
1

Multipath Medium Identification Using Efficient Sampling

Schemes
Kfir Gedalyahu and Yonina C. Eldar, Senior Member, IEEE

Abstract—Time delay estimation arises in many applications in which

a multipath channel has to be identified using pulses transmitted through

the medium. Various approaches have been proposed in the literature

to identify the time delays of the multipath components. However, these

methods require high sampling rates. In this paper, we develop a unified

approach to time delay estimation from low rate samples of the output

of a multipath medium. Our approach results in a sampling theorem

for analog signals defined over an infinite union of subspaces. The

proposed method leads to perfect recovery of the multipath delays from

samples of the channel output at the lowest possible rate, which depends

only on the number of multipath components and the transmission

rate, and not on the bandwidth of the probing signal. By properly

manipulating the low-rate samples, we show that the time delays can be

recovered using the well-known ESPRIT algorithm. Combining results

from sampling theory with those obtained in the context of direction of

arrival estimation methods, we develop necessary and sufficient conditions

on the transmitted pulse and the sampling functions in order to ensure

perfect recovery of the channel parameters at the minimal possible rate.

I. INTRODUCTION

Time delay estimation is an important signal processing problem

with various applications such as radar [1], underwater acoustics [2],

wireless communication [3], and more. In such applications, the goal

is to identify a multipath medium by transmitting pulses with a known

shape through it. Identification is performed by estimating the time

delays and gain coefficients of each multipath component.

A classical solution to the time delay estimation problem is based

on correlation techniques [1] which are effective only when the

multipath components are well separated in time. To overcome this

limitation, a number of super-resolution methods were proposed [4],

[5], [6], [7], [8]. However, in these approaches the sampling stage

of the analog received signal has not received much attention, and

usually involves pointwise sampling at a high sampling rate. In [4],

[5], [6], [8] the required sampling rate is the Nyquist rate of the

transmitted pulse. The time domain algorithms proposed in [7] and

[8] can theoretically recover the time delays by sampling at low rates,

but no concrete conditions on the transmitted pulse were given, in

order to ensure unique recovery of the delays.

In addition, the methods mentioned require the assumption that

the receiver has access to multiple non-overlapping experiments on

the medium. This implies that all the reflections from the medium,

as a result of a pulse transmission, vanish before the next pulse is

transmitted. This assumption can be problematic in some applications

such as wireless communication.

In this paper we consider recovery of the parameters defining a

multipath medium from samples of the medium output. Specifically,

we assume that pulses with known shape are transmitted at a constant

rate through the channel, and our aim is to recover the time delays

and time-varying gain coefficients of each multipath component, from

samples of the received signal taken at the lowest possible rate. We
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first propose a signal model that can describe the received signal. An

advantage of our model is that it does not require the assumption of

non-overlapping experiments, and allows for general pulse shapes.

We then formulate the identification problem as a sampling problem,

in which the set of parameters defining the medium have to be

recovered from samples of the received signal. To this end we develop

a general sampling scheme, which consists of filtering the received

signal with a bank of p sampling filters and uniformly sampling their

outputs. Given K multipath components, we show that at least 2K
sampling filters are required in order to perfectly recover the time

delays. We then develop explicit sampling strategies that achieve this

minimal rate.

In order to recover the medium parameters from the given samples

we combine results from standard sampling theory, with those of

direction of arrival (DOA) estimation [9]. Specifically, by appropriate

manipulation of the sampling sequences, we formulate our problem

within the framework of DOA [10] and rely on the estimation of

signal parameters via rotational invariance technique (ESPRIT) [10],

developed in that context. Once the time delays are identified, the

gain coefficients are recovered using standard sampling tools.

This paper is organized as follows. In Section II, we formulate

the medium identification problem and describe our proposed signal

model. A general sampling scheme is proposed in Section III.

Section IV describes the recovery of the unknown delays from

the samples, and provides sufficient conditions ensuring a unique

recovery. Numerical experiments are presented in Section V.

II. PROBLEM FORMULATION

We consider the problem of identifying a time-variant multipath

channel. The medium is probed with pulses which are transmitted at

a constant rate, so that the transmitted signal is given by

xT (t) =
∑

n∈Z

g(t − nT ), (1)

where T is the probing period and g (t) is the transmitted pulse shape.

The impulse response of the time varying channel is modeled as

h (τ, t) =

K
∑

k=1

ak (t) δ (τ − tk) , (2)

where ak (t) is the time varying complex gain coefficient of the kth

multipath component, tk ∈ [0, T ) is the corresponding propagation

delay and K denotes the total number of paths. We assume that the

medium is slowly varying relatively to the probing period T , so that

the gain coefficients can be considered as constant over one period.

The output of the medium can then be expressed as

x (t) =
K

∑

k=1

∑

n∈Z

ak [n] g (t − tk − nT ) . (3)

This model for the received signal does not require the assumption

of non-overlapping experiments assumed in previous works. If we

consider each period of T as an experiment, then our model allows
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interference of pulses from adjacent periods. Consequently (3) sup-

ports general pulse shapes, and does not require that the transmitted

pulse is time limited.

Our problem now is to determine the delays τ = {tk}
K

k=1

and the gains ak[n] from samples of the received signal x(t), at

the minimal possible rate. Since these parameters uniquely define

x(t), our medium identification problem is equivalent to developing

efficient sampling schemes for signals of the form (3), allowing

perfect reconstruction of the signal from its samples.

The signal model (3) can be considered as a special case of a more

general framework of signals that lie in a union of subspaces [11],

[12], [13]. When the set τ is fixed, x (t) lies in a shift-invariant (SI)

subspace spanned by K generators {g (t − tk)}K

k=1. Thus, the set of

all signals of the form (3) constitutes an infinite union of subspaces,

as the unknown delays can take any continuous value in the interval

[0, T ). Therefore, our results can be viewed as a method for sampling

and recovering a signal over an infinite union of subspaces. As far as

we know, this is the first example that allows recovery from minimal

rate samples over an infinite union. We discuss this connection in

more detail in the conclusion.

III. SAMPLING SCHEME

To sample the signal x (t) we propose a sampling scheme com-

prised of p parallel channels. In each channel x (t) is pre-filtered

using the filter s∗ℓ (−t) and sampled uniformly at times t = nT to

produce the sampling sequence cℓ [n], as depicted in the left-hand

side of Fig. 1. The superscript (·)∗ represents complex conjugation.

We assume that p ≥ K; exact conditions on the number of sampling

channels p and the choice of sampling filters will be given in the

next sections.

The discrete-time Fourier transform (DTFT) of the ℓth sampling

sequence is given by

Cℓ

(

ejωT
)

=
1

T

∑

m∈Z

S∗
ℓ

(

ω −
2π

T
m

)

X

(

ω −
2π

T
m

)

, (4)

where Sℓ (ω) and X (ω) denote the Fourier transform of sℓ (t) and

x (t) respectively. From the definition of x(t), its Fourier transform

can be written as

X (ω) =

K
∑

k=1

Ak

(

ejωT
)

G (ω) e−jωtk , (5)

where Ak

(

ejωT
)

denotes the DTFT of the sequence ak [n], and

G (ω) denotes the Fourier transform of g (t). Substituting (5) into

(4), we have

Cℓ

(

ejωT
)

=
K

∑

k=1

Ak

(

ejωT
)

e−jωtk
1

T

∑

m∈Z

S∗
ℓ

(

ω −
2π

T
m

)

·G

(

ω −
2π

T
m

)

ej 2π

T
mtk . (6)

Denoting by c
(

ejωT
)

the length-p column vector whose ℓth element

is Cℓ

(

ejωT
)

and by a
(

ejωT
)

the length-K column vector whose

kth element is Ak

(

ejωT
)

, we can write (6) in matrix form as

c

(

ejωT
)

= M

(

ejωT , τ
)

b

(

ejωT
)

, (7)

where M (ω, τ) is a p × K matrix with ℓkth element

Mℓk

(

ejωT , τ
)

=
1

T

∑

m∈Z

S∗
ℓ

(

ω −
2π

T
m

)

· (8)

G

(

ω −
2π

T
m

)

ej 2π

T
mtk ,

s∗
1
(−t)

...
x (t)

t = nT

t = nT

...

c1 [n]

s∗p (−t)
cp [n]

W
−1

(

ejωT
)

d1 [n]

dp [n]

D
−1

(

ejωT , τ
)

N
† (τ) ...

a1 [n]

aK [n]

Figure 1. Sampling and reconstruction scheme

b
(

ejωT
)

is a length-K column vector given by

b

(

ejωT
)

=D

(

ejωT , τ
)

a

(

ejωT
)

, (9)

and D
(

ejωT , τ
)

is a diagonal matrix with kth diagonal element

e−jωtk .

To proceed, we focus our attention on sampling filters Sℓ(ω) with

finite support in the frequency domain, contained in the range

F =

[

2π

T
γ,

2π

T
(p + γ)

]

, (10)

where γ ∈ Z is an index which determines the working frequency

band F . This choice should be such that it matches the frequency oc-

cupation of g (t). Under this choice of filters, the matrix M
(

ejωT , τ
)

can be expressed as

M

(

ejωT , τ
)

= W

(

ejωT
)

N (τ) (11)

where W
(

ejωT
)

is a p× p matrix whose ℓmth element is given by

Wℓm

(

ejωT
)

=
1

T
S∗

ℓ

(

ω +
2π

T
(m − 1 + γ)

)

· (12)

G

(

ω +
2π

T
(m − 1 + γ)

)

and N (τ) is a p × K Vandermonde matrix with mkth element

Nmk (τ) = e−j 2π

T
(m−1+γ)tk . (13)

If W
(

ejωT
)

is stably invertible, then we can define the modified

measurement vector d
(

ejωT
)

as

d

(

ejωT
)

= W
−1

(

ejωT
)

c

(

ejωT
)

. (14)

From (7) and (11), this vector satisfies

d

(

ejωT
)

= N (τ)b
(

ejωT
)

. (15)

Since N (τ) is independent of ω, using the linearity of the DTFT,

we can express (15) in the time domain as

d [n] = N (τ)b [n] , n ∈ Z. (16)

The elements of the vectors d [n] and b [n] are the discrete time

sequences, obtained from the inverse DTFT of the elements of the

vectors b
(

ejωT
)

and d
(

ejωT
)

respectively.

Equation (16) describes an infinite set of measurement vectors,

each obtained by the same measurement matrix N (τ), which depends

on the unknown delays τ . This problem is reminiscent of the type of

problems that arise in DOA estimation. Therefore, our approach is

to rely on results developed in that context in order to first recover τ
from the measurements. After τ is known, the vector a

(

ejωT
)

can

be found using the following linear filtering relation

a

(

ejωT
)

= D
−1

(

ejωT , τ
)

N
† (τ)d

(

ejωT
)

, (17)

where N
† (τ) is the Moore-Penrose pseudo-inverse. The resulting

sampling scheme is depicted in Fig. 1.
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Our last step, therefore, is to derive conditions on the filters s∗ℓ (−t)
and the function g (t) in order that the matrix W

(

ejωT
)

is stably

invertible. To this end, we can decompose W
(

ejωT
)

as

W

(

ejωT
)

= S

(

ejωT
)

G

(

ejωT
)

(18)

where S
(

ejωT
)

is a p × p matrix with ℓmth element

Sℓm

(

ejωT
)

=
1

T
S∗

ℓ

(

ω +
2π

T
(m − 1 + γ)

)

(19)

and G
(

ejωT
)

is a p×p diagonal matrix with mth diagonal element

Gmm

(

ejωT
)

= G

(

ω +
2π

T
(m − 1 + γ)

)

. (20)

Each of these matrices needs to be stably invertible, leading to the

following conditions:

Condition 1: the function g (t) needs to satisfy

0 < a ≤ |G (ω)| ≤ b < ∞ a.e ω ∈ F . (21)

Condition 2: The filters s∗ℓ (−t) should be chosen in such a way

that they form a stably invertible matrix S
(

ejωT
)

.

Examples for choices of filters that satisfy condition (2) are given in

[14]. These examples include a bank of complex bandpass filters and

sampling channels with different time delays (interleaved sampling).

IV. RECOVERY OF THE UNKNOWN DELAYS

A. Sufficient conditions for perfect recovery

We now derive sufficient conditions for a unique solution to the

set of infinite equations (16).

We begin by introducing some notation. Let d [Λ] be the measure-

ment set containing all measurement vectors d [Λ] = {d [n] , n ∈ Z}
and let b [Λ] = {b [n] , n ∈ Z} be the unknown vector set. We can

then rewrite (16) as

d [Λ] = N (τ)b [Λ] . (22)

The following proposition provides sufficient conditions for a unique

solution to (22).

Proposition 1: If
(

τ̄ , b̄ [Λ]
)

is a solution to (22),

p > 2K − dim
(

span
(

b̄ [Λ]
))

(23)

and

dim
(

span
(

b̄ [Λ]
))

≥ 1, (24)

then
(

τ̄ , b̄ [Λ]
)

is the unique solution of (22).

The notation span
(

b̄ [Λ]
)

is used for the subspace of minimal

dimension containing b̄ [Λ]. Condition (24) is needed to avoid the

case where b̄ [Λ] = 0.
Proposition 1 suggests that a unique solution to (16) is guaran-

teed, under proper selection of the number of sampling channels

p. This parameter, in turn, determines the average sampling rate,

which is given by p/T . Condition (23) depends on the value

of dim (span (b [Λ])), which is generally not known in advance.

According to our assumption dim(span(b̄ [Λ])) ≥ 1, therefore in

order to satisfy the uniqueness condition (23) for every signal of the

form (3), we must have p > 2K − 1 or a minimal sampling rate of

2K/T .

It is shown in [14] that our signal model fits the framework

proposed in [15], under the assumption that the unknown delays

are taken from a discrete grid. The theoretical minimum sampling

rate required for perfect recovery of the signal from its samples in

this case is 2K/T . Clearly this rate is necessary when the unknown

delays can take any value in the continuous interval [0, T ). Therefore,

according to of Proposition 1, our sampling scheme can achieve the

minimal sampling rate required for signals of the form (3).

B. Recovering the unknown delays

We now describe an algorithm that recovers the unknown delays τ
from the measurement set d [Λ], based on the ESPRIT [10] method.

According to Proposition 1, in order be able to perfectly reconstruct

every signal of the form (3), we must have p ≥ 2K sampling

channels. We assume throughout that this condition holds.

One condition needed in order to apply ESPRIT is that

Rbb =
∑

n∈Z

b [n]bH [n] , (25)

is positive definite, which is equivalent to dim (span (b [Λ])) = K.

The superscript (·)H
denotes conjugate transposition. In this case,

which we refer to as the uncorrelated case, we can apply the ESPRIT

method on the measurement set d [n], in order to recover τ . If

dim (span (b [Λ])) < K, so that Rbb ≻ 0 does not hold, then an

additional smoothing stage that was proposed in [16] will be used.

This scenario is referred to as the correlated case. The decision

whether we are in the uncorrelated or correlated case can be made

directly using the measurements by forming the matrix

Rdd =
∑

n∈Z

d [n]dH [n] = N (τ)RbbN
H (τ) .

Since N (τ) has full column-rank, the ranks of Rdd and Rbb are

equal. Therefore Rbb ≻ 0 only if the rank of Rdd is K.

Uncorrelated Case: In the uncorrelated case the ESPRIT method

can by applied directly on d [Λ]. It consists of the following stages:

1) Construct the correlation matrix Rdd =
∑

n∈Z
d [n] dH [n].

2) Perform an SVD decomposition of Rdd and form the matrix

Es consisting of the K singular vectors associated with the

non-zero singular values in its columns.

3) Compute the matrix Φ = E
†
s↓Es↑. The notations E

†
s↓ and Es↑

denote the sub matrices extracted from E
†
s and Es by deleting

their last/first row respectively.

4) Compute the eigenvalues of Φ, λi, i = 1, 2, . . . , K .

5) Retrieve the unknown delays by ti = − T
2π

arg (λi).

Correlated Case: For this case an additional stage based on the

spatial smoothing technique proposed in [16] is used.

We define M = p − K length-(K + 1) sub vectors

di [n] =
[

di [n] di+1 [n] . . . di+K [n]
]T

, (26)

and define the smoothed correlation matrix Rdd as

Rdd =
1

M

M
∑

i=1

∑

n∈Z

di [n] dH
i [n] . (27)

It was shown in [14] that under the assumption p ≥ 2K, the rank of

Rdd is K. Therefore, the unknown time delays can be recovered by

applying the ESPRIT method on Rdd.

V. NUMERICAL EXPERIMENTS

In the setup of our simulations we choose

G (ω) = 1, ω ∈ F . (28)

The sampling scheme is comprised of a bank of ideal complex

bandpass filters:

Sℓ (ω) =

{

T, ω ∈
[

(ℓ − 1) 2π
T

, ℓ 2π
T

]

0, otherwise.
. (29)

These selections satisfy Conditions 1 and 2.

In the first simulation we consider a time-varying medium, with

K = 4 paths. The medium’s time-varying gain coefficients ak [n]



4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delay [T]

ta
p

 e
n

e
rg

y

Estimated time delays

 

 

channel

estimated channel

(a)

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

n

m
a

g
n

it
u

d
e

First path’s estimated time−varying gain coefficient

 

 

original

recovered

(b)

Figure 2. Channel estimation with p = 5 sampling channels, and SNR=20dB.
(a) Delays recovery. (b) Estimation of the time-varying gain coefficient of the
first path.
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Figure 3. (a) MSE of the delays estimation versus SNR, for K = 2 and
p = 4. (b) MSE of the delays estimation versus the number of sampling
channels p, for K = 2 and SNR=10dB.

are modeled according to Jakes’ model [17] as a zero-mean complex-

valued Gaussian stationary process with U-shape power spectral den-

sity, and energy of (1/2)−k+1
. To simulate a slow varying medium,

the maximal Doppler shift, which is a parameter that controls the

variation rate of the gain coefficients, was taken as fd = 0.05/T .

The samples at the output of each sampling channel were corrupted

by complex-valued Gaussian white noise with an SNR of 20dB. The

estimation of the delays is based on transmitting 100 consecutive

pulses. To recover the medium’s parameters p = 5 sampling channels

were used. Although we have seen that 2K sampling channels are

required for perfect recovery of every signal of the form (3), for

some signals lowering the number of channels is possible. Indeed,

according to Proposition 1, if dim (span (b [Λ])) = K, then the

minimal number of channels is K + 1.

In Fig. 2(a) the original and estimated time delays and averaged

energy of the gain coefficients are shown. In Fig. 2(b), we plot the

magnitude of the original and estimated gains of the first path versus

time. From Figs. 2(a) and (b) it is evident that our method can provide

a good estimate of the channel’s parameters, even when the samples

are noisy, when sampling at the lowest possible rate.

In the next simulations we further examine the effect of noise.

We choose K = 2 close multipath with delays, t1 = 0.4352T
and t2 = 0.521T . The sequences ak[n], k = 1, 2, n = 1, 2, . . . 50
are chosen as finite length sequences with unit power according to

Jakes’ model with fd = 0.05/T . The results are based on averaging

1000 experiments. In Fig. 3(a), the mean-squared error (MSE) of the

estimated time delays is shown versus the SNR, when using p = 4
sampling channels. In Fig. 3(b), the MSE of the estimated time delays

is shown versus the number of sampling channels, for a constant SNR

of 10dB. This simulation demonstrates that increasing the number of

sampling channels can improve the performance of our method in

the presence of noise.

VI. CONCLUSION

We considered the problem of estimating the time delays and time

varying coefficients of a multipath medium, from low-rate samples of

the received signal. We showed that if the medium has K multipath

components a sampling rate of 2K/T is sufficient to guarantee

perfect recovery of its parameters. This rate is independent of the

probing pulse bandwidth, which can be very high. We developed

necessary and sufficient conditions on the transmitted pulse and the

sampling filters in order to guarantee perfect recovery at the minimal

possible rate. To recover the unknown time delays we proposed an

ESPRIT-type algorithm. Once the delays are properly identified, the

time varying coefficients can be recovered using digital filtering.

Besides the application to medium identification, the problem

we treated here can be seen as a first example of a systematic

sampling theory for analog signals defined over an infinite union

of subspaces. Recently, there has been growing interest in sampling

theorems for signals over a union of subspaces [11], [12], [13],

[15]. However, previous work addressing stability issues and concrete

recovery algorithms have focused on finite unions. Here, we take a

first step in the direction of extending these ideas to a broader setting

that treats analog signals lying in an infinite union.
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