptotically achievable MSE but also

in certain finer details, such as the SNR range of the threshold region and the fact that the convergence

to the high-SNR regime depends primarily on the value of the smallest nonzero component of the sparse

vector, rather than on the entire vector. This gives additional merit to the analysis of achievable estimation

performance within the unbiased setting.

APPENDIX A

PROOF OFTHEOREM 1

We wish to show that forS = N , the only unbiased estimator with bounded MSE is the trivial

estimator̂x(y) = y. We will first show that a bounded MSE implies thatx̂(y) is equivalent to a tempered

distribution. This will allow us to reformulate the unbiasedness condition in the Fourier transform domain.

Using (3), the unbiasedness condition in (8) forS=N reads

1

(2πσ2)N/2

∫

RN

x̂(y) exp

(
− 1

2σ2
‖y−x‖22

)
dy = x for all x∈R

N . (30)

The integral in (30) is the convolution of̂x(y) with exp
(
− 1

2σ2 ‖y‖22
)
. The result of this convolution,

viewed as a function ofx, must equal(2πσ2)N/2 x for all parameter vectorsx. For absolutely integrable

functions, the Fourier transform maps a convolution onto a pointwise product, and consequently it seems

natural to consider the Fourier transform of condition (30)in order to simplify the analysis. However,

typically, the estimator function̂x(y) will be neither absolutely integrable nor square integrable, and

thus its Fourier transform can only exist in the sense of a tempered distribution [34]. From a practical

point of view, the class of tempered distributions is large enough so that it does not exclude reasonable

estimators such as the LS estimator (7). The following lemmastates that̂x(y) can be viewed as a

tempered distribution if it has a bounded MSE.

Lemma 9. Consider an estimator̂x for the SSNM(2) with S = N . If x̂ has a bounded MSE, i.e.,

ε(x; x̂) ≤ C for all x ∈ R
N (whereC is a constant which may depend onN , S, and σ2), then x̂ is

equivalent to a tempered distribution.

Proof. The proof of Lemma 9 is based on the following result which gives a sufficient condition for

a functionx̂(y) to be (equivalent to) a tempered distribution.
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Proposition 10 ([34]). If there exist constantsB,n,R0∈R+ such that

∫

‖y‖
2
≤R

‖x̂(y)‖22 dy ≤ BRn for all R≥R0 (31)

then x̂(y) is equivalent to a tempered distribution.

Let x̂(y) be an estimator function with bounded MSE, i.e., there exists a constantC such that

Ex{‖x̂(y)−x‖22} ≤ C for all x∈XS . (32)

Defining the usual norm‖ · ‖RV on the space of of random vectors by‖y‖RV ,
√

Ex{‖y‖22}, we can

use the (reverse) triangle inequality‖x̂(y)−x‖RV ≥ ‖x̂(y)‖RV − ‖x‖RV to obtain

√
Ex{‖x̂(y)−x‖22} ≥

√
Ex{‖x̂(y)‖22} −

√
Ex{‖x‖22} =

√
Ex{‖x̂(y)‖22} − ‖x‖2 .

From this, it follows that

√
Ex{‖x̂(y)‖22} ≤

√
Ex{‖x̂(y) − x‖22} + ‖x‖2 ≤

√
C + ‖x‖2 for all x∈XS ,

where (32) has been used. Squaring both sides and using the inequality(x+y)2 ≤ 2(x2+y2), we obtain

Ex{‖x̂(y)‖22} ≤ (
√
C + ‖x‖2)2 ≤ 2 (C + ‖x‖22) for all x∈XS

or equivalently

1

(2πσ2)N/2

∫

RN

‖x̂(y)‖22 e−‖y−x‖2
2/(2σ

2)dy ≤ 2(C + ‖x‖22) for all x∈XS . (33)

We will now show that (31) holds forR0 =1, i.e.,R ≥1. We define theN -dimensional grid

G , {−m∆,−(m−1)∆, . . . ,−∆, 0,∆, . . . ,m∆}N

where0 < ∆ ≤ R (hence,R/∆ ≥ 1) andm = ⌊R/∆⌋ ≤ R/∆. The number of grid points in any single

dimension satisfies

2m+1 ≤ 2R

∆
+ 1 (34)

so that

|G| = (2m+1)N ≤
(
2R

∆
+ 1

)N
. (35)
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We thus have

∑

x∈G
‖x‖22 =

∑

x∈G

N∑

k=1

x2k =

N∑

k=1

∑

x∈G
x2k =

N∑

k=1

[
(2m+1)N−1

m∑

l=−m

(l∆)2

]
= N(2m+1)N−1

m∑

l=−m

(l∆)2

≤ N (2m+1)N−1∆2

∫ R/∆

x=−R/∆
x2dx ≤ N

(
2R

∆
+ 1

)N−1 2

3

R3

∆
(36)

where (34) was used in the last step. Furthermore, forc , 1
(2πσ2)N/2 e

−N∆2/(2σ2), we have

1

c

1

(2πσ2)N/2

∑

x∈G
e−‖y−x‖2

2/(2σ
2) ≥ 1 , for all y with ‖y‖2 ≤R (37)

In order to verify this inequality, consider an arbitraryy∈R
N with ‖y‖2 ≤ R. Since0 < ∆ ≤ R, and

since‖y‖2 ≤R implies that no componentyk of y can be larger thanR, there always exists a grid point

x̃∈G (dependent ony) such that|yk− x̃k| ≤ ∆ for all k ∈ {1, . . . , N}. It follows that‖y− x̃‖22 ≤ N∆2

and, in turn,

e−N∆2/(2σ2) ≤ e−‖y−x̃‖2
2/(2σ

2) ≤
∑

x∈G
e−‖y−x‖2

2/(2σ
2) , ‖y‖2 ≤R

which is equivalent to (37).

Successively using (37), (33), (35), (36), and1 ≤ 2R/∆, we obtain the following sequence of

inequalities:
∫

‖y‖
2
≤R

‖x̂(y)‖22 dy ≤
∫

‖y‖
2
≤R

‖x̂(y)‖22
[
1

c

1

(2πσ2)N/2

∑

x∈G
e−‖y−x‖2

2/(2σ
2)

]
dy

≤ 1

c

∑

x∈G

1

(2πσ2)N/2

∫

RN

‖x̂(y)‖22 e−‖y−x‖2
2/(2σ

2)dy

≤ 1

c

∑

x∈G
2(C + ‖x‖22)

≤ 2

c

[(
2R

∆
+ 1

)N
C +N

(
2R

∆
+ 1

)N−1 2

3

R3

∆

]

≤ 2

c

[(
4R

∆

)N
C +N

(
4R

∆

)N−1 2

3

R3

∆

]
. (38)

It then follows from (38) that forR ≥ 1

∫

‖y‖
2
≤R

‖x̂(y)‖22 dy ≤ 2

c

[(
4

∆

)N
RN+2C +N

(
4

∆

)N−1 2

3

RN+2

∆

]

≤ 2

c

RN+2

∆N

(
4NC +N4N

2

3

)
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=
22N+1

c∆N

(
C +

2N

3

)
RN+2 .

Thus, we have established that under the conditions of Lemma9 (bounded MSE), the bound (31) holds

with R0 = 1, B = 22N+1

c∆N (C + 2N/3), andn = N + 2. Therefore, it follows from Proposition 10 that

an estimator with bounded MSE is equivalent to a tempered distribution. This concludes the proof of

Lemma 9. �

We now continue our proof of Theorem 1. Any estimatorx̂(y) for the SSNM (2) can be written as

x̂(y) = y + x̂′(y) (39)

with the correction term̂x′(y) , x̂(y)−y. BecauseEx{x̂(y)} = Ex{y}+Ex{x̂′(y)} = x+Ex{x̂′(y)},

x̂(y) is unbiased if and only if

b(x; x̂) = Ex{x̂′(y)} ≡ 1

(2πσ2)N/2

∫

RN

x̂′(y) e−‖y−x‖2
2/(2σ

2)dy = 0 for all x∈XS . (40)

Remember that we assume thatx̂ has a bounded MSE, so that according to our above proof of Lemma

9, the estimator function̂x(y) satisfies condition (31) withn = N + 2, i.e.,
∫

‖y‖
2
≤R

‖x̂(y)‖22 dy ≤ BRN+2 for all R≥ 1 (41)

with B as given at the end of the proof of Lemma 9. We will also need thefollowing bound, in which

R , [−R,R]N :

∫

‖y‖
2
≤R

‖y‖22 dy ≤
∫

R
‖y‖22 dy =

N∑

k=1

∫

R
y2k dy =

N∑

k=1

(2R)N−1 2

3
R3 =

N

3
2NRN+2 . (42)

We then have for the correction term̂x′(y), for all R≥ 1,
∫

‖y‖
2
≤R

‖x̂′(y)‖22 dy =

∫

‖y‖
2
≤R

‖x̂(y) − y‖22 dy

≤
∫

‖y‖
2
≤R

2
(
‖x̂(y)‖22 + ‖y‖22

)
dy

= 2

(∫

‖y‖
2
≤R

‖x̂(y)‖22 dy +

∫

‖y‖
2
≤R

‖y‖22 dy
)

≤ 2

(
BRN+2 +

N

3
2NRN+2

)

=

(
2B +

N

3
2N+1

)
RN+2
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where (41) and (42) have been used. Therefore, the correction term x̂′(y) also satisfies (31) and thus,

according to Proposition 10, it is equivalent to a tempered distribution.

The bias functionb(x, x̂) in (40) is the convolution ofx̂′(y) with the Gaussian function

(2πσ2)−N/2 e−‖y‖2
2/(2σ

2). BecauseS = N , we haveXS = R
N , and thus (40) holds for allx ∈ R

N .

Since x̂′(y) is a tempered distribution and the Gaussian function is in the Schwartz class, it follows

that the Fourier transform of the convolution product (40) is a smooth function which can be calculated

as the pointwise product̄x′(ȳ) e−‖ȳ‖2
2/(2σ

2), where x̄′(ȳ) denotes the Fourier transform ofx̂′(y) [34].

Therefore, (40) is equivalent tōx′(ȳ) e−‖ȳ‖2
2/(2σ

2) = 0 for all ȳ ∈ R
N . This can only be satisfied if

x̄′(ȳ) ≡ 0, which in turn implies that̂x′(y) ≡ 0 (up to deviations of zero measure) and further, by (39),

that x̂(y) = y. Recalling thatXS=R
N , it is clear from (5) that̂x(y) = y is the LS estimator. Thus, we

have shown that̂xLS(y) = y is the unique unbiased estimator for the SSNM withS=N .

APPENDIX B

PROOF OFTHEOREM 3

We must show that there exists no UMVU estimator for the SSNM with S <N . The outline of our

proof is as follows. We first demonstrate that the unique solution of the optimization problem (11) at the

parameter valuex=0, i.e.,argminx̂(·)∈U V (0; x̂), is the estimator̂x(0)(y) = y. We then show that there

exist unbiased estimators which have lower variance thanx̂(0) at other pointsx. This implies that neither

x̂(0) nor any other estimator uniformly minimizes the variance for all x among all unbiased estimators.

The estimator̂x(0)(y) = y is a solution of (11) whenx=0 because the minimum variance atx = 0

of any unbiased estimator is bounded below byNσ2 and x̂(0)(y) = y achieves this lower bound [21].

To show thatx̂(0) is the unique solution of (11) forx= 0, suppose by contradiction that there exists

a second unbiased estimatorx̂a different from x̂(0), also having varianceNσ2 at x= 0. Consider the

estimatorx̂new , (x̂(0) + x̂a)/2. Since x̂(0) and x̂a are unbiased,̂xnew is unbiased as well. Thus, its

variance is (see (4))V (x; x̂new) = P (x; x̂new)− ‖x‖22. In particular, we obtain forx=0

V (0; x̂new) = P (0; x̂new) = Ex=0

{∥∥∥∥
1

2
(x̂(0)+ x̂a)

∥∥∥∥
2

2

}

=
1

4

[
Ex=0

{
‖x̂(0)‖22

}
+ Ex=0

{
‖x̂a‖22

}
+ 2Ex=0

{
(x̂(0))T x̂a

}]

(∗)
<

1

4

[
Ex=0

{
‖x̂(0)‖22

}
+ Ex=0

{
‖x̂a‖22

}
+ 2
√

Ex=0

{
‖x̂(0)‖22

}
Ex=0

{
‖x̂a‖22

} ]

=
1

4
· 4Nσ2 = Nσ2
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where the strict inequality(∗) follows from the Cauchy-Schwarz inequality applied to the inner product

Ex=0

{
(x̂(0))T x̂a

}
, combined with the fact that̂x(0) andx̂a are not linearly dependent (indeed,x̂a 6= cx̂(0)

since x̂(0) and x̂a were assumed to be different unbiased estimators). This inequality means that the

variance ofx̂new at x=0 is lower thanNσ2. But this is impossible, asNσ2 is the minimum variance at

x=0 achieved by any unbiased estimator. Thus, we have shown thatx̂(0) is the unique solution of (11)

for x=0.

Next, still for S <N , we consider the specific parameter valuex′∈XS whose components are given

by

x′k =




1, k = 2, . . . , S+1,

0, else.

The estimator̂x(0) has varianceV (x′; x̂(0))=Nσ2 atx′ (and at all otherx∈XS). We will now construct

an unbiased estimator̂xb(y) whose variance atx′ is smaller thanNσ2. The components of this estimator

are defined as

x̂b,k(y) ,





y1 +Ay1

∏S+1
l=2 h(yl), k = 1

yk , k = 2, . . . , N
(43)

where

h(y) ,





sgn(y), |y| ∈ [0.4, 0.6]

0, else

andA∈R is a parameter to be determined shortly.4 A direct calculation shows that̂xb(y) is unbiased

for all x∈XS. Note thatx̂b(y) is identical tox̂(0)(y) = y except for the first component,̂xb,1(y).

We recall that for unbiased estimators, minimizing the varianceV (x; x̂) is equivalent to minimizing the

mean powerP (x; x̂) = Ex

{
‖x̂(y)‖22

}
(see (4)); furthermore,P (x; x̂) =

∑N
k=1 P (x; x̂k) with P (x; x̂k) ,

Ex

{
(x̂k(y))

2
}

. For the proposed estimatorx̂b, P (x′; x̂b,k) = P
(
x′; x̂(0)k

)
except fork=1. Therefore, our

goal is to chooseA such thatP (x′; x̂b,1) is smaller thanP
(
x′; x̂(0)1

)
= σ2 + (x′1)

2 = σ2. We have

P (x′; x̂b,1) = Ex′

{(
y1 +Ay1

S+1∏

l=2

h(yl)

)2}
= αA2 + βA + γ (44)

4The interval [0.4, 0.6] in the definition ofh(y) is chosen rather arbitrarily. Any interval which ensures that β in (44) is

nonzero can be used.
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with

α = Ex′

{
y21

S+1∏

l=2

h2(yl)

}
, β = Ex′

{
2y21

S+1∏

l=2

h(yl)

}
, γ = Ex′

{
y21
}
= σ2.

Note that γ = P
(
x′; x̂(0)1

)
. From (44), theA minimizing P (x′; x̂b,1) is obtained as−β/(2α); the

associated minimumP (x′; x̂b,1) is given byγ − β2/(4α2). It can be shown thatβ is nonzero due to the

construction ofh(y). It follows thatβ is positive, and thereforeP (x′; x̂b,1) is smaller thanγ = P
(
x′; x̂(0)1

)
.

Thus, usingA = −β/(2α) in (43), we obtain an estimator̂xb which has a smaller component power

P (x′; x̂b,1) than x̂(0). SinceP (x′; x̂b,k) = P
(
x′; x̂(0)k

)
for k = 2, . . . , N , it follows that the overall mean

power of x̂b at x′ is smaller than that of̂x(0), i.e., P (x′; x̂b) < P (x′; x̂(0)). Since both estimators are

unbiased, this moreover implies that atx′, the variance of̂xb is smaller than that of̂x(0). Thus, x̂(0)

cannot be the LMVU estimator atx=x′. On the other hand, as we have seen,x̂(0) is the unique LMVU

estimator atx=0. We conclude that there does not exist a single unbiased estimator which simultaneously

minimizes the variance for all parametersx∈XS .

APPENDIX C

PROOF OFPROPOSITION4

We begin by stating the multivariate HCRB.

Proposition 11 (Gorman and Hero [23]). Let f(y;x) be a family of pdf’s ofy indexed byx∈XS, and

let x+ v1, . . . ,x+ vp be a set of points inXS. Given an estimator̂x, define

mx , Ex{x̂}

δimx , mx+vi
−mx

δmx , (δ1mx · · · δpmx)
T

and

δif , f(y;x+ vi)− f(y;x)

δf , (δ1f · · · δpf)T

Q , Ex

{
δf

f

δfT

f

}
. (45)

Then, the covariance matrix of̂x satisfies

C(x; x̂) � δmT
xQ

†
δmx. (46)
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We will now prove Proposition 4 by applying the multivariateHCRB (46) to the case of unbiased

estimation under Gaussian noise. For an unbiased estimatorx̂, we havemx=x, soδimx=vi and further

δmx = V , (v1 · · ·vp) (47)

(see (14)). We next show that the matrixQ in (45) coincides withJ in (15). Because of the Gaussian

noise,f(y;x) = (2πσ2)−N/2 exp
(
−‖y−x‖22/(2σ2)

)
, and thus we obtain by direct calculation

δif

f
= exp

(
2vT

i (y−x)− ‖vi‖22
2σ2

)
− 1

and consequently

(Q)i,j = Ex

{
δif

f

δjf

f

}

= 1− exp

(
−‖vi‖22

2σ2

)
Ex

{
exp

(
vT
i (y−x)

σ2

)}
− exp

(
−‖vj‖22

2σ2

)
Ex

{
exp

(
vT
j (y−x)

σ2

)}

+ exp

(
−‖vi‖22 + ‖vj‖22

2σ2

)
Ex

{
exp

(
(vi +vj)

T (y−x)

σ2

)}
.

Now Ex

{
exp
(
aT (y−x)

)}
is the moment-generating function of the zero-mean Gaussian random vector

y−x, which equalsexp
(
‖a‖22 σ2/2

)
. We thus have

(Q)i,j = 1− exp

(
−‖vi‖22

2σ2

)
exp

(‖vi‖22
2σ2

)
− exp

(
−‖vj‖22

2σ2

)
exp

(‖vj‖22
2σ2

)

+ exp

(
−‖vi‖22 + ‖vj‖22

2σ2

)
exp

(‖vi + vj‖22
2σ2

)

= −1 + exp

(
vT
i vj

σ2

)
(48)

which equals(J)i,j in (15). Inserting (47) and (48) into (46), we obtain (13). Finally, taking the trace of

both sides of (13) yields (16).

APPENDIX D

OBTAINING THE CRB FROM THE HCRB

We will demonstrate that the CRB (12) can be obtained as a limit of HCRBs (16) by choosing the

test pointsvi according to (17) and lettingt → 0. Since the test points (17) are orthogonal vectors, it
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follows from (15) that the matrixJ is diagonal. More specifically, we have

J =





[
exp(t2/σ2)− 1

]
IS , ‖x‖0=S

[
exp(t2/σ2)− 1

]
IN , ‖x‖0<S .

Thus, both for‖x‖0 =S and for ‖x‖0 <S, the pseudoinverse ofJ is obtained simply by inverting the

diagonal entries ofJ. From (16), we then obtain

ε(x; x̂) ≥






St2

exp(t2/σ2)− 1
, ‖x‖0=S

Nt2

exp(t2/σ2)− 1
, ‖x‖0<S .

(49)

We now use the third-order Taylor series expansion

exp

(
t2

σ2

)
= 1 +

t2

σ2
+

τ4

2σ4
, whereτ ∈ [0, t] . (50)

Substituting (50) into (49) yields

ε(x; x̂) ≥





St2

t2/σ2 + τ4/(2σ4)
, ‖x‖0=S

Nt2

t2/σ2 + τ4/(2σ4)
, ‖x‖0<S .

(51)

In the limit ast→ 0, τ4 ∈ [0, t4] decays faster thant2, and thus the bound (51) converges to the CRB

(12).

The CRB can also be obtained by formally replacingexp
(
t2/σ2

)
with 1 + t2/σ2 in (49). From (50),

we haveexp
(
t2/σ2

)
≥ 1 + t2/σ2 for all t > 0. This shows that for anyt > 0, the bound (49) is lower

than the CRB (12). Thus, the CRB (which, as shown above, is obtained using the test points (17) in the

limit t→ 0) is tighter than any bound that is obtained using the test points (17) for any fixedt > 0.

APPENDIX E

PROOF OFTHEOREM 5

We will prove the HCRB-type bound in (19). For‖x‖0 < S, (19) was already demonstrated by the

CRB (12), and thus it remains to show (19) for‖x‖0=S. This will be done by plugging the test points

(18) into the HCRB (16), calculating the resulting bound foran arbitrary constantt>0, and then taking

the limit ast→0. We will use the following lemma, whose proof is provided at the end of this appendix.
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Lemma 12. Let P be an(r + 1)× (r + 1) matrix with the following structure:

P =



 a b1T

b1 M



 =




a b b b · · · b

b d c c · · · c

b c d c · · · c

b c c
.. .

. . .
...

...
...

...
.. . . . . c

b c c · · · c d




(52)

where1 is the column vector of dimensionr whose entries all equal1, and

M = (d−c)Ir + c11T . (53)

Let

q , rb2 − ad− (r−1)ac (54)

and assume that

d−c 6= 0 , d+ (r−1)c 6= 0 , q 6= 0 . (55)

Then,P is nonsingular and its inverse is given by

P−1 =


 a′ b′1T

b′1 M′


 =




a′ b′ b′ b′ · · · b′

b′ d′ c′ c′ · · · c′

b′ c′ d′ c′ · · · c′

b′ c′ c′
. . . . . .

...
...

...
...

. . .
. . . c′

b′ c′ c′ · · · c′ d′




(56)

whereM′ = (d′−c′)Ir + c′11T and

a′ = −d+ (r−1)c

q
, b′ =

b

q
, c′ =

ac− b2

(d−c)q
, d′ =

(r−1)b2 − (r−2)ac− ad

(d−c)q
. (57)

Let ‖x‖0 = S, and assume for concreteness and without loss of generalitythat supp(x) = {1, . . . , S}
and thatξ, the smallest (in magnitude) nonzero component ofx, is theSth entry. A direct calculation

of the matrixJ in (15) based on the test points (18) then yields

J =


 aIS−1 0(S−1)×(r+1)

0(r+1)×(S−1) P


 .
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Here,P is an (r + 1)× (r + 1) matrix, wherer = N−S, having the structure (52) with entries

a = et
2/σ2− 1 , b = e−tξ/σ2− 1 , c = eξ

2/σ2− 1 , d = e(t
2+ξ2)/σ2− 1 . (58)

We now apply Lemma 12 in order to show thatJ is nonsingular and to calculate its inverse. More

precisely, it suffices to calculate the inverse for all but a finite number of values oft, since any finite set

of values can simply be excluded from consideration whent tends to0. When applying Lemma 12, we

first have to verify that the conditions (55) hold for all but afinite number of values oft. By substituting

(58), it is seen that the left-hand sides of (55) are nonconstant entire functions oft, and thus have a finite

number of roots on any compact set of values oft. By Lemma 12, this implies thatJ is nonsingular for

all but a finite number of values of values oft, and that the inverse (if it exists) is given by

J−1 =




1
aIS−1 0(S−1)×(r+1)

0(r+1)×(S−1) P−1


 (59)

whereP−1 is given by (56) and (57), again withr = N− S. Next, we observe that for our choice of

test points (18),

VTV =



 t2IS−1 0(S−1)×(r+1)

0(r+1)×(S−1) P̃



 (60)

whereP̃ is an (r + 1)× (r + 1) matrix having the structure (52) with entries

ã = t2, b̃ = −tξ , c̃ = ξ2, d̃ = t2 + ξ2.

Using (16) together with (59) and (60), a direct calculationyields

ε(x; x̂) ≥ tr
(
VJ†VT

)
= tr

(
VTVJ−1

)
=

N∑

i=1

N∑

j=1

(VTV)i,j(J
−1)i,j

= (S−1)
t2

a
+ t2a′ − 2rtξb′ + r(r−1)ξ2c′ + r(t2+ ξ2)d′. (61)

We now take the limitt→ 0 in (61). For the first term, we obtain

(S−1)
t2

a
= (S−1)

t2

et2/σ2− 1
= (S−1)

t2

t2/σ2 + o(t2)
−→ (S−1)σ2 (62)

where we have expandedet
2/σ2

into a second-oder Taylor series. Here,o(f(t)) indicates terms which are

negligible compared withf(t) whent→0, i.e., limt→0 o(f(t))/f(t) = 0. To find the limit of the second
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term in (61),t2a′ = −(t2/q)[d + (r−1)c], we first consider the reciprocal of the first factor,t2/q. We

have
q

t2
=

1

t2
[
r
(
e−tξ/σ2− 1

)2 −
(
et

2/σ2− 1
)(
e(t

2+ξ2)/σ2− 1
)
− (r−1)

(
et

2/σ2− 1
)(
eξ

2/σ2− 1
)]

.

Expanding some of thet-dependent exponentials into Taylor series, dropping higher-order terms, and

simplifying, we obtain

q

t2
=

1

t2

[
r

(−tξ

σ2
+ o(t)

)2
−
(
t2

σ2
+ o(t2)

)(
e(t

2+ξ2)/σ2− 1
)
− (r−1)

(
t2

σ2
+ o(t2)

)(
eξ

2/σ2− 1
)]

−→ r
ξ2

σ4
− 1

σ2

(
eξ

2/σ2− 1
)
− (r−1)

1

σ2

(
eξ

2/σ2− 1
)
=

r

σ4

[
ξ2− σ2

(
eξ

2/σ2− 1
)]

. (63)

For the second factor, we obtain

d+ (r−1)c = e(t
2+ξ2)/σ2− 1 + (r−1)

(
eξ

2/σ2− 1
)

−→ r
(
eξ

2/σ2− 1
)
. (64)

Then, using (63) and (64), it is seen that the second term in (61) converges to

t2a′ = − t2

q
[d+ (r−1)c] −→ − r(eξ

2/σ2− 1)
r
σ4

[
ξ2 − σ2(eξ

2/σ2− 1)
] = σ2

[
1 +

ξ2

σ2(eξ2/σ2− 1)− ξ2

]
. (65)

Next, we consider the third term in (61),−2rtξb′, which can be written as−2rξ b/t
q/t2 . We have

b

t
=

1

t

(
e−tξ/σ2− 1

)
=

1

t

(−tξ

σ2
+ o(t)

)
−→ − ξ

σ2
.

Combining with (63), we obtain

−2rtξb′ −→ 2rξ
ξ/σ2

r
σ4

[
ξ2 − σ2(eξ2/σ2− 1)

] =
2σ2ξ2

ξ2 − σ2(eξ2/σ2− 1)
. (66)

The fourth and fifth terms in (61) have to be calculated together because each of them by itself diverges.

The sum of these terms is

r(r−1)ξ2c′ + r(t2+ ξ2)d′ =
r

(d−c)q

[
(r−1)ξ2(ac− b2) + (t2+ ξ2)[(r−1)b2 − (r−2)ac− ad ]

]

=
r

(d−c)q

[
−ξ2a(d−c) + t2 [(r−1)b2 − (r−2)ac− ad ]

]

= −rξ2a

q
+

rt2

(d−c)q
(q + ac− b2)

= −rξ2a

q︸ ︷︷ ︸
z1

+
rt2

d−c︸︷︷︸
z2

+
rt2

(d−c)q
(ac− b2)

︸ ︷︷ ︸
z3

. (67)
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Using (63),z1 in (67) becomes

z1 = −rξ2a/t2

q/t2
= −rξ2

(et
2/σ2− 1)/t2

q/t2
−→ −rξ2

1/σ2

r
σ4 [ξ2 − σ2(eξ2/σ2− 1)]

= − σ2ξ2

ξ2 − σ2(eξ2/σ2− 1)
.

(68)
Furthermore, a direct calculation yields

z2 =
rt2

e(t2+ξ2)/σ2− eξ2/σ2
= re−ξ2/σ2 t2

et2/σ2−1
−→ rσ2e−ξ2/σ2

. (69)

To take the limit ofz3, first note that

ac− b2

d−c
=

(et
2/σ2− 1)(eξ

2/σ2− 1)− (e−tξ/σ2− 1)2

e(t2+ξ2)/σ2− eξ2/σ2

−→ (t2/σ2)(eξ
2/σ2− 1)− (−tξ/σ2)2

eξ
2/σ2

t2/σ2
=

σ2(eξ
2/σ2− 1)− ξ2

σ2eξ
2/σ2

.

Together with (63), we thus have

z3 = r
t2

q

ac− b2

d−c
−→ r

1
r
σ4 [ξ2 − σ2(eξ2/σ2− 1)]

σ2(eξ
2/σ2− 1)− ξ2

σ2eξ2/σ2
= −σ2e−ξ2/σ2

. (70)

Adding the limits ofz1, z2, andz3 in (68)–(70), we find that the sum of the fourth and fifth terms in

(61) converges to

z1 + z2 + z3 −→ −σ2ξ2

ξ2 − σ2(eξ2/σ2− 1)
+ (r−1)σ2e−ξ2/σ2

. (71)

Finally, adding the limits of all terms in (61) as given by (62), (65), (66), and (71) and simplifying,

we obtain the following result for the limit of the bound (61)for t→ 0:

ε(x; x̂) ≥ Sσ2 + (r−1)σ2e−ξ2/σ2

.

This equals (19), as claimed.

Proof of Lemma 12:We first calculate the inverse ofM in (53). Applying the Sherman–Morrison–

Woodbury formula [35,§2.8]

(
A+ cuvT

)−1
= A−1 − c

1 + cvTA−1u
A−1uvTA−1

to (53) and simplifying yields

M−1 =
1

d−c
Ir −

c

(d−c)[d + (r−1)c]
11T . (72)

Next, we invoke the block inversion lemma [35,§2.8]
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A BT

B M




−1

=



 E−1 −E−1BTM−1

−M−1BE−1 M−1 +M−1BE−1BTM−1



 , with E , A−BTM−1B .

Specializing toA= a andB = b1 as is appropriate forP in (52), we obtain for the inverse ofP

P−1 =


 1/e −(b/e)1TM−1

−(b/e)M−11 M−1 + (b2/e)M−111TM−1


 , with e , a− b21TM−11 . (73)

We now develop the various blocks ofP−1 by using the expression ofM−1 in (72). We first consider

the upper-left block,1/e. We have

e = a − b2

d−c
1T
[
Ir −

c

d+ (r−1)c
11T

]
1 = a− b2

d−c

[
r − cr2

d+ (r−1)c

]
=

ad+ (r−1)ac− rb2

d+ (r−1)c
.

Thus, using the definitions in (54) and (57) yields

1

e
= −d+ (r−1)c

q
= a′ (74)

which proves the validity of the upper-left entry ofP−1 in (56). Next, using (72) and (74) and simplifying,

the upper-right block in (73) becomes

− b

e
1TM−1 = −ba′

[
1

d−c
− rc

(d−c)[d+ (r−1)c]

]
1T = − ba′

d+ (r−1)c
1T =

b

q
1T = b′1T .

Thus, we have shown the validity of the first row and first column of P−1 in (56). Finally, to develop

the remaining blockM−1 + (b2/e)M−111TM−1 in (73), we first calculate

u , M−11 =
1

d−c

[
1− rc

d+ (r−1)c

]
1 =

1

d+ (r−1)c
1 . (75)

We then have

M−1 +
b2

e
M−111TM−1 = M−1 + b2a′uuT =

1

d−c
Ir −

1

d+ (r−1)c

[
c

d−c
+

b2

q

]
11T (76)

where (72), (75), and the definition ofa′ in (57) were used. Using the definition ofq in (54) and

simplifying, the factor in brackets can be written as

c

d−c
+

b2

q
=

cq + (d−c)b2

(d−c)q
=

[d+ (r−1)c](b2− ac)

(d−c)q
.

Substituting back into (76), we obtain

M−1 +
b2

e
M−111TM−1 =

1

d−c
Ir −

b2− ac

(d−c)q
11T =

1

d−c
Ir + c′11T .
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Thus, within ther× r lower-right block of P−1, the off-diagonal entries all equalc′, as required.

Furthermore, the diagonal entries in this block are given by

1

d−c
− b2− ac

(d−c)q
=

(r−1)b2 − ad− (r− 2)ac

(d−c)q
= d′

which completes the proof of the lemma. �

APPENDIX F

PROOF OFLEMMA 6

Let x∈XS with ‖x‖0=S and consider a fixedk ∈ supp(x). We have to show that a solution of (20),

i.e.,

argmin
x̂(·)∈Uk

Ex

{
(x̂(y))2

}
, with Uk =

{
x̂(·)

∣∣ Ex̃{x̂(y)} = x̃k for all x̃∈XS

}
(77)

is given by x̂(x)k (y) = yk. Let ε0 , minx̂(·)∈Uk Ex

{
(x̂(y))2

}
denote the mean power of the LMVU

estimator defined by (77). We will show thatε0 ≥ σ2 + x2k and, furthermore, thatσ2 + x2k is achieved

by the estimator̂x(x)k (y) = yk.

Let Ck
x denote the set of allS-sparse vectors̃x which equalx except possibly for thekth component,

i.e., Ck
x ,

{
x̃∈XS

∣∣ x̃l = xl for all l 6= k
}

. Consider the modified optimization problem

argmin
x̂(·)∈Uk

x

Ex

{
(x̂(y))2

}
, with Uk

x ,
{
x̂(·)

∣∣ Ex̃{x̂(y)} = x̃k for all x̃∈ Ck
x

}
(78)

and letε′0 , minx̂(·)∈Uk
x

Ex

{
(x̂(y))2

}
denote the mean power of the estimator defined by (78). Note

the distinction betweenUk andUk
x : Uk is the set of estimators ofxk which are unbiased for all̃x∈XS

whereasUk
x is the set of estimators ofxk which are unbiased for all̃x∈XS which equal a given, fixed

x except possibly for thekth component. Therefore, the unbiasedness requirement expressed byUk is

more restrictive than that expressed byUk
x , i.e.,Uk⊆ Uk

x , which implies that

ε′0 ≤ ε0 . (79)

We will use the following result, which is proved at the end ofthis appendix.

Lemma 13. Given an arbitrary estimator̂x(y)∈ Uk
x , the estimator

x̂c(yk) , Ex{x̂(y)|yk} (80)

also satisfies the constraint̂xc(yk) ∈ Uk
x , and its mean power does not exceed that obtained byx̂, i.e.,

Ex{(x̂c(yk))2} ≤ Ex{(x̂(y))2}.
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Thus, to each estimator̂x(y)∈ Uk
x which depends on the entire observationy, we can always find at

least one estimator̂xc(yk)∈ Uk
x which depends only on the observation componentyk and is at least as

good. Therefore, with no loss in optimality, we can restrictthe optimization problem (78) to estimators

x̂(yk)∈ Uk
x which depend ony only via its kth componentyk. This means that (78) can be replaced by

argmin
x̂(·)∈ Ũk

Ex

{
(x̂(yk))

2
}
, with Ũk ,

{
x̂(·)

∣∣ Ex̃{x̂(yk)} = x̃k for all x̃∈R
N
}
. (81)

Note that in the definition ofŨk, we can use the requirementx̃ ∈ R
N instead ofx̃ ∈ Ck

x since the

expectationEx̃{x̂(yk)} does not depend on the componentsx̃l with l 6= k. The corresponding minimum

mean powerminx̂(·)∈ Ũk Ex

{
(x̂(yk))

2
}

is still equal toε′0. However, the new problem (81) is equivalent to

the classical problem of finding the LMVU estimator of a scalar xk based on the observationyk = xk+nk,

with nk ∼ N (0, σ2). A solution of this latter problem is the estimatorx̂(yk) = yk, whose variance and

mean power areσ2 andσ2 + x2k, respectively [10]. Thus, a solution of (81) or, equivalently, of (78) is

the trivial estimator̂x(yk) = yk, and

ε′0 = σ2 + x2k . (82)

Combining (79) and (82), we see that the minimum mean power for our original optimization problem

(77) satisfies
ε0 ≥ σ2 + x2k .

As we have shown, this lower bound is achieved by the estimator x̂(yk) = yk. In addition,x̂(yk) = yk

is an element ofUk, the constraint set of (77). Therefore, it is a solution of (77).

Proof of Lemma 13: Consider a fixedx∈XS and an estimator̂x(y) ∈ Uk
x . In order to show the first

statement of the lemma,̂xc(yk)∈ Uk
x , we first note that

Ex{x̂(y)|yk} = Ex̃{x̂(y)|yk} , for any x̃∈ Ck
x . (83)

We now have for̃x∈ Ck
x

Ex̃{x̂c(yk)}
(a)
= Ex̃{Ex{x̂(y)|yk}}

(b)
= Ex̃{Ex̃{x̂(y)|yk}}

(c)
= Ex̃{x̂(y)}

(d)
= x̃k

where we used the definition (80) in(a), the identity (83) in(b), the law of total probability [36] in(c),

and our assumption̂x(y)∈ Uk
x in (d). Thus,x̂c(yk)∈ Uk

x .

Next, the inequalityEx{(x̂c(yk))2} ≤ Ex{(x̂(y))2} is proved as follows:

Ex{(x̂(y))2}
(a)
= Ex{Ex{(x̂(y))2|yk}}

(b)

≥ Ex{(Ex{x̂(y)|yk})2}
(c)
= Ex{(x̂c(yk))2}
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where we used the law of total probability in(a), Jensen’s inequality for convex functions [29] in(b),

and the definition (80) in(c). �

APPENDIX G

PROOF OFLEMMA 7

We wish to solve the componentwise optimization problem (25), i.e.,argminx̂(·)∈Uk∩Ak
x

Ex

{
(x̂(y))2

}
,

for k /∈ supp(x). Note thatxk=0 and, thus, the variance equals the mean powerEx

{
(x̂(y))2

}
.

We first observe that the constraintx̂∈Ak
x implies that the estimator̂x is unbiased, and thusUk∩Ak

x =

Ak
x. Indeed, using (21) andxk=0, we have

Ex{x̂(y)} = Ex{yk}︸ ︷︷ ︸
xk (=0)

+ Ex{x̂′(y)}

= xk +
1

(2πσ2)N/2

∫

RN

x̂′(y) e−‖y−x‖2
2/(2σ

2)dy

= xk +
1

(2πσ2)N/2

∫

RN−1

e−‖y∼k−x∼k‖2
2/(2σ

2)

[∫ ∞

−∞
x̂′(y) e−(yk−0)2/(2σ2)dyk

︸ ︷︷ ︸
0

]
dy∼k

= xk (84)

wherex∼k andy∼k denote the(N−1)-dimensional vectors obtained fromx andy by removing thekth

componentxk andyk, respectively, and the result in (84) follows because
∫∞
−∞ x̂′(y) e−y2

k/(2σ
2)dyk = 0

due to the odd symmetry assumption (23). Thus, we can replacethe constraint̂x(·) ∈ Uk ∩ Ak
x in (25)

by x̂(·)∈Ak
x.

A solution of (25) can now be found by noting that for anyx̂(·)∈Ak
x, we have

Ex

{
(x̂(y))2

}
=

1

(2πσ2)N/2

∫

RN

(
yk + x̂′(y)

)2
e−‖y−x‖2

2/(2σ
2)dy

=
1

(2πσ2)N/2

∫

RN

y2k e
−‖y−x‖2

2/(2σ
2)dy

+
1

(2πσ2)N/2

∫

RN

[
2yk x̂

′(y) + (x̂′(y))2
]
e−‖y−x‖2

2/(2σ
2)dy.

The first term is equal toσ2+x2k = σ2. Regarding the second term, letyk be the length-(S+1) subvector

of y that comprises allyl with l ∈ {k} ∪ supp(x). Due to (24),x̂′(y) depends only onyk and can thus

be written (with some abuse of notation) asx̂′(yk). Let ȳk denote the complementary subvector ofy,

i.e., the length-(N−S−1) subvector comprising allyl with l 6∈ {k} ∪ supp(x). Furthermore, letxk and
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x̄k denote the analogous subvectors ofx. The second integral can then be written as the product

1

(2πσ2)(S+1)/2

∫

RS+1

[
2yk x̂

′(yk) + (x̂′(yk))
2
]
e−‖yk−xk‖2

2/(2σ
2)dyk

× 1

(2πσ2)(N−S−1)/2

∫

RN−S−1

e−‖ȳk−x̄k‖2
2/(2σ

2)dȳk .

The second factor is 1, and thus we have

Ex

{
(x̂(y))2

}
= σ2 +

1

(2πσ2)(S+1)/2

∫

RS+1

[
2yk x̂

′(yk) + (x̂′(yk))
2
]
e−‖yk−xk‖2

2/(2σ
2)dyk . (85)

Using the symmetry property (23), this can be written as

Ex

{
(x̂(y))2

}
= σ2 +

2

(2πσ2)(S+1)/2

∫

R
S+1

+

[
2x̂′(yk)b(yk) + (x̂′(yk))

2c(yk)
]
dyk , (86)

with

b(yk) , yk e
−y2

k/(2σ
2)

∏

l∈supp(x)

[
e−(yl−xl)2/(2σ2) − e−(yl+xl)2/(2σ2)

]
(87)

c(yk) , e−y2
k/(2σ

2)
∏

l∈supp(x)

[
e−(yl−xl)2/(2σ2) + e−(yl+xl)2/(2σ2)

]
. (88)

We sketch the derivation of expressions (87) and (88) by showing the first ofS + 1 similar sequential

calculations. For simplicity of notation and without loss of generality, we assume for this derivation that

k =1 and supp(x) = {2, . . . , S+1}. The integral in (85) then becomes
∫

RS+1

[
2yk x̂

′(yk) + (x̂′(yk))
2
]
e−‖yk−xk‖2

2/(2σ
2)dyk

=

∫

RS+1

[
2y1 x̂

′(y1) + (x̂′(y1))
2
]
[

S+1∏

l=1

e−(yl−xl)2/(2σ2)

]
dy1 . (89)

The
∫
RS+1 integration can now be represented as

∫
RS×(R+∪R−), where the component

∫
RS refers to

y1, . . . , yS and the component
∫
R+∪R−

refers toyS+1. Then (89) can be further processed as

∫

RS×R+

[
2y1x̂

′(y1) + (x̂′(y1))
2
]
[

S+1∏

l=1

e−(yl−xl)2/(2σ2)

]
dy1

+

∫

RS×R−

[
2y1 x̂

′(y1) + (x̂′(y1))
2
]
[

S+1∏

l=1

e−(yl−xl)2/(2σ2)

]
dy1

(∗)
=

∫

RS×R+

[
2y1 x̂

′(y1)
(
e−(yS+1−xS+1)2/(2σ2) − e−(yS+1+xS+1)2/(2σ2)

)

+ (x̂′(y1))
2
(
e−(yS+1−xS+1)2/(2σ2) + e−(yS+1+xS+1)2/(2σ2)

)]
[

S∏

l=1

e−(yl−xl)2/(2σ2)

]
dy1
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where the odd symmetry property (23) was used in(∗). After performing this type of manipulationS

times, the integral is obtained in the form

∫

R×R
S
+

[
2y1 x̂

′(y1)

S+1∏

l=2

(
e−(yl−xl)2/(2σ2) − e−(yl+xl)2/(2σ2)

)

+ (x̂′(y1))
2
S+1∏

l=2

(
e−(yl−xl)2/(2σ2) + e−(yl+xl)2/(2σ2)

)
]
e−y2

1/(2σ
2) dy1

wherex1= 0 was used. Withy1 x̂′(y1, . . .) = (−y1) x̂
′(−y1, . . .), this becomes further

∫

R+×R
S
+

[
2y1 x̂

′(y1)2e
−y2

1/(2σ
2)

S+1∏

l=2

(
e−(yl−xl)2/(2σ2) − e−(yl+xl)2/(2σ2)

)

+ (x̂′(y1))
2 2e−y2

1/(2σ
2)

S+1∏

l=2

(
e−(yl−xl)2/(2σ2) + e−(yl+xl)2/(2σ2)

)
]
dy1 .

Finally, removing our “notational simplicity” assumptions k =1 and supp(x) = {2, . . . , S+1}, this can

be written for generalk and supp(x) as

2e−y2
k/(2σ

2)

∫

R
S+1

+

[
2yk x̂

′(yk)
∏

l∈supp(x)

(
e−(yl−xl)2/(2σ2) − e−(yl+xl)2/(2σ2)

)

+ (x̂′(yk))
2
∏

l∈supp(x)

(
e−(yl−xl)2/(2σ2) + e−(yl+xl)2/(2σ2)

)
]
dyk . (90)

Inserting (90) into (85) yields (86).

The integral
∫
R

S+1

+

[
2x̂′(yk)b(yk) + (x̂′(yk))

2c(yk)
]
dyk is minimized with respect tôx′(yk) by

minimizing the integrand2x̂′(yk)b(yk)+ (x̂′(yk))
2c(yk) pointwise for each value ofyk∈R

S+1
+ . This is

easily done by completing the square inx̂′(yk), yielding the optimization problemminx̂′(yk)

[
x̂′(yk) +

b(yk)/c(yk)
]2

. Thus, the optimal̂x′(yk) is obtained as

x̂′k,x(yk) , −b(yk)

c(yk)
= − yk

∏

l∈supp(x)

tanh

(
xlyl
σ2

)
for all yk∈R

S+1
+

and the corresponding pointwise minimum of the integrand isgiven by−(b(yk))
2/c(yk). The extension

x̂′k,x(y) to all y ∈R
N is then obtained using the properties (23) and (24), and the optimal component

estimator solving (25) follows aŝxk,x(y) = yk+ x̂′k,x(y). The corresponding minimum variance, denoted

by BBk
c (x), is obtained by substituting the minimum value of the integrand,−(b(yk))

2/c(yk), in (86).

This yields
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BBk
c (x) , Ex

{
(x̂k,x(y))

2
}

= σ2 − 2

(2πσ2)(S+1)/2

∫

R
S+1

+

(b(yk))
2

c(yk)
dyk . (91)

Inserting (87) and (88) into (91) and simplifying gives (26).

APPENDIX H

PROOF OFEQUATION (29)

To show (29), we considerg(x;σ2) for x ≥ 0 (this is sufficient sinceg(−x;σ2) = g(x;σ2)), and we

use the simple bound tanh(x) ≥ 1 − e−x, which can be verified using elementary calculus. We then

obtain from (27), forx ≥ 0,

g(x;σ2) ≥ 1√
2πσ2

∫ ∞

0
e−(x2+y2)/(2σ2) sinh

(
xy

σ2

)(
1− e−xy/σ2)

dy

=
1√
2πσ2

∫ ∞

0

[
e−(x−y)2/(2σ2) − e−(x+y)2/(2σ2)

](
1− e−xy/σ2)

dy

=
1√
2πσ2

∫ ∞

0

[
e−(x−y)2/(2σ2) − e−(x2+y2)/(2σ2) − e−(x+y)2/(2σ2) + e−(x+y)2/(2σ2)e−xy/σ2]

dy

≥ 1√
2πσ2

∫ ∞

0

[
e−(x−y)2/(2σ2) − e−(x2+y2)/(2σ2) − e−(x+y)2/(2σ2)

]
dy

=
1√
2πσ2

∫ ∞

0
e−(x−y)2/(2σ2)dy − 1√

2πσ2

∫ ∞

0

[
e−(x2+y2)/(2σ2) + e−(x+y)2/(2σ2)

]
dy .

The first integral can be written as 1√
2πσ2

∫∞
0 e−(x−y)2/(2σ2)dy = 1 − 1√

2πσ2

∫ 0
−∞ e−(x−y)2/(2σ2)dy =

1− 1√
2πσ2

∫∞
0 e−(x+y)2/(2σ2)dy. The bound thus becomes

g(x;σ2) ≥ 1− 1√
2πσ2

∫ ∞

0

[
2e−(x+y)2/(2σ2) + e−(x2+y2)/(2σ2)

]
dy

= 1− 1√
2πσ2

∫ ∞

0

[
2e−2xy/(2σ2) + 1

]
e−(x2+y2)/(2σ2)dy

(∗)
≥ 1− 1√

2πσ2

∫ ∞

0
3e−(x2+y2)/(2σ2)dy

= 1− 3√
2πσ2

e−x2/(2σ2)

∫ ∞

0
e−y2/(2σ2) dy

= 1− 3

2
e−x2/(2σ2)
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wheree−2xy/(2σ2) ≤ 1 was used in(∗). This bound ong(x;σ2) is actually valid for allx ∈ R because

g(−x;σ2) = g(x;σ2). Inserting it in (26), we obtain

BBk
c (x) ≤

[
1−

∏

l∈supp(x)

(
1− 3

2
e−x2

l /(2σ
2)

)]
σ2 . (92)

The statement in (29) follows since we have (note that
∑

I⊆supp(x) denotes the sum over all possible

subsetsI of supp(x), including supp(x) and the empty set∅)

1−
∏

l∈supp(x)

(
1− 3

2
e−x2

l /(2σ
2)

)
= 1−

∑

I⊆supp(x)

∏

l∈I

(
− 3

2
e−x2

l /(2σ
2)

)

= −
∑

I⊆supp(x), I 6=∅

∏

l∈I

(
− 3

2
e−x2

l /(2σ
2)

)

≤
∑

I⊆supp(x), I 6=∅

∏

l∈I

(
3

2
e−x2

l /(2σ
2)

)

≤
∑

I⊆supp(x), I 6=∅

∏

l∈I

(
3

2
e−ξ2/(2σ2)

)

=
∑

I⊆supp(x), I 6=∅

(
3

2
e−ξ2/(2σ2)

)|I|

≤
∑

I⊆supp(x), I 6=∅

(
3

2

)S
e−ξ2/(2σ2)

≤ 2S
(
3

2

)S
e−ξ2/(2σ2)

= 3S e−ξ2/(2σ2)

where we have used the fact that the number of different subsetsI ⊆ supp(x) is 2| supp(x)|=2S . Inserting

the last bound in (92) and, in turn, the resulting bound on BBk
c (x) in (28) yields (29).

APPENDIX I

MSE OF THE ML ESTIMATOR

We calculate the MSEε(x; x̂ML ) of the ML estimator̂xML in (7). Let x̂ML ,k denote thekth component

of x̂ML . We have

ε(x; x̂ML ) =

N∑

k=1

Ex

{
(x̂ML ,k −xk)

2
}
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=

N∑

k=1

[
Ex

{
x̂2ML ,k

}
− 2Ex

{
x̂ML ,k

}
xk + x2k

]

=

N∑

k=1

[
Ex{x̂2ML ,k} +

(
Ex{x̂ML ,k}− xk

)2 −
(
Ex{x̂ML ,k}

)2]
. (93)

Thus, we have to calculate the quantitiesEx{x̂ML ,k} andEx{x̂2ML ,k}.

We recall that̂xML ,k(y) =
(
PS(y)

)
k
, wherePS is an operator that retains theS largest (in magnitude)

components and zeros out all others. LetLk denotes the set of vectorsy for which yk is not among the

S largest (in magnitude) components. We then have

x̂ML ,k(y) =




yk , y 6∈Lk

0 , y∈Lk .

Equivalently, x̂ML ,k(y) = yk [1 − I(y ∈ Lk)], where I(y ∈ Lk) is the indicator function of the event

{y∈Lk} (i.e., I(y∈Lk) is 1 if y∈Lk and0 else). Thus, we obtainEx{x̂ML ,k} as

Ex{x̂ML ,k} = Ex

{
yk [1− I(y∈Lk)]

}

= xk − Ex

{
yk I(y∈Lk)

}

(a)
= xk − E

(yk)
x

{
E
(y∼k)
x

{
yk I(y∈Lk)

∣∣yk
}}

(b)
= xk − E

(yk)
x

{
yk E

(y∼k)
x

{
I(y∈Lk)

∣∣yk
}}

= xk − E
(yk)
x

{
yk Px(y∈Lk|yk)

}
(94)

where the notationsE(yk)
x andE

(y∼k)
x indicate that the expectation is taken with respect to the random

quantitiesyk andy∼k, respectively (here,y∼k denotesy without the componentyk) and Px(y∈Lk|yk)
is the conditional probability thaty ∈Lk, given yk. Furthermore, we used the law of total probability

in (a) and the fact thatyk is held constant in the conditional expectationEx

{
yk I(y ∈Lk)

∣∣yk
}

in (b).

Similarily,

Ex{x̂2ML ,k} = Ex

{
y2k [1− I(y∈Lk)]

2
}

= Ex

{
y2k [1− I(y∈Lk)]

}

= σ2 + x2k − Ex

{
y2k I(y∈Lk)

}

= σ2 + x2k − E
(yk)
x

{
y2k Px(y∈Lk|yk)

}
. (95)

CalculatingEx{x̂ML ,k} andEx{x̂2ML ,k} is thus reduced to calculating the conditional probabilityPx(y∈
Lk|yk).
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Let Mk , {1, . . . , N} \ {k}, and letP denote the set of all binary partitions(A,B) of the setMk,

whereA is at least of cardinalityS:

P ,
{
(A,B)

∣∣A⊆Mk, B⊆Mk,A∩B = ∅,A∪B =Mk, |A| ≥ S
}
.

In order to evaluate the conditional probability Px(y∈Lk|yk) of the event{y∈Lk}, i.e., of the event

that a givenyk is not among theS largest (in magnitude) components ofy, we split the event{y∈Lk}
into several elementary events. More specifically, letEA,B denote the event that every componentyl with

l ∈A satisfies|yl| > |yk| and every componentyl with l ∈ B satisfies|yl| ≤ |yk|. The eventsEA,B for

all (A,B) ∈ P are mutually exclusive, i.e.,(A,B) 6= (A′,B′) ⇒ EA,B ∩ EA′,B′ = ∅, and their union

corresponds to the event{y∈Lk}, i.e.,
⋃

(A,B)∈P EA,B = {y∈Lk}. Consequently,

Px(y∈Lk|yk = y) =
∑

(A,B)∈P
Px(EA,B |yk = y)

=
∑

(A,B)∈P

∏

l∈A
Px

(
|yl|> |yk|

∣∣yk = y
) ∏

m∈B
Px

(
|ym| ≤ |yk|

∣∣yk = y
)

=
∑

(A,B)∈P

∏

l∈A
Px(|yl|> |y|)

∏

m∈B
Px(|ym| ≤ |y|)

=
∑

(A,B)∈P

∏

l∈A∩ supp(x)

Px(|yl|> |y|)
∏

m∈B∩ supp(x)

Px(|ym| ≤ |y|)

×
∏

n∈A\supp(x)
Px(|yn|> |y|)

∏

p∈B\supp(x)
Px(|yp| ≤ |y|)

=
∑

(A,B)∈P

∏

l∈A∩ supp(x)

[
Q

( |y|− xl
σ

)
+ 1−Q

(−|y|−xl
σ

)]

×
∏

m∈B∩ supp(x)

[
−Q

( |y|−xm
σ

)
+Q

(−|y|−xm
σ

)]

×
∏

n∈A\supp(x)
2Q

( |y|
σ

) ∏

p∈B\supp(x)

[
1− 2Q

( |y|
σ

)]
(96)

where we have used the fact that theyl are independent andk /∈ Mk; furthermore, Q(y) ,

1√
2π

∫∞
y e−x2/2dx is the right tail probability of a standard Gaussian random variable. Plugging (96)

into (94) and (95) and, in turn, the resulting expressions into (93) yields a (very complicated) expression

of ε(x; x̂ML ). This expression is evaluated numerically in Section V.
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