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Abstract—Time-frequency analysis, such as the Gabor trans-
form, plays an important role in many signal processing appli-
cations. The redundancy of such representations is often directly
related to the computational load of any algorithm operating in
the transform domain. To reduce complexity, it may be desirable
to increase the time and frequency sampling intervals beyond the
point where the transform is invertible, at the cost of an inevitable
recovery error. In this paper we initiate the study of recovery
procedures for noninvertible Gabor representations. We propose
using fixed analysis and synthesis windows, chosen e.g., according
to implementation constraints, and to process the Gabor coeffi-
cients prior to synthesis in order to shape the reconstructed signal.
We develop three methods for signal recovery. The first follows
from the consistency requirement, namely that the recovered
signal has the same Gabor representation as the input signal. The
second, is based on minimization of a worst-case error. Last, we
develop a recovery technique based on the assumption that the
input signal lies in some subspace of ��. We show that for each
of the criteria, the manipulation of the transform coefficients
amounts to a 2D twisted convolution, which we show how to
perform using a filter-bank. When the undersampling factor is
an integer, the processing reduces to standard 2D convolution.
We provide simulation results demonstrating the advantages and
weaknesses of each of the algorithms.

Index Terms— Gabor transform, sampling, twisted convolution.

I. INTRODUCTION

T IME-FREQUENCY analysis has become a popular tool
in signal processing. During the past three decades,

it has been successfully used for noise suppression [1], [2],
blind source separation [3], echo cancellation [4], [5], relative
transfer function identification [6], beamforming in reverberant
environments [7], system identification in general [8], and
more. In algorithms based on time-frequency transforms such
as the Gabor representation, there is often a tradeoff between
performance and computational complexity, which can be
controlled by adjusting the redundancy of the transform. The
latter is determined by the product of the sampling intervals in
time and frequency, which we denote by and , respectively.
Specifically, as and are increased, there are less coefficients
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per time unit for any given frequency range, and therefore the
amount of computation needed to process them decreases.

An important example in which the performance-complexity
tradeoff is controlled by the redundancy of the transform, is that
of system identification in the time-frequency domain [8]. In
this setting the LTI system to be identified is often modeled by
a sub-band filtering structure, in which each frequency bin is
convolved with a finite-impulse response (FIR) filter. The goal
is to identify these sub-band filters given noisy observations of
the input and output of the system. It is clear that the smaller
and , the more data that has to be processed. On the other hand,
as the redundancy is increased, a model mismatch error is intro-
duced, since the sub-band filtering structure seizes to constitute
a loyal model for the LTI system. This tradeoff was thoroughly
investigated in [8].

The signal processing literature on Gabor-domain algorithms
heavily relies on the fundamental requirement that any signal
can be recovered from its coefficients in the transform domain.
This requirement leads to the upper bound . However,
since the performance-complexity tradeoff is of continuous
nature, it seems very restrictive to limit the discussion to this
regime. Specifically, by increasing the sampling intervals be-
yond this bound we may further reduce the computational load
of any algorithm operating in the Gabor domain. This benefit
is obtained at the expense of deterioration in performance. It
is important to note that when , an additional source
of performance degradation comes into play, which is the
inherent reconstruction error. This is because, as we show, in
this regime, we can only guarantee perfect reconstruction for
signals lying in certain subspaces of , but not for the entire
space. Nevertheless, the resulting complexity reduction may be
of greater value in some applications.

In this paper, we explore reconstruction techniques for non-
invertible Gabor transforms, namely in which . The fact
that in these cases perfect recovery cannot be guaranteed for
every signal introduces extra flexibility in choosing the anal-
ysis and synthesis windows of the transform. Specifically, we
address the case where both the analysis and synthesis win-
dows are specified in advance. They can be chosen according to
implementation considerations, for example finite support win-
dows, or certain multiple-pole windows [9] admitting an effi-
cient recursive implementation. Our goal, then, is to process the
transform coefficients before reconstruction such that the recov-
ered signal possesses certain desired properties.

To treat this problem, we borrow several approaches from
the field of sampling theory, which has reached a high degree
of maturity in recent years [10], [11]. We begin by employing
the consistency criterion in which the recovered signal is
constructed such that its Gabor transform coincides with that
of [12]. We then analyze a minimax strategy, where the
reconstruction error is minimized for the worst-case
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input [13]. Both these approaches are prior-free in the sense
that they do not make use of any special properties, or prior
knowledge, that might be available on the signal.

A prevalent prior in the sampling literature, is that the signal
to be recovered lies in a shift invariant (SI) subspace of (see,
e.g., [14]–[18] and references therein). In fact, signals and im-
ages encountered in many applications can be quite accurately
modeled as belonging to some SI space [10], [11], such as the
space of bandlimited functions, the space of polynomial splines
and more. Their widespread use can also be attributed to the
link that subspace priors have with stationary stochastic pro-
cesses [19]–[22], which have been shown to constitute realistic
priors for the behavior of natural images [23]. In this paper, we
generalize the SI-prior used in the sampling community to a
richer type of subspaces of , which we term shift-and-mod-
ulation (SMI) invariant spaces (see also [24]). The third class
of inverse Gabor techniques we consider, then, makes use of
the SMI prior. We show that such a prior can lead to perfect re-
covery in some cases, given that the synthesis window is chosen
according to the prior. For a fixed synthesis window, which is
not matched to the prior, we show how to achieve the minimal
possible reconstruction error for signals in the prior-space.

In each of the three techniques we develop, the processing of
the Gabor coefficients amounts to a 2D twisted-convolution [25]
with a certain kernel, which depends on the analysis and syn-
thesis windows. We show that the twisted-convolution operation
can be interpreted in terms of a filter-bank. Furthermore, in the
case of integer undersampling (i.e., when is an integer), the re-
sulting process reduces to a standard 2D convolution in the time-
frequency domain. In these cases, we discuss situations in which
the 2D convolution kernel is a separable function of time and
frequency. This allows a significant reduction in computation,
namely by implementing the 2D convolution as two successive
1D filtering operations along the time and frequency directions.

The paper is organized as follows. Section II is devoted to
notation that will be used throughout the paper. In Section III
we derive conditions on the analysis and synthesis windows
such that they generate Riesz bases for their span, which guar-
antees that the noninvertible Gabor representation is stable. In
Section IV we review sampling and reconstruction schemes in
SI spaces in order later to be able to generalize them to the Gabor
transform using SMI spaces. Sections V, VI, and VII constitute
the central part of the paper, where in the first two we develop
prior-free recovery procedures for Gabor transforms in the in-
teger and rational undersampling regimes, respectively, and in
the last we discuss SMI-prior recoveries. Finally, in Section VIII
we demonstrate the methods we develop for the case in which
both the analysis and synthesis are performed with Gaussian
windows.

II. NOTATION AND DEFINITIONS

We will be working throughout the paper with the Hilbert
space of complex square integrable functions, denoted by

, with inner product

for all

where denotes the complex conjugate of . The norm,
induced by this inner product, is given by

The Fourier transform of is defined as

For convenience, we will sometimes write for .
In order to ensure stable recovery we focus on subspaces of

which are generated by frames or Riesz bases. A collec-
tion of elements is a frame for its closed linear span if
there exist constants and such that

for all

where denotes the closed linear span of a set of vectors.
The vectors form a Riesz basis if there exist
and such that for all sequences

where is the squared -norm of . A
consequence of the lower inequality is that the basis functions
are linearly independent, which means that every function in

is uniquely specified by its coefficients .
The fundamental building blocks of the Gabor representation

are the so-called Gabor systems. To define a Gabor system, let
and be such that with and relatively

prime, and let and , for , be the translation and
modulation operators given by

For , the Gabor system is a collection
. The composition

which is a unitary operator, is called a time-frequency shift op-
erator. Many technical details in time-frequency analysis are
linked to the commutation law of the translation and modula-
tion operators, namely

When , the time-frequency shift operators commute, i.e.
, because for all . One

consequence of the commutation rule, which we will use in our
exposition, is the relation

When the exponent is equal to 1.
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Fig. 1. Filter-bank representation of the Gabor transform (a) and of the inverse Gabor transform (b). (a) Analysis filter bank. (b) Synthesis filter bank.

For , the collection is a Riesz basis for
its closed linear span if there exist bounds and
such that

(1)

and is a frame when

for all . A necessary condition for
to constitute a frame for is that . More-

over, if is a frame, then it is a Riesz basis for
if and only if [26]. In this paper we focus on the regime

, where does not necessarily span .
We associate a synthesis operator (or reconstruction oper-

ator) , with , defined as

for

The conjugate of is called the analysis
operator (or sampling operator), and is given by

for

We consider only Gabor systems whose generators come
from the so-called Feichtinger algebra . This set is defined
by

(2)

where is a Gaussian window. An important property
of is that if and are elements from then

is an sequence. Examples of func-
tions in are the Gaussian and B-splines of strictly positive
order. The Feichtinger algebra is an extremely useful space
of “good” window functions in the sense of time-frequency
localization. Rigorous descriptions of can be found in [26].

III. STABLE GABOR REPRESENTATIONS

The Gabor representation of a signal comprises the set
of coefficients obtained by inner products with the
elements of some Gabor system [26]

(3)

This process can be represented as an analysis filter-bank, as
shown in Fig. 1(a). Consequently, is referred to as the anal-
ysis window of the transform. If constitutes a frame or
Riesz basis for , then there exists a function
such that any can be reconstructed from the co-
efficients using the formula

(4)

The Gabor system is the dual frame (Riesz basis) to
. Consequently, the synthesis window is referred

to as the dual of . The recovery process can be represented
as a synthesis filter-bank, as shown in Fig. 1(b).

Generally, there is more than one dual window . It can be
shown that any function satisfying
is a dual window. The canonical dual is given by ,
where is the frame operator associated with , and is de-
fined by . There are
several ways of finding an inverse of , including the Janssen
representation of , through the Zak transform method or iter-
atively using one of several available efficient algorithms [26].

In this paper, we are interested in Gabor systems that do not
necessarily span but rather only a (shift-and-modulation
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invariant) subspace. A shift-and-modulation (SMI) space is the
set of all signals that can be expressed in the form (4) with
some norm-bounded sequence . In other words, is the
closed linear span of the Gabor system , which in [24]
is called the smallest SMI space generated by . Our
choice of terminology follows from the fact that if lies in ,
then the function is also an element of for every
fixed . Indeed, let for
some sequence , then

where . The same holds for
.

Since perfect recovery cannot be guaranteed for every signal
in in these situations, we have the freedom of choosing
the analysis and synthesis windows according to implementa-
tion constraints. However, in order for the analysis and synthesis
processes to be stable, we would still like to assure that the sys-
tems and form frames or Riesz bases for
their span. In this section, we give several equivalent character-
izations of windows and sampling intervals and such
that the Gabor system forms a Riesz basis.

The first characterization of Gabor Riesz bases we consider
is stated directly in terms of their generator . It is a simple
corollary of a result on Gabor frames for .

Proposition III.1: Let and with and
relatively prime. The collection is a Riesz basis for

its closed linear span if and only if there exist constants
and such that

for almost all (5)

where is the identity matrix and is a
matrix-valued function with entries given by

(6)

where . is an orthonormal basis if
.

Proof: By the Ron-Shen duality principle [27], is
a Riesz basis (orthonormal basis) for its closed linear span if and
only if the system is a frame (Parseval frame) for

. The latter holds if and only if there exist constants

and such that the so-called frame operator , defined
as satisfies

(7)

where is the identity operator on . It was shown in [26]
that, since , the operator satisfies (7) if and
only if (5) is satisfied, which completes the proof.

Note that is a frequency variable associated with the dis-
crete-time variable , and similarly is a time variable associ-
ated with the discrete frequency index . Another valuable obser-
vation is that is a -periodic function. Further-
more, it has been shown in [26] that is continuous.
Therefore, the lower bound in (5) can be replaced by the require-
ment that for all .

The next characterization we consider is in terms of the
twisted convolution operator. Specifically, the Riesz basis
condition implies that is a Riesz basis for its closed
linear span if and only if there exist constants and

such that

for all (8)

where the 2D cross-correlation sequence is defined as

(9)

The operation represents the twisted convolution defined by

(10)

Equation (8) follows directly from the definition of Riesz basis
(1), by rewriting it in the inner product notation.

When , twisted convolution becomes standard con-
volution, because the exponential term in (10) equals 1 for all

. Therefore, generates a Riesz basis if and
only if the twisted convolution (standard convolution when

) operator with kernel is bounded and invertible. In-
vertibility of this operator translates to the invertibility of the
sequence with respect to ( , respectively). Proposi-
tion III.1 states then, that this twisted convolution operator is
bounded and invertible if and only if the matrix-valued function

is bounded and invertible for almost all and . Ex-
plicitly finding the inverse of a sequence with respect to twisted
convolution is not a trivial task. We will address this problem in
Appendix A.

Our last representation follows from restating Proposition
III.1 using a different, but equivalent, matrix-valued function
that involves the cross-correlation sequence defined
in (9). This new representation was first introduced in [28] to
characterize the invertibility of general Gabor frame operators.

Proposition III.2: [28] The matrix-valued function
of (6) coincides with the matrix-valued function whose
entries are given by

(11)
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and therefore is a Riesz basis for its closed linear span
if and only if there exist constants and such that

for almost all (12)

In the integer undersampling case , of (11)
reduces to the scalar function

(13)

where is the 2D discrete-time Fourier transform (DTFT)
of . Therefore, in this case condition (12) reduces to

for almost all (14)

for some and .
The -characterization is of particular interest in our context

as it can be used to investigate any twisted convolution operation
with a sequence . Indeed, it was shown in [29] that
such an operation is invertible if and only if the matrix-valued
function

(15)

is invertible for almost all and . In fact, in some sense the
function is to twisted convolution what the DTFT is for
convolution. Specifically, we show in Appendix B that for two
sequences and having -representations and

, respectively, the matrix-valued function
associated with the twisted convolution , can be expressed as

We conclude this section with the observation that having a
Riesz basis for an SMI space , it is possible to construct many
others using equivalent generating functions.

Proposition III.3: Let be a Riesz basis for its closed
linear span and with and relatively prime. Let

where is a sequence of weights. Then is an
equivalent Riesz basis for if and only if there exist constants

and such that the -matrix-valued function
of (15) satisfies

(16)

for almost all , where denotes the con-
jugate transpose of .

Proof: See Appendix C.
In the case of integer undersampling (i.e., when ),

becomes a scalar function, which is simply the 2D
DTFT of . In this setting, condition (16) becomes

for almost all

Fig. 2. Sampling (a) and reconstruction (b) with given filters.

IV. SAMPLING AND RECONSTRUCTION IN

SHIFT-INVARIANT SPACES

To address the recovery of a function from its noninvert-
ible Gabor transform, we will harness several strategies which
were initially developed in the context of sampling theory.
Specifically, the last two decades have witnessed a substantial
amount of research devoted to the problem of recovering a
signal from the equidistant point-wise samples of its
filtered version, using a predefined reconstruction filter [10],
[11], [30]. As can be seen in Fig. 2, the sampling stage in
this setting, corresponds to the central branch in the analysis
filter-bank of the Gabor transform shown in Fig. 1(a). Thus, the
time-frequency plane is sampled in this scenario only on the
lattice . Similarly, the reconstruction process of
Fig. 2 can be identified with the central branch of the synthesis
filter-bank of Fig. 1(b).

The main goal in this setting is to produce a set of expansion
coefficients by processing the samples , such that the
recovered signal possesses certain desired properties. In
this section, we briefly review three methods for treating this
problem, each based on a different design criterion. For more
detailed explanations and a review of other methods, we refer
the reader to [11]–[13], [30], [31]. In the following sections, we
will extend these results to the Gabor scenario.

For simplicity, we assume here that . The reconstruction
process of Fig. 2 can be written in operator notation as ,
where is the synthesis operator associated with
the functions , defined as

for

Similarly, since , the sequence of samples
are obtained by applying the synthesis operator , which

is the conjugate of the analysis operator associated with the
functions

for

We will refer to and
as the sampling and reconstruction spaces, respectively. Spaces
of this type are called shift-invariant (SI).

As in the Gabor transform, we focus on cases where the sets
of functions and constitute Riesz bases for
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their span. It is well known [32] that this holds if, for example,
satisfies

for almost all

for some and , where

(17)

The function is the DTFT of the auto-correlation se-
quence

(18)

where is the Fourier transform of . In other words,
is a Riesz basis if and only if the sequence

is bounded and invertible in the convolution algebra . In
particular, the functions form an orthonormal basis if
and only if . Notice the analogy with condition (12)
[and (14) in the case ], which was developed for Gabor
systems.

A. Consistent Reconstruction

Perhaps the most intuitive demand on the recovered signal
is that it produces the same sequence of samples when

it is reinjected into the sampling device of Fig. 2(a), namely

for all . This consistency requirement was first introduced
in [12] in the context of sampling in SI spaces and then gener-
alized to arbitrary spaces in [31] and [33]. There, it was shown
that consistent reconstruction is possible under the direct-sum
condition , where denotes a sum of two
subspaces that intersect only at the zero vector. This means that

and are disjoint and together span the space .
In the SI setting, the direct-sum condition translates into the

simple requirement that [17]

for almost all (19)

for some positive constant , where

(20)

is the DTFT of the cross-correlation sequence
. Under this condition, reconstruction can be

obtained by convolving the sample sequence with the
filter , whose DTFT is given by [12], [33], [34]

(21)

to obtain the sequence of expansion coefficients1 .

1When assigning � ��� in (21) we set it to zero whenever � ��� is
zero. It can happen that � ��� is zero for some �, since the condition (19)
holds for almost all �, and not all. Such an assignment rule will also hold for
other � throughout the presentation, whenever it is defined by � that is almost
everywhere positive.

If and are two arbitrary subspaces of satisfying
(namely not necessarily SI spaces), spanned

by the functions and , respectively, then the se-
quence of expansion coefficients can be obtained by applying
the operator

(22)

on the sequence of samples , where and are the syn-
thesis operators associated with and , respec-
tively. The direct-sum requirement guarantees that

is continuously invertible. In the next sections, we will use
this latter characterization to develop a consistent reconstruc-
tion procedure for noninvertible Gabor transforms.

B. Minimax Regret Reconstruction

A drawback of the consistency approach is that the fact that
and yield the same samples does not necessarily imply

that is close to . Indeed, for a signal not in , the
norm of the resulting reconstruction error can be
arbitrarily large, if is nearly orthogonal to .

To directly control the reconstruction error, it is important to
notice that is restricted to lie in by construction. There-
fore, the best possible recovery is the orthogonal projection of

onto , namely , a fact that follows from the pro-
jection theorem. This solution cannot be generated in general,
because we do not know but rather only the sequence of
samples it produced. The difference between the squared-
norm error of any recovery and the smallest possible error,
which is , is called the regret [35], [36].
The regret depends in general on and therefore cannot be
minimized uniformly for all . Instead, the authors in [13]
proposed minimizing the worst-case regret over all bounded-
norm signals that are consistent with the given samples.
This results in the problem

(23)

where is the set of feasible
signals.

It was shown in [13] that the minimax-regret reconstruction
can be obtained by filtering the samples with the filter
whose DTFT is given by

where , and are as in (20) with the
corresponding substitution of the generators and . Note
that the solution is independent of the bound appearing in the
definition of .

If the sampling and reconstruction functions form Riesz bases
for arbitrary spaces and (not necessarily SI), then the se-
quence of expansion coefficients can be obtained by applying
the operator

(24)

on the sequence of samples . The operators and are
guaranteed to be continuously invertible due to the Riesz basis
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assumption. This more general characterization will be used
later to obtain a minimax-regret recovery method in the setting
of SMI spaces.

C. Subspace-Prior Reconstruction

The consistent reconstruction approach leads to perfect re-
covery for input signals that lie in the reconstruction space
[12]. The minimax-regret method, on the other hand, leads to
the best possible approximation for signals lying
in the sampling space [13]. Therefore, the two methods can
be thought of as emerging from the prior that lies in a cer-
tain subspace of , where in the consistent
strategy and in the minimax-regret approach. In prac-
tice, though, it is often desirable to choose the sampling and
reconstruction spaces according to implementation constraints
and not to reflect our prior knowledge on the typical signals en-
tering our sampling device. Thus, commonly neither constitutes
a subspace prior , which is good in the sense that
is small for most signals in our application.

A generalization of these two methods results by assuming
that where for a generator ,
which may be different than and . If the subspace
satisfies the direct-sum condition , then the
solution can be generated by filtering the sample
sequence with [13]

where , and are as in (20) with the
appropriate substitution of , , and .

For general sampling, reconstruction and prior subspaces ,
and , the coefficient sequence can be obtained by ap-

plying the transformation

(25)

on the sample sequence , where is the synthesis operator
associated with the prior functions . Again, this general
formulation will be used in the context of SMI spaces to derive
a subspace-prior recovery technique.

V. INTEGER UNDERSAMPLING

In this section, we address the problem of recovering a signal
from its noninvertible Gabor transform coefficients ,

given by (3), using a pre-specified synthesis window . We
focus on prior-free approaches that do not take into account any
knowledge on the signal . Specifically, here we employ the
consistency and minimax-regret methods discussed in the pre-
vious section to the Gabor scenario. To emphasize the common-
alities with respect to the SI sampling case, and to retain sim-
plicity, we begin the discussion with the case of integer under-
sampling . In the next section we generalize the results
to arbitrary .

A. Consistent Synthesis

In the Gabor transform, the sampling (analysis) space is
spanned by the Gabor system and the reconstruction

(synthesis) space is the span of . As discussed in
Section IV-A, consistent reconstruction is possible if

. For SI spaces, this direct-sum condition translates to the
requirement that the cross-correlation sequence

has an inverse in the convolution algebra . A
similar condition is true in the setting of Gabor spaces.

The next proposition characterizes the class of pairs of anal-
ysis and synthesis windows satisfying the direct-sum require-
ment in the integer undersampling regime.

Proposition V.1: Assume that and are
Riesz sequences that span the spaces and , respectively, and

. Then if and only if the function
, defined as

(26)
is nonzero for almost all . Here

(27)

is the Gabor transform of the synthesis window .
Proof: It was shown in [31], for general Hilbert spaces, that

if and are spanned by Riesz bases and ,
respectively, then if and only if the oper-
ator is continuously invertible on . Here, and are
the analysis and synthesis operators associated with
and , respectively. By definition, for any sequence

(28)

(29)

(30)

(31)

where the third equality follows from the fact , and hence
. Therefore, the operator is simply a 2D

convolution operator with kernel and
is invertible if and only if is invertible in the convo-

lution algebra . As shown in Section III, this sequence
has a representation , defined by (15), which is its 2D
DTFT in the case . A sequence is invertible with respect
to convolution if and only if its DTFT has no zeros. Therefore,

is invertible if and only if implying that
if and only if .

Assuming that indeed , we know from
Section IV-A that to obtain a consistent recovery, we must apply
the operator on the coefficients prior to
synthesis. In the proof of Proposition V.1, we showed that
is a 2D convolution operator with the kernel of (27).
Therefore, corresponds to filtering the Gabor coeffi-
cients with the filter whose 2D DTFT is given by

(32)
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This filter is well defined by Proposition V.1 since we assumed
that the spaces generated by and satisfy the direct sum
condition.

During the operations of analysis and pre-processing of the
Gabor coefficients , we in fact compute a dual Riesz basis
for the reconstruction space . In case the synthesis and analysis
spaces are the same, namely , we compute the orthogonal
dual basis. However, when the spaces are different we compute
a general (oblique) dual Riesz basis for .

Proposition V.2: Let and be Riesz se-
quences that span the spaces and , respectively, where is
an integer, and assume that . Then a dual Riesz
basis for the space is with

(33)

where is the inverse of with respect to .
Proof: Any signal in can be recovered from

the corrected coefficients via
, where is as in (3).

Therefore, we may view this sequence as the coefficients in a
basis expansion. To obtain the corresponding basis we note that
by combining the effects of the analysis window and the
correction filter of (32), the expansion coefficients can be
equivalently expressed as where

Indeed

(34)

and the last equality is due to the fact that , and there-
fore the exponent equals 1. Noting that

, (34) becomes

Therefore, any can be written as

It can be easily verified, by Proposition III.3, that is
an equivalent Riesz basis for . Furthermore

implying that is a dual Riesz basis to .

B. Minimax Regret Synthesis

We now develop a minimax-regret recovery method, similar
to the SI case of Section IV-B. Specifically, we seek a recovery

for which the worst-case regret over all bounded-norm sig-
nals consistent with the given Gabor coefficients , is
minimal. The minimax-regret reconstruction can be obtained by
applying the operator of (24) on the Gabor coefficients
prior to synthesis.

When we have shown in Section V-A that the operators
, and correspond to 2D convolutions with the

kernels , and , respectively, which are
given by (27) with the appropriate substitution of and .
Therefore, the minimax-regret recovery is obtained by filtering
the Gabor coefficients with the 2D filter , whose DTFT
is given by

(35)

Here, , , and are the 2D DTFTs
of , and , respectively. This filter is well
defined by Proposition III.2 since we assumed that and
generate Riesz bases for their span.

C. Efficient Implementation

The two reconstruction approaches discussed above are based
on 2D filtering of the Gabor transform prior to synthesis. A
significant reduction in computation can be achieved when the
2D correction filter is a separable function of and , namely
when for two sequences and . In these situa-
tions, one can first apply the 1D filter on each of the rows of

(i.e., along the time direction), and then apply the 1D filter
on each of the columns (along the frequency direction). If, for

example, is a separable finite-impulse-response (FIR) filter
with nonzero coefficients, then direct application of it
requires multiplications per output coefficient, whereas only

multiplications suffice when implementing it using two 1D
filtering operations.

Separable correction filters emerge when the cross-corre-
lation sequences involved are separable functions of and .
One such example is the setting in which and are
Gaussian windows with variances and , respectively, and

is an integer (recall that we also require that
be an integer). Then , , and are

all separable functions of and , so that both the consistent
and the minimax-regret filters are separable. More details on
noninvertible Gaussian-window Gabor transforms are given in
Section VIII.

D. Rational Undersampling

We now generalize the results of the previous section to the
case where the product is not an integer, but rather some
rational number with and relatively prime. The main
difficulty here is the fact that the time-frequency shift operators
do not commute when . Therefore, instead of standard
convolution we will be faced with a twisted convolution, which
is a noncommutative operation. This makes the techniques from
Fourier theory inapplicable in a straightforward manner.
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E. Consistent Synthesis

Obtaining a reconstruction , which is consistent with the
Gabor representation of , is possible if

. As we have seen in Proposition V.1, in the integer un-
dersampling case the direct sum condition translates to
the requirement that the cross-correlation sequence be
invertible in the convolution algebra . In the setting of
rational undersampling, we have the following.

Proposition VI.1: Assume that and are
Riesz sequences that span the spaces and , respectively, and

with and relatively prime. Then
if and only if the -matrix-valued function with
entries defined as

is invertible for almost all . This is
equivalent to for all .

Proof: The proof is similar to that of Proposition V.1, with
the difference that the standard convolution becomes twisted
convolution. This is due to the fact that the exponent in (28)
no longer equals 1, since the product is rational. Therefore

where the operation is defined in (10). Consequently, is
a twisted convolution operator with kernel

and is invertible if and only if is invertible in the
twisted convolution algebra . As shown in Section III,
this sequence has a representation defined by (15) and
so is invertible if and only if this matrix is invertible. Therefore,

if and only if is invertible almost
everywhere.

Note that for , the above proposition reduces to Propo-
sition V.1. When , we conclude from Proposition VI.1
that the direct sum condition translates to the requirement that

be invertible in the twisted convolution algebra, which
can be checked by analyzing its -representation. An alternative
method for checking whether is invertible with respect
to , is presented in Appendix A. It involves only the sequence

without introducing the continuous variables and ,
making it more attractive in some cases.

As in Section V-A, to obtain a consistent recovery , we
have to apply the operator to the Gabor
coefficients . However, in contrast to the case , where

was a standard convolution operator, here it corresponds
to a twisted convolution operation. This is due to the fact that
time-frequency shift operators do not commute for .
Specifically, in the proof of Proposition VI.1, it was shown
that corresponds to twisted convolution with .
Therefore, corresponds to twisted convolution with
the sequence , which is the inverse of in the

twisted convolution algebra . This inverse exists, since
we assumed that the spaces generated by and satisfy
the direct-sum condition. In Appendix A we will show how to
construct it.

One can write the twisted convolution relation between the
Gabor transform and the expansion coefficients in terms
of their -representations. Specifically, since ,
we have and, therefore

where , and are the -ma-
trix-valued -representations of the sequences , and

, respectively, defined in (11). Therefore, to obtain the
sequence from the Gabor coefficients , we apply a
twisted convolution filter, whose function is

(36)

The twisted convolution operation can be modeled as a filter
bank which is specified by the convolutional inverse of ,
as we show in Appendix A.

During the operations of sampling and pre-processing of the
samples we in fact compute a dual Riesz basis for the syn-
thesis space . If the synthesis and analysis spaces are the same,
namely , we compute the orthogonal dual basis. However,
when the spaces are different we compute a general (oblique)
dual Riesz basis for .

Proposition VI.2: Let and be Riesz se-
quences that span the spaces and , respectively, and

with and relatively prime. Assume that
. Then a dual Riesz basis for the space is with

where is the inverse of with respect to .
Proof: The proof is analogous to the proof of Proposition

V.2. The only change is that the standard convolution becomes
twisted convolution. This is because the time-frequency shifts
do not commute when is not an integer. Therefore

and any can be written as

It can be easily verified, by Proposition III.3, that
is an equivalent Riesz basis for . Now, for it to be a dual Riesz
basis to we need to check that

(37)
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Let and . Then,

Using the fact that

and that is the inverse of with respect to , we have

which completes the proof.

F. Minimax Regret Synthesis

Next, we develop a minimax-regret reconstruction method for
noninvertible Gabor transforms with rational undersampling.
The signal minimizing (23) can be obtained by applying
of (24) on the Gabor coefficients prior to synthesis. How-
ever, in contrast to the integer undersampling case discussed
in Section V-B, where , , and were convolution
operators, here they correspond to twisted convolutions with

, , and , respectively. Therefore, to ob-
tain the sequence , we apply a twisted convolution filter on
the Gabor coefficients , whose impulse response is

Here, and are the inverses of and
with respect to . Consequently, the function of the

minimax-regret filter is given by

(38)

where , , and are the -represen-
tations of , , and , respectively.

G. Extension to Symplectic Lattices

Throughout the current and previous sections, we considered
a special type of sampling points in the time-frequency plane,
called separable lattices . However, with the help
of metaplectic operators, these results carry over to the more
general class of lattices, called symplectic lattices. A lattice

is called symplectic, if one can write where
is a separable lattice and , meaning it is an invert-

ible 2 2 matrix with determinant 1 [26]. To every
there corresponds a unitary operator , called metaplectic
operator, acting on . One can show that a Gabor system on
a symplectic lattice is unitarily equivalent to a Gabor system on a
separable lattice under . That is, is a frame/Riesz
basis if and only if is a frame/Riesz basis, and

Therefore, instead of considering a representation of in
one can look at the representation of in

. For more details, see [26].

VI. SUBSPACE-PRIOR SYNTHESIS

In the previous two sections we attempted to recover a signal
from its noninvertible Gabor representation without using any
prior knowledge on the signal. When such knowledge is avail-
able, it can significantly reduce the reconstruction error and in
some cases even lead to perfect recovery. A common prior in
sampling theory is that the signal to be recovered lies in some
SI subspace of with a single generator. Namely that it can be
written as

with a norm-bounded sequence and some window .
This model can quite accurately describe many types of natural
signals, which exhibit a certain degree of smoothness. For ex-
ample, the class of bandlimited signals is the SI space generated
by the sinc window. The class of splines of degree also fol-
lows this description with being the B-spline function of
degree .

Here, we generalize the SI-prior setting to SMI spaces. We
use these spaces as priors on our input signals, in order to re-
cover them from their noninvertible Gabor transform. Our set-
ting is thus as follows. Specifically, we assume that lies in
some SMI space , generated by , which we term the
prior space. That means that can be represented in the form

(39)

for some sequence in . We are given the Gabor co-
efficients of , which were computed with the analysis
window . Our goal is to produce a recovery using
the synthesis window . Clearly, if does not coincide
with our synthesis space , then the reconstruction cannot
equal . The interesting question is whether we can obtain
the best possible recovery, which is the orthogonal projection

, from the Gabor coefficients of . In our de-
velopments, we discuss the integer and rational undersampling
cases separately.

A. Integer Undersampling

As discussed in Section IV-C, if the analysis and prior spaces
satisfy , then the best possible recovery can
be generated by applying the operator (25) on the Gabor
coefficients prior to synthesis. From Proposition V.1 we
know that this direct-sum condition is satisfied if and only if

almost everywhere, where is as in
(26) with replaced by . The operators , , and

correspond to 2D convolutions with the kernels ,
and , respectively, which are given by (27)

with the appropriate substitution of , and . There-
fore, corresponds to 2D convolution with the filter ,
whose 2D DTFT is given by

(40)
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where , , and are the 2D DTFTs
of , and , respectively.

When the synthesis space coincides with the prior space
, we have ,

so that the correction filter is the same as in the consistency ap-
proach of Section V-A. In this case, the direct-sum condition
(namely the invertibility of the operator ) guarantees per-
fect recovery of . To see this, note that any can
be written as for some sequence , so that the
Gabor coefficients are given by . There-
fore, the expansion coefficients can be perfectly recovered using

. This property is, of course, independent of the
sampling lattice and holds true also in the rational undersam-
pling regime.

B. Rational Undersampling

We now extend the subspace-prior approach to the rational
undersampling regime. As before, we assume that the input
can be expressed in the form (39) for some sequence . The
best possible recovery can be obtained by applying the operator

of (25) on the Gabor transform prior to reconstruction.
The operators , , and correspond to twisted
convolution with the kernels , , and ,
respectively. Therefore, corresponds to twisted convolu-
tion with

The corresponding function is given by

(41)

where , , and are the -repre-
sentations of , , and , respectively.

VII. EXAMPLE: INTEGER UNDERSAMPLING WITH

GAUSSIAN WINDOWS

We now demonstrate the prior-free recovery techniques de-
rived in this paper. To retain simplicity we will focus on the
integer undersampling scenario. In this regime, the smallest
amount of information loss occurs when . Therefore, in
our simulations we used and . In this setting there are
at most half the number of time-frequency coefficients for any
given frequency range per time unit, than in any invertible Gabor
representation. Consequently, algorithms operating in the Gabor
domain (e.g., for system identification, speech enhancement,
blind source separation, etc.) will benefit from a reduction of at
least a factor of 2 in computational load. On the other hand, we
expect the norm of the reconstruction error to be roughly on the
order of the signal’s norm in the worst-case scenario, since half
of the information is lost in such a representation.

For tractability, we consider the case in which the analysis
and synthesis are both performed with Gaussian windows:

Fig. 3. The 2D correction filters corresponding to the minimax-regret and con-
sistency methods.

Fig. 4. A chirp signal and its Gaussian-window Gabor representation.

In this scenario, the cross-correlation sequence
, has an analytic expression:

(42)

Similarly, and can be obtained by replacing
by and vice versa.

The filter of (32), corresponding to the consistency
requirement, is the convolutional inverse of . This
sequence can be approximated numerically using the discrete
Fourier transform (DFT) of the finite-length sequence ,

, for some (large) and . To com-
pute the filter of (35), corresponding to the minimax-regret
approach, we need to invert and , which can
be done in a similar manner. Note that both and are
generally complex sequences. Fig. 3 depicts the modulus
and for the case , , and .

To see the effect of these two filters, we now examine the
recovery of a chirp signal from its noninvertible Gabor repre-
sentation using both methods. Specifically, let

The Gaussian-window Gabor transform of has a closed
form expression, given by

The signal and the modulus of its Gabor transform,
, are shown in Fig. 4. Although seems to constitute a

good time-frequency representation of , it is certainly not
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Fig. 5. Reconstructions of ���� from its Gabor coefficients � . (a) Without processing � . (b) Consistent recovery, namely using � � �� � � � as
expansion coefficients. (c) Minimax-regret recovery, corresponding to � � �� � � � .

Fig. 6. The modulus of the expansion coefficients �� � corresponding to the
consistent and minimax-regret recovery methods.

suited to play the role of the synthesis expansion coefficients
. This can be seen in Fig. 5(a), where have been used

without modification as expansion coefficients to produce a
recovery . The signal-to-noise ratio (SNR) of this recovery
is .

The reconstructions obtained with the consistency and min-
imax-regret methods are shown in Fig. 5(b) and (c). Clearly, they
both bear better resemblance to . The consistent recovery
is the unique signal that can be constructed with the synthesis
window , whose Gabor transform coincides with . This
property makes this reconstruction desirable in some sense, al-
though its SNR is only 1.03 dB, worse than the uncompen-
sated recovery. To guarantee that the error between our recovery

and the original signal is small, for every possible
that could have generated , one has to use the minimax re-
gret approach, as shown Fig. 5(c). This reconstruction achieves
an SNR of 0.1 dB, and therefore is better than the other two
methods in terms of reconstruction error. Fig. 6 depicts the ex-
pansion coefficients corresponding to the two methods.

VIII. CONCLUSION

In this paper, we explored various techniques for recovering a
signal from its noninvertible Gabor transform, where the under-
sampling factor is rational. Specifically, we studied situations
where both the analysis and synthesis windows of the trans-
form are given, so that the only freedom is in processing the co-
efficients in the time-frequency domain prior to synthesis. We
began with the consistency approach, in which the recovered
signal is required to possess the same Gabor transform as the

original signal. We then analyzed a minimax strategy whereby
a reconstruction with minimal worst case error is sought. Fi-
nally, we developed a recovery method yielding the minimal
possible error when the original signal is known to lie in some
given Gabor space. We showed that all three techniques amount
to performing a 2D twisted convolution operation on the Gabor
coefficients prior to synthesis. When the undersampling factor
of the transform is an integer, this process reduces to standard
2D convolution. We demonstrated our techniques for Gaussian-
window transforms in the context of recovering a chirp signal.

APPENDIX A
TWISTED CONVOLUTION

In Section VI, we saw that in order to process the sam-
ples one needs the inverse of certain cross-correlation
sequences with respect to . In this section we show how to
obtain explicitly the inverse of a sequence with respect
to twisted convolution with parameter . This depends very
much on . If , then the twisted convolution is a
standard convolution, and the Fourier transform can be used
to compute the inverse of . If , then one can use
the construction derived in [25], which breaks the problem
into computing inverses of several sequences with respect to
standard convolution. We now briefly review this method. For
the proofs and more detailed explanations, we refer the reader
to the original paper.

Let be a sequence in . We create new sequences
out of , defined as

(43)

where . It is easy to see that the sequence
is supported on the coset and there-

fore . In the case in which , out
of a sequence we obtain four subsequences: which is
supported on , supported on , sup-
ported on and supported on .

Next, we associate with the sequence a matrix
whose entries are sequences in :

(44)
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where should be interpreted as modulo . This matrix is an
element of an algebra of matrices with multiplication
of two matrices and given by

where is a standard convolution. It was shown in [25] that
an algebra of such matrices is closed under taking inverses,
meaning that if is invertible in then its inverse is also an
element of and its entries are also coming from some se-
quence in . For example, when the above matrix
takes the form

where we used the fact that since , must be odd, and thus
for , 1 takes the values 1 and 1. Note that

summing up the elements of the first column gives us back the
sequence .

It was shown in [25] that the invertibility of the sequence
with respect to is equivalent to the invertibility of the matrix

in this new matrix algebra, which in turn is equivalent to the
invertibility of in . Therefore, if is invertible,
its inverse can be computed using Cramer’s Rule. That is the

entry of is given by

(45)

where is a matrix obtained from by substituting
the th row of with a vector of zeros having on the th posi-
tion, and the th column with a column of zeros having on the
th position. Note that is a sequence and its inverse in

(45) is taken with respect to standard convolution. For example,
when we get

Thus

where
. Since the matrix algebra is closed under

taking inverses, summing up the elements of the first column of
results in some sequence which is the inverse of

with respect to twisted convolution. Therefore, it is enough to
compute only this column and sum up its entries to get . In

our example with , the twisted-convolutional-inverse of
equals .

We mentioned in the previous sections that it is possible to
realize twisted convolution with a rational parameter using
a filter bank. Indeed, using the decomposition (43), the twisted
convolution of two sequences and ,

can be written as

(46)

for . Therefore, as shown in Fig. 7, each of
the sequences , , is split into fil-
ters associated with the sequences , .
Then, is obtained by summing over the resulting output
sequences. Fig. 7 depicts one of the branches, which corre-
sponds to the indices , , and .

APPENDIX B
THE MULTIPLICATION PROPERTY OF

In this appendix we prove the multiplication property of .
Let and be two sequences having matrix-valued func-
tion representations and , respectively. Then the matrix-
valued function associated with the twisted convolution ,
can be expressed as

To show this, let and let be fixed.
Then

(47)

Using the decomposition (43) of the sequences, (47) becomes
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Fig. 7. A filter-bank realization of twisted convolution between � and � .

Rearranging the sums in the above equation we arrive at

Hence, .

APPENDIX C
PROOF OF PROPOSITION III.3

Since is a Riesz basis for , there exist bounds
and such that , where

is the matrix-valued function associated with the se-
quence , defined in (11). The system , with

, is a Riesz basis if and only if
there exist constants and such that

Here is a matrix-valued function built from the cross-
correlation sequence . By substi-
tuting in one obtains

where and . It is
easy to check, and we leave it for the reader, that

. Therefore, using the relation from Appendix B, the
-entry of the matrix is

where is a matrix-valued function associated with
the sequence and defined in the Proposition. Hence, if

and are Riesz bases with bounds ,
, and , , respectively, then

Therefore satisfies (16) with bounds and
.

On the other hand, if the sequence is such that (16) is
satisfied, then

and so is a Riesz basis with bounds and
. It remains to show that and

span the same space. Every element of can be
uniquely represented by a linear combinations of the elements
from , since the latter is a Riesz basis. It suffices to
show that can be written as a linear combination of the
elements from (it will be a unique representation
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since is a Riesz basis). Then, since Gabor spaces are
closed under translation and modulations, other basis elements
from will also admit a unique representation in terms
of . Let be the inverse of with respect to ,
meaning . The inverse exists because satisfies (16).
Let . We will now show
that . Indeed
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