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Abstract—We consider the problem of linear zero forcing
precoding design, and discuss its relation to the theory of
generalized inverses in linear algebra. Special attention is given
to a specific generalized inverse known as the pseudo-inverse.
We begin with the standard design under the assumption of a
total power constraint and prove that precoders based on the
pseudo-inverse are optimal in this setting. Then, we proceed to
examine individual per-antenna power constraints. In this case,
the pseudo-inverse is not necessarily the optimal generalized
inverse. In fact, finding the optimal inverse is non-trivial and
depends on the specific performance measure. We address two
commeon criteria, fairness and throughput, and show that the op-
timal matrices may be found using standard convex optimization
methods. We demonstrate the improved performance offered by
our approach using computer simulations.

I. INTRODUCTION

Transmitter design for the multiple input single output
(MISO) multiuser broadcast channel is an important problem
in modern wireless communication systems. The main diffi-
culty in this channel is that coordinated receive processing
is not possible and that all the signal processing must be
employed at the transmitter side. From an information theory
perspective, the capacity region of this channel was only re-
cently characterized [1], [2]. From a signal processing point of
view there are still many open questions and there is ongoing
search aimed at finding efficient yet simple transmitter design
algorithms. In particular, linear precoding schemes which seem
to provide a promising tradeoff between performance and
complexity received considerable attention [3]-[5].

The most common linear precoding scheme is zero fore-
ing (ZF) beamforming. This simple method decouples the
multiuser channel into multiple independent sub-channels, and
reduces the design into a power allocation problem. It performs
very well in the high signal-to-noise-ratio (SNR) regime or
when the number of users is sufficiently large, and is known
to provide full degrees of freedom [1]. Moreover, it is easy
to generalize this method to incorporate non-linear dirty paper
(DP) coding mechanisms [1]. There are dozens of papers on
ZF precoding focusing on different design criteria [5]-[10].
Among these, two common criteria are maximal fairness and
maximum throughput. Due to its simplicity, ZF precoding
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is also an appealing transmission method in multiple input
multiple output (MIMO) broadcast channels [11]-[15].

Traditionally, the transmitter is designed under the assump-
tion of a total power constraint [1], [3]-{10]. In practice,
there is increasing interest in addressing more complicated
scenarios, such as individual per-antenna power constraints.
These are more realistic since each transmit antenna has
its own power amplifier. Moreover, state-of-the-art commu-
nication systems will utilize multiple transmitters, which are
geographically separated, but cooperatively send data to the
receiving units. In such systems, it is clear that each transmitter
has its own power restrictions. Recently, results on linear
precoding [3] were generalized to incorporate per-antenna
power constraints in [16]. The problem with these methods
is their prohibitive computational complexity. Therefore, ZF
precoding methods were also generalized to address per-
antenna power constraints [17]-[19].

Interestingly, ZF precoding design is highly related to the
concept of generalized inverses in linear algebra [20]. This
is easy to understand as the ZF precoder basically inverts
the multiuser channel. Previous works using total power
constraints [5]-[10] as well as individual per-antenna power
constraints [17]-[19] began with the assumption that the
precoder has the form of a specific generalized inverse known
as the pseudo-inverse. We prove that the pseudo-inverse based
precoder is optimal for maximizing any performance measure
under a total power constraint. However, when per-antenna
power constraints are involved, it is no longer optimal and
other generalized inverses may outperform it. Finding the
optimal inverse is non-trivial and depends on the specific
performance criterion. We consider the two classical criteria,
fairness and throughput, and transform the design problems
into convex optimization programs which can be solved effi-
ciently using off-the-shelves numerical packages.

The ZF precoding design for maximizing throughput turns
out to be a non-convex optimization problem. One of the
methods for handling such problems is to lift it into a
higher dimension and then relax the non-convex constraints.
Consequently, there is an increasing interest in analyzing the
tightness of such relaxations [21], [22]. We apply this method
and use Lagrange duality to prove that the relaxation is always
tight in our setting.

The paper is organized as follows. In Section I we in-
troduce the ZF precoding design problem. A brief review
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on generalized inverses is provided in Section III. Next,
precoding under total power constraint is addressed in Section
IV, whereas precoding under individual per-antenna power
constraints is considered in Section V. A few numerical results
are demonstrated in Section VI

The following notation is used. Boldface upper case letters
denote matrices, boldface lower case letters denote column
vectors, and standard lower case letters denote scalars. The
superscripts ()7, ()7L, ()~ and () denote the transpose,
matrix inverse, generalized inverse and pseudo-inverse, respec-
tively. The operators Tr {-}, || - || and || - || denote the trace,
the Buclidean norm and the Frobenius norm, respectively. The
operators diag {d} and diag{d;} denote a diagonal matrix
with the elements d and dg, respectively. The matrix I denotes
the identity matrix, 1 is the vector of ones, and ey is a zeros
vector with a one in the k’th element. Finally, X = 0 means
that X is positive semidefinite.

II. PROBLEM FORMULATION
We consider the standard MISO multiuser broadcast channel

yk:hgx‘i_wka k:]-’aKa (1)

where  is the received sample of the k’th user, hy is the
length N channel to this user, x is the length N transmitted
vector and wg are zero mean and unit variance Gaussian noise
samples. For simplicity, we use the following matrix notation

y =Hx+w, (2)

where v = yl,---,yK}T, H = [hl,---,hK]T and w =
[wi,,wx] . Throughout the paper we will assume that
K < N and H is full row-rank.

In linear precoding methods, the transmitted vector is a
linear transformation of the information symbols (see Fig. 1)

x =Ts, (3)

where the length K information vector s satisfies £/{ss’} = L.
The precoding matrix T is then designed to maximize some
performance measure. Typical metrics involve functions of the
received signal-to-interference-plus-noise ratios (SINRs):
HT];
g = — k=1,
> HT] 5+ 1

Such measures usually lead to untractable optimization prob-
lems. ZF precoding is a standard approach for addressing such
problems which is known to provide a promising tradeoff
between complexity and performance. Here, T is designed to
achieve zero interference between the users, ie., [HT) k=0
if k =£ 4. Moreover, without loss of generality, we assume that
[HT], , > 0for k=1, -, K. Using matrix notation, the ZF
condition is equivalent to

HT = diag{\/q}, (5

T, . ,
where \/q = [\/7L, +,+/3x| Is a vector with non-negative
elements. These restrictions simplify the design and decouple

the broadcast channel into K independent scalar sub-channels
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Traditionally, precoders are designed subject to a total power
constraint of the form

E{|lx|I*} = Te {TTT} = |T|% < P, @)

where P > 0. As we will show in the next sections, the total
power constraint simplifies the design problem and leads to
simple and efficient precoders. Nonetheless, in practice, many
systems are subject to individual per antenna power constraints
as illustrated in Fig. 1,

<P
nn — N
In order to properly formulate the design problem we need
to define its objective. Depending on the application, different
criteria may be considered. Two typical performance measures

are.

E{|z,*} = [TTT] N (8)

n=1,..

« Faimess: f{q) = ming gz

o+ Throughput: f(q) = >, log (1 + g&)
Therefore, we treat two fundamental design problems. In
section IV, we consider the optimal T for maximizing f(q)
subject to the zero forcing constraint and a total power
constraint. In Section V we generalize the setting to individual
per-antenna power constraints. Both faimess and throughput
are addressed in the two problems.

III. GENERALIZED INVERSES

The ZF precoding design problem is highly related to the
concept of generalized inverses in linear algebra [20], [23].
Therefore, we now briefly review this topic.

Formally, the generalized inverse of a size K x N matrix
H is any matrix H™ of size N x K such that HH™H = H.
If H is square and invertible, then H™ = H-1. Otherwise,
the generalized inverse is not unique. The pseudo-inverse HY
is a specific generalized inverse that satisfies HH'H = H,
HIHH' = Hf, (H'H) = H'H and (HHN® = HA'
It is unique and is known to have minimal Frobenius norm
among all the generalized inverses.

In this paper, we assume that H is a full row-rank matrix.
Under this assumption, the generalized inverse is any matrix
H™ such that HH™ = 1. The pseudo-inverse is given by
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ot = {u’ (HHTY1 and any generalized inverse may be

expressed as

H =H'+P,U, (9)

where P; = I — H'H is the orthogonal projection onto the
null space of H and U is an arbitrary matrix.

Using the above definitions and properties, it is easy to see
the relation between ZF precoding and generalized inverses.
Due to (3), the general structure of any ZF precoder is

T = H diag{,/q}
M + P, U] diag {,/q}.

This reduces the precoder design problem to an optimization
with respect to the elements of ¢ and the specific choice of
generalized inverse via U. Roughly speaking, we will show
that the optimization of ¢ depends on the design criteria
{fairness vs. throughput), whereas the optimization of U is
associated with the power constraints (total vs. per-antenna).
In fact, the discussion above suggests that the pseudo-inverse
(U = 0) is optimal with respect to the total power constraint
which is associated with the Frobenius norm. We will show
that when more complicated constraints are involved the
optimal U is not necessarily zero.

(10)

IV. TOTAL POWER CONSTRAINT

The problem of ZF precoding design under a total power
constraint has already received considerable attention [5]-
[9]. To our knowledge, in all of the previous works it was
taken for granted that the precoder T must be based on the
pseudo-inverse rather than any other generalized inverse. This
simplified the design and reduced it to a power allocation
problem. The next theorem proves that the pseudo-inverse is
indeed optimal under a total power constraint:

Theorem 1: Let f(.) be an arbitrary function of q. The
optimal solution to

maxT g f(q)
s.t. HT = diag {\/_} (11
Tr{TT?} < P,

is T°P* — Hidiag {« /qopt} where ¢°F' is the solution to

maxqzo  f(q) . 12

s.b. > dk {(HT) Hf}k,k < P,
Proof: Due to space limitations, the proof appears in a
forthcoming paper [24]. ]

The importance of this result stems from the fact that (12)
is a simple power allocation problem. In particular, assuming
that f(q) is concave in q > 0, the problem is a concave
maximization with one linear constraint. For example, in the
throughput case the problem boils down to [6], [8]

2 g log (14 gx)
gt >k dk {(HHT)il

which can be solved using the well known water filling
solution.

MaXq>0

<P (13)
k

V. PER-ANTENNA POWER CONSTRAINTS

We now treat the more difficult case of ZF precoding
design under individual per-antenna power constraints. Here,
the pseudo-inverse is not necessarily the optimal generalized
inverse. In fact, finding the optimal inverse is a non-trivial op-
timization problem which depends on the specific performance
measure. Therefore, we address the two standard metrics,
fairness and throughput, separately.

A. Fairness

We begin with the fairmess criterion which yields the fol-
lowing optimization problem:

maxT q»0 Ming g
s.t. HT = dlag{{} (14)
TTT] <%, Yo
As can be expected, the fairness criterion implies that
q=q1, (15)

for some ¢ > 0 is optimal. As proof, assume that the optimal
solution is T and @ > 0. If g, = 0 for some & then T = 0
and g = 0 are also optimal. Otherwise, define ¢ = ming 7y,
T = /4T [diag {\/c=1}}71 and ¢ = g1. Then, T and ¢ are
also feasible (since ¢/, < 1 for all k) and provide the same
objective value as T.

Due to {10y and (15) we obtain

T=,zH +P, U], (16)
for some U. This reduces the problem to
maxuv.q=0 4 a7
st g [T +P U e 2< &, Y
Now, it is clear that
= P T , (18)
Nmax, || [Ht +PLU]" e,|?
where U is the solution to
ming, ¢
st [P e | <t v (19)

Problem (19) is a convex second order cone program (SOCP).
It can be solved efficiently using standard optimization pack-
ages [25], [26].
B. Throughput

Next, we consider the throughput objective function:

maxT,q ».zlog (14 gx)
a.t. HT = diag {\[} (20
TTT Y n.

,Na

This is a difficult non-concave max1m12at1'on problem due to
the squared roots of . In the sequel, we provide an exact
solution to (20) which finds the optimal generalized inverse
using modemn convex optimization methods. For this purpose,
it is convenient to rewrite the problem using the notation in
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M), ie, hy = H7ey and t; = Tey, for k =1, -, K. Thus,
gr = (hity)” and (20) is equivalent to

maxt, log‘I—i—diag{(hgtk)QH
st (WTt)" =0, YEk#5
Yo ltatl] <%, Vo

Next, we linearize the quadratic terms by defining Ty =
tktg = 0for k=1, .., K, which results in

maxT, log ‘I + diag {hnghk} ‘
8.1. h?Tkhj =0, ¥Yk#g3
T =0, Yk
rank (Tg) =1,

The only non-convex constraints in (22) are the rank-one
restrictions. Therefore, we now relax the problem and omit
these problematic constraints to obtain

maxT, log ‘I + diag {hnghk} ‘
8.1, hITyh; =0, Vi+#j;

Sk Thlpn <50 Vs
Ty =0, VEk

(21)

(22)

¥ k.

(23)

Problem (23) is a standard determinant maximization
(MAXDET) program subject to linear matrix inequalities [27].
It is a convex optimization problem and there are off-the-shelf
numerical optimization packages which can solve it efficiently
[26]. If the optimal Ty are all of rank-one, then we can recover
ty from them and find the optimal solution to (20). Fortunately,
the following theorem proves that the relaxation is always
tight:

Theorem 2: Problem (23) always has a solution with rank-
one matrices. This solution can be found as follows: Let szt
for £ =1,---,K be a (possibly high rank) optimal solution
to (23). For each k define tz as the optimal solution to

maxi hgt
st hlt—0, Yk#j; (24)
76k,n S [t}n S 6k,n Y n,
where B, = [szt}nn. Then, T;pt = tpt] for k =

1,.--, K is a rank-one solution to (23).

Proof: Due to space limitations, the proof appears in a
forthcoming paper [24]. |
In practice, our experience shows that the MAXDET software
[26] usually provides a rank-one solution automatically. If it
does not, then the theorem provides a constructive method
for finding a rank-one solution by solving K simple linear
programs of the form (24).

V1. NUMERICAL RESULTS

We now demonstrate our results using two numerical ex-
amples. In the first example, we consider the fairness ZF pre-
coding design under individual per-antenna power constraints.
We simulate a system with X' = 3 users and P = 1 (In
the fairness case, the value of P is not important as it just
scales the resulting power). The elements of the matrix H

T T T

e Par-antenna with pseudo—inverse
: : =—@— Par—antenna with generalized inversq

Bl Frereeeseeesens HEREEEEE e T otal power constraint -

Fairness power (q)

5 10 15 20 25 30

Maximal faimess ZF precoding for different N.

55 T T T T T T T
: : : : | =il Per—antenna with pseudo-inverse

: : : H ! | el Por—antennawith generalized inversa
L R Prreneees premeneees [ERRAAEE T | = Total power censtraint

Throughput

4 8
P in [dB]

Fig. 3. Maximal throughput ZF precoding for different P.

are randomly generated as independent, zero mean and unit
variance Gaussian random variables. We estimate the average
received power ¢ in (16). For comparison, we also estimate this
mean power when we assume U = 0, i.e., restrict the precoder
to be a standard pseudo-inverse, and when we replace the
per-antenna power constraints with a total power constraint.
The results are presented in Fig. 2 as a function of the
number of transmit antennas N. As expected, the stringent per-
antenna constraints result in a lower received power. However,
the graph shows that part of this loss can be recovered by
optimizing U and finding the appropriate generalized inverse.

In the second example, we consider the maximization of
the throughput under the same setting as before except that
now N = 4 and we simulate different Ps. The estimated
sum-rates are provided in Fig. 3. Again, it is easy to see the
degradation in performance due to the individual per-antenna
power constraints, as well as the advantage in optimizing the
generalized inverse.
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VII. CONCLUSION

In this paper we consider ZF precoding design in MISO
broadcast channels. We discuss the intimate relation between
ZF precoding and the theory of generalized inverses. Our
results show that designing the precoders based on the standard
pseudo-inverse is optimal under the assumption of a total
power constraint. However, when more complex power con-
straints are involved, e.g., individual total per-antenna power
constraints, the pseudo-inverse is no longer sufficient and
other generalized inverses may provide better performance. In
general, finding the optimal inverse is a difficult optimization
problem which is highly dependent on the specific design
criterion. We consider two classical criteria, fairness and
throughput and demonstrate how to transform these problems
into standard convex optimization programs.

Using the methods that we developed it is straightforward
to generalize the sefting to a variety of applications. More
practical criteria may be addressed using the semidefinite
relaxation approach as long as these are concave in the
received powers, e.g., weighted sum-rate. In addition, other
power constraints may be implemented, e.g., the expected
value of the squared norm of sub-blocks of x. Such constraints
may be important in modem systems where multiple base
stations, each with multiple antennas, cooperatively transmit
data to the same users.

Precoding with generalized power constraints is an impor-
tant problem in modern communication systems and there are
still many open questions. More advanced linear precoding
schemes should be addressed. For example, it is well known
that in low SNR conditions, and under channel uncertainty,
regularizing the pseudo-inverse can considerably improve the
performance. It is interesting to examine this property in
the context of generalized inverses. Future work should also
address the implications of our results on non-linear schemes
such as ZF DP precoding.

Another extension of our work is to consider the well
known duality between receive and transmit processing. It
has already been shown in [16] that precoding with per-
antenna power constraints is the dual of decoding under noise
uncertainty conditions. ZF decoding using the pseudo-inverse
(the decorrelator) is probably the most common decoding
algorithm. Our results suggest that other generalized inverses
may outperform it under uncertainty conditions.
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